
Learning to Parse Natural Language Commands
to a Robot Control System

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

Abstract As robots become more ubiquitous and capable of performing complex
tasks, the importance of enabling untrained users to interact with them has increased.
In response, unconstrained natural-language interaction with robots has emerged
as a significant research area. We discuss the problem of parsing natural language
commands to actions and control structures that can be readily implemented in a
robot execution system. Our approach learns a parser based on example pairs of
English commands and corresponding control language expressions. We evaluate
this approach in the context of following route instructions through an indoor envi-
ronment, and demonstrate that our system can learn to translate English commands
into sequences of desired actions, while correctly capturing the semantic intent of
statements involving complex control structures. The procedural nature of our for-
mal representation allows a robot to interpret route instructions online while moving
through a previously unknown environment.

1 Motivation and Problem Statement

In this paper, we discuss our work on grounding natural language–interpreting hu-
man language into semantically informed structures in the context of robotic per-
ception and actuation. To this end, we explore the question of interpreting natural
language commands so they can be executed by a robot, specifically in the context
of following route instructions through a map.

Natural language (NL) is a rich, intuitive mechanism by which humans can inter-
act with systems around them, offering sufficient signal to support robot task plan-
ning. Human route instructions include complex language constructs, which robots
must be able to execute without being given a fully specified world model such as a
map. Our goal is to investigate whether it is possible to learn a parser that produces

· All authors are affiliated with the University of Washington, Seattle, USA.
· Email: {cynthia,eherbst,lsz,fox}@cs.washington.edu

1

2 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

Fig. 1: The task: Going from NL to robot control. First, the natural language command is parsed
into a formal, procedural description representing the intent of the person. The robot control com-
mands are then used by the executor, along with the local state of the world, to control the robot,
thereby grounding the NL commands into actions while exploring the environment.

correct, robot-executable commands for such instructions. We treat grounding as a
problem of parsing from a natural language to a formal control language capable
of representing a robot’s operation in an environment. Specifically, we train a se-
mantic parsing model that defines, for any natural language sentence, a distribution
over possible robot control sequences in a LISP-like control language called Robot
Control Language, or RCL.

The key contributions of this work are to learn grounding relations from data
(rather than predefining a mapping of natural language to actions), and to execute
them against a previously unseen world model (in this case, a map of an environ-
ment), as illustrated in Fig. 1. Training is performed on English commands anno-
tated with the corresponding robot commands. This parser can then be used to trans-
form new route instructions to execution system inputs in an unfamiliar map. The
resulting system can represent control structures and higher-order concepts. We test
our approach using a simulator executing the commands produced.

The remainder of this paper is organized as follows. In the next section, we dis-
cuss related work in human-robot interaction, natural language understanding, and
robot navigation and instruction-following. Sec. 3 describes the technical approach,
the formal execution language we define for this work, and our parser learning sys-
tem. Sec. 4 and Sec. 5 describe the experimental evaluation performed and the re-
sults obtained, and we close with a discussion of insights gained from this work.

2 Related Work

Robot navigation is a critical and widely-studied task in mobile robotics, and fol-
lowing natural-language instructions is a key component of natural, multi-modal
human/robot interaction. Previous efforts have treated the language grounding task
as a problem of parsing commands into formal meaning representations. Several
efforts [14, 23] parse natural route instructions to sequences of atomic actions
that must be grounded into fully specified world models. Other systems learn to
parse navigation instructions, but limit their formal language to a set of predefined
parses [25].

Learning to Parse Natural Language Commands to a Robot Control System 3

Our work falls also into the broader class of grounded language acquisition [24],
in which language is learned from situated context, usually by learning over a cor-
pus of parallel language and context data. Other work shows how parsed natural
language can be grounded in a robot’s world and action models, taking perceptual
and grounding uncertainty into account, thereby enabling instruction for robot nav-
igation, GUI interaction, and forklift operation [30, 4, 28].

Parsing natural language to expressive formal representations such as λ -calculus
has been demonstrated [31, 1, 18]. λ -calculus is able to represent complex robot
control systems [8]; however, to the best of our knowledge, such parser learning
approaches have not yet been applied in the context of robotics. Logic-based con-
trol systems have been used successfully in robotics [11, 3, 5, 9, 16], providing
a powerful framework that can be readily mapped to robot actions, and combina-
tory categorial grammars have been used for semantic mapping [21]; in contrast to
our framework, however, most approaches rely on a manually constructed parser
to map from NL commands to λ -calculus, rather than learning grounding relations
from data.

Our work is most similar to that of Chen & Mooney [7, 6], who perform parser
learning over a body of route instructions through a complex indoor environment
containing objects and landmarks with no prior linguistic knowledge. However, their
work assumes initial knowledge of a map, and does not represent complex control
structures. Compared to our previous approach to parser learning for route instruc-
tion following, the system presented here can represent control structures such as
‘while,’ higher-order concepts such as ‘nth,’ and set operations, and is able to follow
such directions through unknown maps.

3 Technical Approach

As noted in Sec. 2, much of the work on learning to parse natural language route
instructions assumes previous knowledge of the map to be traversed. Intuitively,
our approach is to parse natural language into a high level specification of robot
behavior, which can then be executed in the context of an arbitrary environment.
Differentiating context and meaning in this way lends itself well to tasks in robotics,
where full knowledge of the environment is rarely available. Our approach also
separates the parsing problem from execution, providing a more appropriate layer
of abstraction for robot control. This architecture is shown in Fig. 2.

3.1 Robot Control Language

We model control structures in a logic-based Robot Control Language (RCL), in-
spired by task execution systems such as PRS [12], RPL [2], and GOLEX [11]. For
a given set of route instructions, RCL represents the high-level execution intended

4 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

Fig. 2: The high-level architecture of the end-to-end system. Training is performed by learning a
parser from English instructions to RCL. In the experimental phase, the learned parser maps NL
instructions to an RCL program that is executed by the robot.

by the person. Fig. 3 illustrates RCL programs for paths through an automatically
generated, semantically-labeled map [10], along with the instructions correspond-
ing to that path. (RCL is a subset of the typed lambda calculus, and therefore can be
represented in a LISP-like format.)

The language is intended to be high-level enough that different execution sys-
tems can be used for various tasks, rather than specifying low-level actuation and
perception tasks. As such, RCL expressions can encode actions with nontrivial sub-
tasks such as combined perception and action. For example, (exists left-loc)

is a high-level command to the execution system to determine whether there is an
opening to the left, while (move-to forward-loc) tells the robot to move one
node forward in the semantic map. This also allows the language to be quite com-
pact; a full list of RCL commands is given in Fig. 3(a), including terms for logical
expressions, queries about local state, and actions to be performed.

3.2 Parsing

RCL is a formal language defined by a grammar; parsing is the process of producing
an expression in that grammar from some input. In our case, the input is natural
language route instructions, and the parsing target is a statement in RCL that can be
passed to a robot controller for planning or further disambiguation.

For this work, parsing is performed using an extended version of the Unification-
Based Learner, UBL [17]. The grammatical formalism used by UBL is a probabilis-
tic version of combinatory categorial grammars, or CCGs [27], a type of phrase
structure grammar. CCGs model both the syntax (language constructs such as NP
for noun phrase) and the semantics (expressions in λ -calculus) of a sentence. UBL
creates a parser by inducing a probabilistic CCG (PCCG) from a set of training
examples.

PCCG-based algorithms have several characteristics that make them a good
choice for parsing NL instructions. They are robust against noise found in lan-
guage, and they are able to efficiently generate n-best parses using CKY-style pars-
ing [29, 18], allowing for jointly considering a parse model and a world model
derived from sensor data when interpreting instructions into grounded action; next-
best parse search can also be used for “fallback” exploration, e.g., when performing

Learning to Parse Natural Language Commands to a Robot Control System 5

locations
current-loc:loc robot’s current position
forward-loc:loc location ahead of robot
left-loc:loc to robot’s left
right-loc:loc to robot’s right
exists:t [loc] does [loc] exist?

movement
move-to:t [loc] move to [loc]

turn-left:t take next available left
turn-right:t take next available right

logic
and:t [t] [t] boolean ‘and’
or:t [t] [t] boolean ‘or’
not:t [t] boolean ‘not’

loops
do-until:t [t] [e] do [e] until [t] is true
do-n-times:t [n] [e] do [e] [n] times

querying the type of a node
room:t [loc] is [loc] a room?
junction:t [loc] is [loc] a junction?
junction3:t [loc] is [loc] a 3-way junction?
junction4:t [loc] is [loc] a 4-way junction?
hall:t [loc] is [loc] of type hallway?

mid-level perception
turn-unique-corner:t take available turn
take-unique-exit:t leave a room with one exit

other
<#>:n integers
do-sequentially:t e+ do each thing in turn
verify:t t error if arg is false

(a)

“Go left to the end of the hall.”
(do-sequentially

(turn-left

(do-until

(or

(not

(exists forward-loc))

(room forward-loc))

(move-to forward-loc)))

“Go to the third junction and
take a right.”
(do-sequentially

(do-n-times 3

(do-sequentially

(move-to forward-loc

(do-until

(junction current-loc

(move-to

forward-loc))))

(turn-right))

“Go straight down the hallway past
a bunch of rooms until you reach an
intersection with a hallway on your
left.”
(do-sequentially

(do-until

(and

(exists left-loc)

(hall left-loc))

(move-to forward-loc))

(turn-left))

(b)

Fig. 3: (a) The complete list of terms in Robot Control Language. Hallways, rooms and intersec-
tions are treated as nodes of a map. The return type of each term is given after its name, followed
by the types of any parameters: e (entity), t (boolean), n (number), loc (map location). (b) gives
examples of English sentences from the test corpus and their RCL interpretations.

local error correction. Additionally, the probabilistic nature of PCCGs offers a clear
objective for learning, that is, maximizing the conditional likelihood of training data.

Importantly, UBL can learn a parser solely from training data of the form
{(xi,zi)}, where xi is a natural-language sentence and zi is a corresponding semantic-
language sentence. In brief, UBL learns a model for p(zi,yi|xi;θ), where θ parame-
terizes the learned grammar G and yi is a derivation in G (zi is completely specified
by yi). UBL uses a log-linear model:

p(zi,yi|xi;θ) ∝ eθ ·φ(xi,yi,zi)

6 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

go to the second junction and go left

S/NP NP/NP NP/N N S\S/S S
(move-to f orward) [null] (do-n-times 2 x) (until (junction current-loc) y) (do-seq g f) (turn-le f t)

NP S\S
(do-n-times 2 (until (junction current-loc) y)) (do-seq g turn-le f t)

NP
(do-n-times 2 (until (junction current-loc) y))

S
(do-n-times 2 (until (junction current-loc) (move-to f orward)))

S
(do-seq (do-n-times 2 (until (junction current-loc) (move-to f orward))) (turn-le f t))

Fig. 4: CCG parse of a test sentence performed by the learned parser. Here the natural language
input is first, followed by alternating CCG syntactic categorization and λ -calculus logical forms.
The bottom row shows the RCL program to be executed by the robot. (Some syntax has been
changed for conciseness.)

UBL first generates a set of possibly useful lexical items, made up of natural lan-
guage words, a λ -calculus expression, and a syntactic category. (An example lexical
item might be <“left”, turn-left, S>.) The algorithm then alternates between in-
creasing the size of this lexicon and estimating the parameters of G via stochastic
gradient descent [20].

Two types of features θ are used. Lexical features fire when the associated lexical
items are found in a training example (an example lexical item might be <“left”,
turn-left, S>). Semantic features are functions of the logical RCL expression zi.
These are binary features that indicate the co-occurrence of different types of terms
in zi: predicates and their arguments, argument types, predicate co-occurrences, and
shared variables. Once a parser is trained, parses are produced via derivations, using
the learned lexical items and a small set of fixed production rules. Fig. 4 gives an
example derivation of an RCL program (last line) from an input sentence (first line).

3.2.1 Parsing Extensions: Initialization of Lexicon and Parameters

In [17], the lexicon—the set of lexical entries and their weights—was initialized
with entries covering the entirety of each training example: for each pair of terms
found in (xi,zi), one initial lexical entry was created. The model defined by θ con-
tained a parameter corresponding to each lexical item, and these weights were set
using cooccurrence statistics of single words in the natural language with constants
in the semantic language. For example, given the training example:

exit the room and go left
(do-sequentially (take-unique-exit) (turn-le f t))

the algorithm would count one cooccurrence for each of (‘exit’, do-sequentially),
(‘exit’, take-unique-exit), (‘exit’, turn-le f t), and each other (NL-word, logical-
term) pair. The more often such a pair cooccurred, the more important it was con-
sidered for parsing and so the higher its weight in the initial model.

Learning to Parse Natural Language Commands to a Robot Control System 7

In this work we use a new initialization that is better able to handle our semantic
language. Intuitively, rather than generating lexical items from each word, we al-
low arbitrary subsequences of natural-language words, along with semantic subex-
pressions as defined by the splitting procedure of [17]. As before, this favors (NL,
semantics) pairs that are very predictive of each other, while remaining tractable.

More specifically: for each training example i, we let W (xi) be all subsequences
of words in the NL sentence xi (up to a fixed length, N = 4 in our experiments). We
define Li to be the initial sentential CCG category of the sentence xi, having syntac-
tic category S (sentence) and meaning zi. Splits of Li into CCG categories are recur-
sively explored to depth two, yielding a set of possible syntactic sub-categorizations
R. We then define three count functions: C(w ∈W), instances of phrase w in the
training data; C(r ∈ R), occurrences of each syntactic category in the training data;
and C(w,r) as the cooccurrence count. The score for lexical entry (w,r) is then de-
fined to be p(w|r)+ p(r|w), where probabilities are computed using counts.

Two other improvements made to UBL involve synonyms and ordinals. During
both training and evaluation, if UBL is unable to find a parse for a sentence, it
tries to substitute known synonym lists from a standard dictionary for individual
words. In addition, numbers are special-cased: when an ordinal (numbers such as
‘three’, or counting terms such as ‘second’) is encountered in a training sentence, it
is replaced by a standard symbol, turning that training sentence into a template into
which other ordinals can be substituted freely. As a result, not each ordinal term has
to be encountered in all contexts in the training data.

4 Dataset & Maps

Our primary goal is to evaluate the ability of the system to generate RCL command
sequences that allow a robot to navigate through a labeled map according to NL in-
structions. Maps are labeled according to area type (room, hallway, etc.), but are not
known to the robot in advance. Instead, the robot explores the map simultaneously
with following an RCL program. These experiments are performed in simulation.

We use four maps for our experiments, two each for training and testing (see
Fig. 5). Each map has an associated set of routes through the map that have been
described in English; for training and test purposes, each English route description
is also paired with an associated RCL annotation. Maps A and B—the training and
testing maps from earlier work—were automatically generated using Voronoi Ran-
dom Fields [10] on data gathered by a SICK laser range-finder mounted on a Pioneer
robot. Because these original maps were fairly simple, two additional manually con-
structed maps, C and D, were introduced for training and testing, in order to increase
experimental complexity. All navigation experiments were performed in simulated
execution of RCL commands in these maps.

Language datasets were generated as follows. First, English training and test-
ing data from earlier work [23] was re-annotated in RCL; as in [23] and [7], all
English instructions are segmented into individual movement phrases. This train-

8 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

(a) (b) (c) (d)

Fig. 5: Four maps were used: A, B, C, and D are respectively a computer science building, an
industry research lab, an apartment building, and an academic support building at Cuesta College.
Buildings C and D were selected for their relatively complex structure. Areas are color-coded
according to type: green areas are rooms, blue areas are hallways, and dark and light gray circles
are 4-way and 3-way intersections.

ing set, Sbase, contained 189 unique sentences generated by non-experts. We then
supplemented this data with additional sentences taken from descriptions of four
more complex routes in map C. Twelve non-experts supplied NL directions for those
routes. The resulting enriched dataset, Senr, contains 418 NL route instructions along
with corresponding RCL command sequences, including structures requiring loops
and counting–for example, “Go until you reach a four-way intersection”, or “Go into
the ninth door on the right”. Fig. 6 shows an example of an NL route instruction set
with RCL annotation.

(a) Map trace

“Go straight down the
hallway past a bunch of
rooms until you reach an
intersection with a
hallway on your left;
turn left there.”

(b) English phrase

(do-sequentially
(do-until
(and
(exists left-loc)
(hall left-loc))

(move-to forward-loc))
(turn-left current-loc))

(c) RCL commands

Fig. 6: An example training/testing triplet. (a) The red line shows the path through map B; (b) a
description of the path, written by a non-expert person; (c) the language’s RCL annotation in Senr.
In testing, the annotation is compared to the annotation produced by the learned parser.

5 Experiments

Experimentally, we are interested in whether the robot reaches the desired desti-
nation by exactly following the described path. Since all maps contain loops, any

Learning to Parse Natural Language Commands to a Robot Control System 9

destination can be reached via an incorrect path; we consider this a failed trial. In
addition to the generated RCL program, the robot begins at a known starting loca-
tion and orientation; local knowledge of the map (adjacent and line-of-sight areas) is
updated continuously as the robot progresses. A trial is considered successful only if
the robot reached the correct destination along the route intended by the instructor,
as our goal is to test instruction-following rather than navigation.

5.1 Baseline, Parser, and Route-Following Experiments

We report on three different experiments used to test the capabilities of our system:
two which evaluate its ability to successfully guide a robot through a map, and one
which evaluates the parsing component directly. Because the complete number of
routes is small and does not necessarily capture map complexity, a large number of
test routes of various lengths were generated in the test map, and NL descriptions
were generated using route instructions drawn from Sbase and Senr (see Fig. 7 for an
example test route and description).

5.1.1 Baseline

As a baseline, we test our robot control system on the training, test, and map data
used in our previous work, which only contains the 189 comparatively simple route
instructions in Sbase. For this experiment, data was collected on Map A, and tested
against Map B, using the evaluation paradigm from previous work [23]. Perfor-
mance was virtually identical to that work, with the simulated robot successfully
following 71.4% of route instructions. It is not surprising that our new technique did
not significantly improve over the performance of the prior approach, as that data
set was rather small and did not contain complex control structures (while loops,
counting) requiring the additional capabilities provided by this work. Additionally,
this accuracy was achieved using only collected training data, without amplifying
the training set by adding a large number of hypothetical map routes to each natural
language instruction, as was done in [23].

5.1.2 Parser Cross-Validation

In order to evaluate the parser learning system independent of route-following,
we perform ten-fold cross-validation on the enriched dataset Senr, which contains
more complex instructions. This test compares the learned parser output against the
expert-created RCL annotation, rather than testing the full system against a map,
and evaluates performance on individual sentences rather than sets of route instruc-
tions. Table 1 shows precision, recall, and F1 score. A parse is reported to be correct
if it matches the human-supplied RCL program for that phrase, so this test shows

10 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

the frequency with which the parsing system recovers the exact RCL program of
unseen commands.

data set precision recall F1 score
enriched 71.0% 72.6% 71.8%

Table 1: Precision, recall, and F1 on cross-validation tests of the extended UBL parser learner.

5.1.3 Route Following with Complex Language

The primary experiment of this work is to test following more difficult route instruc-
tions through the complex map D. To determine directly whether this framework can
be used to produce executable Robot Control Language, we performed end-to-end
tests on a large number of paths through map D in Fig. 5. For each test, Senr is split
into training and test data by participant: all English instructions from some num-
ber of non-expert instruction givers (N = 2 in our experiments) is withheld from
training and used to create a test set Stest. The training set is then Strain=Senr−Stest,
or the set of all sentences collected from the remaining participants.

For each of 10 different sets Stest1−10 (every combination of five different par-
ticipants), 1,200 paths through map D were randomly generated: 1,000 short paths
described by single NL sentences, and 200 paths that required multiple sentences to
express (5, on average). An example test path through the map with NL instructions
is shown in Fig. 7. The learned parser is asked to interpret these novel route instruc-
tions into RCL commands, which were executed by the simulated robot. Table 2
gives a summary of the results.

data set success (short) success (long)
enriched 66.3±10.7% 48.9%

Table 2: Testing the end-to-end system on 1,000 short and 200 longer sets of route instruction.
Longer routes average five sentences/route; examples of long and short routes and their associated
RCL programs can be seen in Fig. 7 and Fig. 3(b).

5.2 Discussion

Execution of complex language instructions is successful in approximately 66% of
short paths, and 49% of complex paths. In general, longer paths are more likely
to fail than shorter ones: our simulated control system does not attempt any local

Learning to Parse Natural Language Commands to a Robot Control System 11

“Go down the long hallway past three
intersections, turn left, take the hallway
to your left, go through two intersections,
turn right, and go forward until you
reach the end of the hall.”

Fig. 7: (left) Example route instruction and (right) corresponding path through map D. Our ap-
proach is able to correctly parse 62.5% of such complex instructions into RCL programs that
control a simulated robot all the way from the start to the end of such a path.

error recovery if it encounters an unexpected situation, such as discovering that the
current map location is not of the expected type or failing to find an opening to the
left after a (turn-left) instruction. Intuitively, this metric does not give any credit
for partly-correct parses of route instructions, e.g., cases where the robot almost
reaches the destination.

The high variability of results is likely a product of the experimental setup, in
which Stest is generated from statements by people who did not contribute to train-
ing data, making the learned parser vulnerable to forms of instruction that are id-
iosyncratic to an individual. Given that each person contributed route instructions
for only four routes (five sentences each, on average), it is also possible that only
one or two unparseable instructions occur in a particular data set Stest, such that only
randomly-generated paths containing that instruction fail. Both failure modes could
be improved by either gathering training data from a wider range of people (for
example, using Amazon Mechanical Turk), or by splitting Stest from Senr by paths,
allowing an individual to contribute route instructions to both training and testing
data, but describing different paths or different maps.

Fig. 4 demonstrates the successful derivation of an RCL command from a short
test route instruction using our learned parser. As shown, the parser is able to cor-
rectly express concepts such as counting (’second’) and can generate differing, con-
textually correct interpretations of the word ‘go’ (move vs. turn). Fig. 7 shows an
example of a long path description that has been successfully parsed by our system.

6 Experimental Insights

Several conclusions can be drawn from these experiments. First, it is possible to
learn a parser able to handle complex, procedural natural language commands for
robot instruction. This makes it possible to target a rich robot control language ca-
pable of handling abstract notions such as counting, loops, and conditionals. We
experimentally demonstrate that such a system is able to transform complex natural-
language instructions into a language suitable for use by a robot control system.

12 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

In this work we demonstrate that it is possible to combine advanced natural lan-
guage processing with robotic perception and control systems. As an example con-
sider the different, contextually appropriate interpretations of the word ‘go’ in Fig. 4,
where the system learned to interpret ‘go to’ and ‘go left’ as having quite different
meanings. We established that parsing into a procedural language does require ex-
tensions to the parser learning process. We also find that local error recovery would
improve results notably, as would a larger, more diverse natural language corpus to
train over. In future work, the latter might be obtained from Amazon Mechanical
Turk, a system which allows web-based distribution of small tasks to a group of
workers in exchange for small payments [13], which it has been used successfully
for crowdsourcing natural language data-gathering [26].

This work raises a number of possible directions for future research. It will be
worthwhile to see how this system behaves with more complex data that is still
drawn from a real robot; for example, using landmarks retrieved from developing
object recognition systems [19]. While the effort involved in expert annotation of
natural language is far less than that of writing control systems for the tasks, it
still requires experts to be involved in the teaching process. Learning solely from
execution traces, as in [6], has the potential to increase the efficiency of learning.

We find these results extremely encouraging toward grounding complex NL in-
structions. The focus of this work is on parsing complex natural language into a for-
mal Robot Control Language. As such, it is complementary to recent efforts in map-
ping such representations to actions and perceptions in the real world [28, 15, 22].
Since our parser is probabilistic in nature, it can also generate a ranked list of pos-
sible RCL programs, each of which could generate a joint model for grounding. We
believe that such an approach would enable robots to execute very complex natural
language commands.

Acknowledgments
This work was funded in part by the Intel Science and Technology Center for Per-
vasive Computing, through collaborative participation in the Robotics Consortium
sponsored by the U.S. Army Research Laboratory under the Collaborative Technol-
ogy Alliance Program (Cooperative Agreement W911NF-10-2-0016), and by NSF
grant IIS-1115966.

References

1. Y. Artzi and L.S. Zettlemoyer. Bootstrapping semantic parsers from conversations. In Proc.
of the Conf. on Empirical Methods in Natural Language Processing, 2011.

2. M. Beetz, T. Arbuckle, T. Belker, M. Bennewitz, W. Burgard, A.B. Cremers, D. Fox,
H. Grosskreutz, D. Hähnel, and D. Schulz. Integrated plan-based control of autonomous ser-
vice robots in human environments. IEEE Intelligent Systems, 16(5), 2001.

Learning to Parse Natural Language Commands to a Robot Control System 13

3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. In Proc. of the National Conference on Artificial Intel-
ligence (AAAI), 2000.

4. S.R.K. Branavan, L. Zettlemoyer, and R. Barzilay. Reading between the lines: Learning to
map high-level instructions to commands. In ACL, pages 1268–1277, 2010.

5. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence,
114(1-2):3–55, 1999.

6. D.L. Chen. Fast online lexicon learning for grounded language acquisition. In Proc. of the
Annual Meetings of the Association for Computational Linguistics (ACL), 2012.

7. D.L. Chen and R. Mooney. Learning to interpret natural language navigation instructions
from observations. In Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAAI-2011), pages 859–865, 2011.

8. J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn. What to do and how to do it: Trans-
lating natural language directives into temporal and dynamic logic representation for goal
management and action execution. In Proc. of the 2009 IEEE Int’l Conf. on Robotics and
Automation (ICRA ’09), 2009.

9. A. Ferrein and G. Lakemeyer. Logic-based robot control in highly dynamic domains. Robotics
and Autonomous Systems, 56(11), 2008.

10. S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: Extracting topological structure
of indoor environments via place labeling. In IJCAI, pages 2109–2114, 2007.

11. D. Hähnel, W. Burgard, and G. Lakemeyer. GOLEX - bridging the gap between logic
(GOLOG) and a real robot. In Proc. of the German Conference on Artificial Intelligence
(KI), Germany, 1998.

12. F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A high level supervision and control
language for autonomous mobile robots. In Proc. of the IEEE International Conference on
Robotics & Automation (ICRA), 1996.

13. A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with mechanical turk. In Proc. of
the 26th annual SIGCHI conference on human factors in computing systems, CHI ’08. ACM,
2008.

14. T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understanding natural language directions.
In HRI 2010: Proc. of the 5th Int’l Conf. on Human-Robot Interaction. ACM Press, 2010.

15. H. Kress-Gazit, G. Fainekos, and G. Pappas. Translating structured english to robot con-
trollers. Advanced Robotics, 22(12), 2008.

16. H. Kress-Gazit, T.Wongpiromsarn, and U. Topcu. Correct, reactive robot control from ab-
straction and temporal logic specifications. IEEE Robotics and Automation Magazine, special
issue on Formal Methods for Robotics and Automation, 18(3):65–74, 2011.

17. T. Kwiatkowski, L.S. Zettlemoyer, S. Goldwater, and M. Steedman. Inducing probabilistic
CCG grammars from logical form with higher-order unification. In Proc. of the Conf. on
Empirical Methods in Natural Language Processing, 2010.

18. T. Kwiatkowski, L.S. Zettlemoyer, S. Goldwater, and M. Steedman. Lexical generalization in
CCG grammar induction for semantic parsing. In Proc. of the Conf. on Empirical Methods in
Natural Language Processing, 2011.

19. K. Lai, L. Bo, X. Ren, and D. Fox. A scalable tree-based approach for joint object and pose
recognition. In the AAAI Conference on Artificial Intelligence (AAAI), 2011.

20. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

21. P. Lison and G-J. M. Kruijff. An integrated approach to robust processing of situated spoken
dialogue. In Proc. of SRSL 2009, the 2nd Workshop on Semantic Representation of Spoken
Language, pages 58–65, Athens, Greece, March 2009. Association for Computational Lin-
guistics.

22. C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A Joint Model of Language
and Perception for Grounded Attribute Learning. In Proc. of the 2012 International Confer-
ence on Machine Learning, Edinburgh, Scotland, June 2012.

14 Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, Dieter Fox

23. C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical machine transla-
tion. In ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2010.

24. R. Mooney. Learning to connect language and perception. In Dieter Fox and Carla P. Gomes,
editors, Proc. of the Twenty-Third AAAI Conf. on Artificial Intelligence, AAAI 2008, pages
1598–1601, Chicago, Illinois, 2008. AAAI Press.

25. N. Shimizu and A. Haas. Learning to Follow Navigational Route Instructions. In Int’l Joint
Conf. on Artificial Intelligence (IJCAI), 2009.

26. R. Snow, B.O’Connor, D. Jurafsky, and A.Y. Ng. Cheap and fast - but is it good? evaluating
non-expert annotations for natural language tasks. In EMNLP, pages 254–263, 2008.

27. M. Steedman. The Syntactic Process. MIT Press, 2000.
28. S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. Approaching

the symbol grounding problem with probabilistic graphical models. AI magazine, 32(4), 2012.
29. Y. Tsuruoka and J. Tsujii. Iterative cky parsing for probabilistic context-free grammars. Proc.

of the Int’l Joint Conference on Natural Language Processing, 2005.
30. Y. Wei, E. Brunskill, T. Kollar, and N Roy. Where to go: Interpreting natural directions using

global inference. In Proc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2009.

31. L.S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence, 2005.

