
SE3-Nets: Learning Rigid Body Motion using Deep
Neural Networks
Arunkumar Byravan and Dieter Fox

Department of Computer Science & Engineering
University of Washington, Seattle

Abstract—We introduce SE3-Nets which are deep networks
designed to model rigid body motion from raw point cloud data.
Based only on pairs of depth images along with an action vector
and point wise data associations, SE3-Nets learn to segment
effected object parts and predict their motion resulting from
the applied force. Rather than learning point wise flow vectors,
SE3-Nets predict SE3 transformations for different parts of the
scene. Using simulated depth data of a table top scene and a
robot manipulator, we show that the structure underlying SE3-
Nets enables them to generate a far more consistent prediction
of object motion than traditional flow based networks.

I. INTRODUCTION

The ability to predict how an environment changes based
on forces applied to it is fundamental for a robot to achieve
specific goals. For instance, in order to arrange objects on a
table into a desired configuration, a robot has to be able to
reason about where and how to push individual objects, which
requires some understanding of physical quantities such as
object boundaries, mass, surface friction, and their relationship
to forces. A standard approach in robot control is to use a
physical model of the environment and perform optimal control
to find a policy that leads to the goal state. For instance,
extensive work utilizing the MuJoCo physics engine [31] has
shown how strong physics models can enable solutions to
optimal control problems and policy learning in complex and
contact-rich environments [11, 22]. A fundamental problem of
such models is that they rely on very accurate estimates of the
state of the system [37]. Unfortunately, estimating values such
as the mass distribution and surface friction of an object using
visual information and force feedback is extremely difficult.
This is one of the main reasons why humans are still far better
than robots at performing even simple tasks such as pushing
an object along a desired trajectory. Humans achieve this even
though their control policies and decision making are informed
only by approximate notions of physics [5, 28]. Research has
shown that these mental models are learned from a young age,
potentially by observing the effect of actions on the physical
world [4]. Learning such a model of physical intuition can
help robots reason about the effect of their actions, which
is a critical component of operating in complex real-world
environments.

In this work, we explore the use of deep learning to model
this concept of "physical intuition", learning a model that
predicts changes to the environment based on specific actions.
Our model uses motion cues to learn to segment the scene
into "salient" objects (much akin to a saliency map [17])

and jointly predicts the motion of these objects under the
effect of applied actions. We restrict our attention primarily to
modeling the motion of systems of rigid bodies, though our
model can represent arbitrary 3D motion (mixing multiple rigid
motion components is a standard way of modeling deforming
objects [25]).

Many objects we interact with in the physical world are
rigid or can be modeled as systems of rigid bodies. Rigid
body motion is a well understood field of physics and is
widely used in robotics, computer vision, and graphics. We
borrow tools from rigid body physics to design a deep
network, SE3-Net, that represents motion in the environment
as a set of SE3 transforms (SE3 refers to the Special
Euclidean Group that represents 3D rotations and translations:
{R, t|R ∈ SO(3), t ∈ R3}). Our network takes a raw 3D
point cloud from a calibrated kinect sensor and a continuous
action vector as input and predicts a transformed point cloud by
applying a set of rigid body transformations. Key to our model
is the notion of disentangling the motion of the objects (the
What?) from their location in the environment (the Where?).
Our network does this by explicitly predicting a set of "k"
SE3 transforms to encode the motion and "k" dense pointwise
masks that specify the contribution of each SE3 towards a
3D point. Finally, our model combines the SE3s, their masks,
and the 3D input through a differentiable transform layer that
blends the motions to produce the output point cloud.

In the absence of any constraints, our network can represent
an arbitrary per-point 3D motion. To restrict the network to
model rigid body motion, we adapt a weight sharpening tech-
nique used in [35] and show that this results in a segmentation
of the environment into distinct objects along with their rigid
motion. Finally, we show results on three simulated scenarios
where our system predicts the motion of a varying number of
rigid objects under the effect of applied forces and a 14-DOF
robot arm with 4-actuated joints. Our model predicts consistent
motion, performing better than two 3D optical-flow baselines
(measured on flow prediction error), while also learning a
notion of "objects" without explicit supervision.

This paper is organized as follows. After discussing related
work, we introduce SE3-Nets in Section III, followed by
experimental evaluation and discussion.

II. RELATED WORK

Robotics: As mentioned before, many optimal control
techniques require a "dynamics" model that predicts the effect

of actions on the state of the system [30, 32]. Early work on
learning dynamics models from data mostly focused on low-
dimensional state and control representations [8]. In contrast to
these methods, Boots et al. [6] learn a model using Predictive
State Representations to predict a depth image given a history of
prior images and control. Unlike their work, which operates in a
Hilbert-space embedding of depth images, SE3-Nets explicitly
encode the dynamics as rigid body motion, also learning a
notion of object segmentation.

Deep learning in robotics: Deep learning models have
recently been very successful on a wide variety of tasks
in computer vision such as classification, semantic labeling
and object recognition. Deep models have also been used
for learning dynamics models in robotics and reinforcement
learning, by mapping raw pixel images to low-dimensional
(latent) encodings on top of which standard optimal control
methods are applied [34, 33, 9]. SE3-Nets can also be used
similarly and have the added advantage of a generative model
that operates in the interpretable 3D physical world.

Physics prediction: Our model is related to recent work in
deep learning for physics based prediction, such as predicting
the stability of a tower of blocks from images [19, 20],
predicting the motion of a billiards ball under forces [10]
and predicting the dynamics of objects in images [23, 24].
These methods mostly predict low-dimensional outputs like ball
velocity [10] or the probability of falling [20]. One exception
is the work by Lerer et al. [19], which predicts images of a
tower of blocks, but their network operates on RGB images
and has no specific notion of an action or forces.

Predicting 3D rotation: Related work in the computer
vision literature has looked at the problem of predicting 3D mo-
tion, primarily rotation between pairs of images [13, 18, 2, 26].
Perhaps, the most similar work to ours is by Oh et al. [26], who
proposed a deep model that predicts the change in an encoded
pose vector through the effect of a one-hot action vector to
render rotated color images of objects. Differing from their
work, we operate on 3D data, use a continuous action vector,
and explicitly predict rigid body motion and object masks.

Attentional models and disentangling representations:
A related line of work to ours is the idea of attentional
mechanisms [12, 36, 3] which focus on parts of the environment
related to task performance and the concept of disentangling
representations [7, 18, 26], which aim to separate variations
in the environment. Our model has a differentiable, dense-
pointwise attender that learns to focus on parts of the envi-
ronment where motion occurs, using these cues to segment
objects. Also central to our model is the idea of disentangling
the motion of the object from its location. Finally, our model
is related to the Spatial Transformer network [15], though we
model the effect of actions, use dense attention and restrict
ourselves to SE3 transformations.

III. SE3-NETS

Fig.1 shows the general architecture of SE3-Nets . Our
network takes a 3D point cloud (X) shaped as a 3-channel
image and an n-dimensional continuous vector as input and

generates a transformed 3D point cloud (Y) as output. There are
three major components to our network: an encoder, a decoder
and a final transform layer. The encoder is a straightforward late-
fusion convolutional/fully-connected architecture that processes
the input point cloud and controls separately to produce low-
dimensional encoded vectors. We concatenate the encoded
vectors to produce a single joint encoding which is used by
the rest of the network.

A. Decoder

The concatenated encoding vector is used by the decoder to
predict the motion in the scene by separating it into two parts:
the mask, which attends to where motion occurs, and the SE3
transformation parameters, which specify the motion itself.

What motion is happening? We represent motion in the
environment using 3D rigid body transforms. A rigid body
transform in 3D [R, t] ∈ SE3 can be specified by a rotation
R ∈ SO(3) and a translation t ∈ R3. We include a pivot term
p ∈ R3 to model an arbitrary change of the point around which
rotation happens, in case it differs from the camera’s viewpoint.
A 3D point x under the action of this transformation moves
to:

x′ = R(x− p) + p+ t (1)

We choose to represent rotations using a 3-parameter axis-angle
transform a ∈ R3, with ||a||2 = θ, the magnitude of rotation.
This gives us a total of 9 parameters per transform1.

Given the encoder output, the first module of the decoder
is constrained to predict k SE3 transforms, where k is a
pre-specified network parameter which limits the number of
distinctly moving objects or parts (including background which
has no motion) that the network can model. We use a simple
three-layer fully-connected network for this prediction.

Where is the motion happening? The second module of
the decoder is a dense-pointwise attender trained to focus
on parts of the environment that exhibit motion. Under the
assumption that the environment has k distinct motions, we
can formulate this as a k-class labeling problem where each
point can belong to one of the k motion-classes. Unfortunately,
this formulation is non-differentiable due to the discreteness
of the labeling. Instead, we relax the formulation to predict a
per-point probability distribution Mi over the k motion classes:

Mi = {mi1,mi2, . . . ,mik} |
k∑
j=1

mij = 1; (2)

allowing each point to smoothly interpolate between multiple
motions.

This dense object mask is computed from the joint encoding
through a de-convolutional pipeline. We follow recent work in
semantic labeling [21] and add the outputs of our convolutional
layers to the inputs of the de-convolutional layers. In practice,
this gives us much sharper reconstructions of the object

1For the rest of this paper, we will misuse notation to refer to this 9
parameter transform as an SE3 transform, though it is actually SE3×R3

XYZ	(3)	 Conv1		
(8)	

3D	
Input	

Conv2		
(16)	

Conv3		
(32)	

Ac+on	

n	
FC1	
(128)	

FC2	
(256)	

3D	
Input	

Transform	
layer	

3D	
Output	

Deconv1		
(32)	

Deconv2		
(16)	

Deconv3		
(8)	

Masks	
(k)	

SE3s	
(k)	

FC4	
(128)	

FC3	
(256)	

FC5	
(64)	

Mask	Penalty	&	
Normaliza:on	

CAT	

✚	

✚	

Fig. 1: SE3-Net architecture. Input is a 3D point cloud along with an n-dimensional action vector (bold-italics), both of which are encoded
and concatenated to a joint feature vector. Decoder uses the encoded vector to predict object masks and SE3 transforms which are applied to
the input cloud via the transform layer to generate the output. Mask weights are sharpened and normalized before use for prediction. Conv =
Convolution, FC = Fully Connected, Deconv = Deconvolution, CAT = Concatenation

shapes and contours in the environment, improving overall
performance.

B. Transform layer

Given the predicted the SE3 parameters and the mask
weights, the transform layer produces a blended output point
cloud from the input points:

yi =

k∑
j=1

mij (Rj (xi − pj) + pj + tj) (3)

where yi is the 3D output point corresponding to input point
xi. (3) computes a convex combination of transformed input
points, transformed by each of the k SE3 transforms with
weights given by the object mask. As a consequence of our
relaxation for the mask prediction, the effective transform on a
given point is generally not in SE3 as (3) blends in 3D space
rather than in the space of SE3 transforms. On the other hand,
we now have the flexibility to represent both rigid and non-
rigid motions through a combination of the transforms and the
object masks. Additionally, we avoid having to blend in SE3
space which can lead to singularities. In spite of the advantages,
using the current framework to model rigid motion without
any explicit regularization can lead to overfitting (as evidenced
in our results). We now show how we encourage the network
to predict rigid motions through a form of regularization on
the object mask.

Enforcing Rigidity: A simple way to restrict the network
(3) to predict rigid motions is to force the mask probability
vector Mi to make a binary decision over the k predicted
transforms instead of blending. As mentioned before, a naive
formulation can lead to non-differentiability. Instead, we
smoothly encourage the mask weights towards a binary decision

using a form of weight sharpening [35]:

mij
′ =

(mij +N (0, σ2))γ∑
kmik

γ
(4)

where γ and σ are proportional to the training epoch. In practice,
the combination of the noise and growing exponent forces the
network to separate its decisions apart, resulting in nearly
binary distributions at the end of training.

IV. EVALUATION

We evaluate SE3-Nets to predict rigid body motion on
different tasks simulated using the Gazebo physics simulator.
The task of the network is to predict the motion of a robot
manipulator and rigid objects based on control commands and a
moving ball, respectively. The object motion scenarios require
the network to learn to segment effected objects from the scene
and predict their motion, which depends on which location
on the object is being hit by the ball. The other scenarios
test how well the network is able to learn the articulation
of a robot manipulator resulting from input controls. All our
datasets contain sequences of simulated point clouds taken
from a depth camera looking at the environment from a fixed
viewpoint (for each task) along with the state of all the objects
and dense 3D optical flow between point cloud pairs. In all
our tasks, the network predicts a target 5 timesteps into the
future (0.15 sec) given the current point cloud (3 x 240 x 320)
and control. We assume that the control is held fixed for this
duration.

Single Box: We generated 9,000 scenes where a ball is
made to collide with a box placed in a random position on
a table. At the start of each scenario, the ball is placed at
a random position and a randomly chosen constant force is
continuously applied to the ball, directing it to collide with the
box. Each scene lasts for a second, and we stop recording if

the box falls off the table. The control vector for this dataset
is 10-dimensional, with the 6D pose of the ball represented as
a position and quaternion, and the applied force. We vary the
starting pose of the ball, box, the table size and the applied
forces while the size and mass of the ball and box are held
fixed. In total, this dataset has around 170,000 examples, which
we split 70:30 for train/test.

Multiple Boxes: To test the generalization of the system
to different object sizes, masses and number of objects, we
generate another dataset that varies all three at random. Each
scene has anywhere from 1-3 objects of varied sizes with mass
proportional to their size, and the ball is forced to collide with
a randomly chosen box. We restrict ourselves to cases where
only a single box and the ball are in collision and discard
examples that involve multiple collisions, since it is extremely
hard for the system to disambiguate the motion without any
velocity or other temporal information. This dataset has 12,000
scenarios, with a total of 210,000 examples.

Baxter: Our third dataset consists of sequences of depth
images of a simulated Baxter robot being controlled to move
its arms in front of the camera. For each scenario, we command
a constant, randomly chosen velocity to 1-4 randomly chosen
joints on the robot’s right arm. Each scenario lasts for a second,
at the end of which we zero the velocity of the arm. We
command the arm to a random pose every 20 scenarios. In total,
this dataset has around 11,000 scenes with 220,000 examples.
Our controls for this task are the commanded joint velocities,
a 14-dimensional vector of which up to 4 values are non-zero.

A. Training

We implemented our system using the deep learning package
Torch [1]. We train our networks using standard backpropa-
gation and the ADAM optimization method [16] along with
Google’s Batch Normalization technique [14] to speed up
training. We use the PReLU non-linearity throughout the
network. At the start of training, we initialize the layer
predicting SE3 transforms to predict identity which we found
to improve convergence. We initially set the weight scheduling
penalty to zero and slowly ramp up the noise parameter σ and
the exponent γ till they reach a maximum. We set k = 3 for
the box datasets and k = 5 for the baxter dataset. We use the
Huber loss with a delta of 0.05m for the Baxter dataset and
0.1m for the box datasets.

Training targets: We assume that ground truth data-
associations are given to us at training time, meaning that
the mapping between input points and target are known apriori.
For our simulated datasets, each data point in the input has a
one-to-one mapping to the point at the same pixel location on
the output - we compute this target by adding our pre-recorded
dense 3D optical flow to the input point cloud. This gets rid
of any potential occlusions, missing data and reappearing data.
We discuss ways to overcome this assumption later in Sec. V.

B. Comparison networks

We show results for the following networks: Ours: SE3-
Net from Fig.1. Flow: Network trained to predict dense 3D

optical flow directly. Uses a Conv/Deconv architecture almost
identical to our network except for the SE3 prediction module
and the transform layer. No Penalty: SE3-Net without any
weight sharpening to enforce binarization of the object masks.
Ours (Large): Bigger version of the SE3 network with 5-
Conv/Deconv layers and 6x as many parameters as our original
network. Flow (Large): Bigger version of the flow network,
again with 5-Conv/Deconv layers. Has 8x as many parameters
as the original SE3-Net. All networks were trained with the
same parameters for the same number of epochs (per task).

C. Results

Table I shows the results from all the networks on the
different tasks, as compared on average 3D flow error of all
moving points. Our networks significantly outperform their
counterpart small and large flow networks (respectively) on all
tasks. Interestingly, we noticed that the flow networks perform
quite poorly on examples where only a few points exhibit
motion such as when just the ball moves in the scene while our
networks are able to predict the ball’s motion quite accurately.

Fig. 2 shows the projected depth images based on the
predictions from the different networks on the box datasets.
While the flow error for the large flow network is low, it
is clear that the predictions given by the network are much
noisier, as can be seen from the re-projections. On the other
hand, both our networks are able to label the box and the
ball as separate objects (see Fig. 5), predicting distinct rigid
transformations that are consistent with the actual motion. This
results in a crisper re-projection with almost no noise that
matches the ground truth targets closely. In practice, we found
that it is crucial to give the network datasets where the ball
moves independently as this provides implicit knowledge that
the ball and the box are distinct objects. In cases where the
ball was always in contact with the box, the network had a
hard time disambiguating between the objects, often labeling
them together as a single object.

Similar results can be observed on the baxter dataset (Fig. 3),
where the network consistently predicts the motion of the robot
arm. We found that the network usually segments the arm into
two distinct object classes (Fig.5), with a separation along the
elbow. This is consistent with the fact that most of the apparent
motion is due to the effect of two joints, one at the shoulder and
the other at the elbow. Once again, we see that the SE3-Net
results are sharper than those predicted by the flow networks,
again highlighting the strength of our networks in modeling
rigid motion. It is worth noting that the "No Penalty" version
of our algorithm performs quite poorly across all tasks due
to a slight overfit to the training data. This again highlights
the fact that forcing the network to predict the rigid motion of
individual parts greatly improves prediction performance.

To test how well our rigid motions and object models
carry through across time, we tested our network on a simple
sequential prediction task on the baxter dataset. We did a
sequence of 5-step predictions where the network was input
an initial point cloud and control vector (which was kept
constant) and predicted a sequence of outputs by using its own

Fig. 2: Prediction results on the two box datasets. Top two rows show results from the "Single Box" dataset on two separate examples while
the bottom two are example results from the "Multiple Boxes" dataset. All images (except first column on the left) shown were rendered by
projecting the predicted 3D point cloud onto the 2D image using the camera parameters and rounded off to the nearest pixel without any
interpolation. (left to right) Input point cloud with ball control flow vector shown in green; ground truth point cloud prediction; predictions
generated by different networks. 3D point clouds for the flow networks were computed by adding the predicted flow to the input point cloud.
Image best viewed in high resolution.

Task Ours Ours (Large) No Penalty Flow Flow(Large)
Single Box 0.041 0.019 0.253 0.101 0.028
Multiple Boxes 0.036 0.011 0.197 0.062 0.019
Baxter 0.00070 0.00059 0.00074 0.00114 0.00071

TABLE I: Average per-point flow prediction error (m) across tasks and networks. Our (large) network achieves the best flow error compared
to baselines even though it is not directly trained to predict flow.

output as input for the next timestep. Results for this test are
shown in Fig. 4 which compares the ground truth target images
across the sequence to the predictions from the large SE3-Net
and flow models. Our predictions are very consistent across
time with little noise (though the motion error does slightly
cascade) while the flow model predictions become much noisier.
Overall, we see that the notion of rigidity and object saliency
significantly improves performance across multiple tasks we
tested on, while also providing the capability to identify
distinctly moving objects in the scene just using motion cues.
We highly encourage our readers to view the video (https://www.
youtube.com/channel/UCM5JZPr1pLWEgbFVM-PyG0w) of
our results which clearly shows the strengths of our approach.

V. DISCUSSION

We introduced SE3-Nets a deep learning model that learns
to predict changes in the environment based on applied actions,
parameterized as a series of rigid body motions applied to 3D
points in the environment. SE3-Nets selectively learn to focus
on parts of the scene where motion occurs, segmenting the
scene into objects and predicting SE3 motions for each distinct
object. We showed that this separation works well in practice

and results in strong performance on three simulated tasks with
rigid bodies in motion. SE3-Nets are able to generalize across
different scenarios and produce results that are very consistent
with the observed rigid motion, as compared to traditional flow
networks.

There are several promising directions to focus on towards
improving these networks. First, we tested on simulated tasks in
this paper, but it should be straightforward to extend the method
to work on real world data - given dense data-associations.
While we can obtain these type of associations from traditional
tracking frameworks such as DART [29] or dense scene-flow
based approaches [27], this might not be applicable in all
scenarios. This brings us to the next area for improvement -
learning data associations which is currently a limitation of
SE3-Nets . Under the assumption of small motions, algorithms
such as ICP can align pairs of similar point clouds together.
We can extend this approach to SE3-Nets formulating a loss
function based on ICP, which we believe is a simple first
step in learning data-associations. Third, SE3-Nets cannot
handle occlusions or fill-in data based on prior knowledge.
An intuitive solution to handle this can be to extend the current
paradigm of disentangled motion/mask computation by adding

https://www.youtube.com/channel/UCM5JZPr1pLWEgbFVM-PyG0w
https://www.youtube.com/channel/UCM5JZPr1pLWEgbFVM-PyG0w

Fig. 3: Prediction results on the Baxter dataset. First and third rows show 2D perspective projections of the 3D point clouds for two separate
examples. Second and fourth rows show the predicted 3D optical flow rendered on top of the ground truth input depth map for the same
examples. Optical flow was computed for our networks by subtracting the predictions from the input point cloud. Image best viewed in high
resolution.

Fig. 4: Multi-step prediction results obtained by feeding back the output of the network to the input for 4-steps into the future. First row
shows ground truth, second row the prediction of the large SE3 network, and third shows the prediction of the larger flow network.

Fig. 5: Object labels predicted by the network rendered by an argmax across the k mask channels (in practice, the masks are close to binary).
Left two columns show ground truth masks. First row shows combined results from the box datasets overlaid on the input depth images.
Second row shows labels from the Baxter dataset. The system usually segments the robot arm into two distinct parts with a split near the
elbow. Background is split across multiple classes, all of which predict an identity transform.

an explicit component that learns to fill-in/remove data. Fourth,
a natural next step for SE3-Nets seems to be an extension
to use temporal data. For example, disambiguating the ball
from the box becomes simple given a sequence of point clouds
where the ball first moves towards the box, hits it and moves
away. This could also provide interesting solutions to solve all
of the previously discussed problems. And last, we motivated
this paper as a dynamics model to be used in conjunction with
control. We believe that the current formulation of SE3-Nets is
quite amenable to this and are looking towards integrating this
system with a real-world robotic platform to perform interesting
control tasks.

REFERENCES

[1] Torch. URL http://torch.ch/.
[2] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning

to see by moving. In Proceedings of the IEEE International
Conference on Computer Vision, pages 37–45, 2015.

[3] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Mul-
tiple object recognition with visual attention. arXiv preprint
arXiv:1412.7755, 2014.

[4] Renée Baillargeon. Infants’ physical world. Current directions
in psychological science, 13(3):89–94, 2004.

[5] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum.
Simulation as an engine of physical scene understanding.
Proceedings of the National Academy of Sciences, 110(45):
18327–18332, 2013.

[6] Byron Boots, Arunkumar Byravan, and Dieter Fox. Learning
predictive models of a depth camera & manipulator from raw
execution traces. In IEEE International Conference on Robotics
and Automation, pages 4021–4028. IEEE, 2014.

[7] Brian Cheung, Jesse A Livezey, Arjun K Bansal, and Bruno A
Olshausen. Discovering hidden factors of variation in deep
networks. arXiv preprint arXiv:1412.6583, 2014.

[8] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based
and data-efficient approach to policy search. In Proceedings of
the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[9] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey

Levine, and Pieter Abbeel. Learning visual feature spaces for
robotic manipulation with deep spatial autoencoders. arXiv
preprint arXiv:1509.06113, 2015.

[10] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and
Jitendra Malik. Learning visual predictive models of physics
for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

[11] Perle Geoffroy, Nicolas Mansard, Maxime Raison, Sofiane
Achiche, and Emo Todorov. From inverse kinematics to optimal
control. In Advances in Robot Kinematics, pages 409–418.
Springer, 2014.

[12] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra.
Draw: A recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623, 2015.

[13] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang.
Transforming auto-encoders. In Artificial Neural Networks and
Machine Learning–ICANN 2011, pages 44–51. Springer, 2011.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in Neural Information
Processing Systems, pages 2008–2016, 2015.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[17] Christof Koch and Shimon Ullman. Shifts in selective visual
attention: towards the underlying neural circuitry. In Matters of
intelligence, pages 115–141. Springer, 1987.

[18] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and
Josh Tenenbaum. Deep convolutional inverse graphics network.
In Advances in Neural Information Processing Systems, pages
2530–2538, 2015.

[19] Adam Lerer, Sam Gross, and Rob Fergus. Learning phys-
ical intuition of block towers by example. arXiv preprint
arXiv:1603.01312, 2016.

[20] Wenbin Li, Seyedmajid Azimi, Aleš Leonardis, and Mario Fritz.
To fall or not to fall: A visual approach to physical stability
prediction. arXiv preprint arXiv:1604.00066, 2016.

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3431–3440, 2015.

http://torch.ch/

[22] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic,
and Emanuel V Todorov. Interactive control of diverse complex
characters with neural networks. In Advances in Neural
Information Processing Systems, 2015.

[23] Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Raste-
gari, and Ali Farhadi. Newtonian image understanding: Unfold-
ing the dynamics of objects in static images. arXiv preprint
arXiv:1511.04048, 2015.

[24] Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and
Ali Farhadi. " what happens if..." learning to predict the effect
of forces in images. arXiv preprint arXiv:1603.05600, 2016.

[25] R. Newcombe, D. Fox, and S. Seitz. DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time. In CVPR,
2015.

[26] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and
Satinder Singh. Action-conditional video prediction using deep
networks in atari games. In Advances in Neural Information
Processing Systems, pages 2845–2853, 2015.

[27] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James
Crowley. Dense semi-rigid scene flow estimation from rgbd
images. In Computer Vision–ECCV 2014, pages 567–582.
Springer, 2014.

[28] Adam N Sanborn, Vikash K Mansinghka, and Thomas L Griffiths.
Reconciling intuitive physics and newtonian mechanics for
colliding objects. Psychological review, 120(2):411, 2013.

[29] Tanner Schmidt, Richard Newcombe, and Dieter Fox. Dart:
Dense articulated real-time tracking.

[30] Emanuel Todorov and Weiwei Li. A generalized iterative lqg
method for locally-optimal feedback control of constrained
nonlinear stochastic systems. In American Control Conference,
2005. Proceedings of the 2005, pages 300–306. IEEE, 2005.

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 5026–5033. IEEE, 2012.

[32] Marc Toussaint. Robot trajectory optimization using approximate
inference. In Proceedings of the 26th annual international
conference on machine learning, pages 1049–1056. ACM, 2009.

[33] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth.
From pixels to torques: Policy learning with deep dynamical
models. arXiv preprint arXiv:1502.02251, 2015.

[34] Manuel Watter, Jost Springenberg, Joschka Boedecker, and
Martin Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. In Advances in
Neural Information Processing Systems, pages 2728–2736, 2015.

[35] William Whitney. Disentangled representations in neural models.
arXiv preprint arXiv:1602.02383, 2016.

[36] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan
Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention.
arXiv preprint arXiv:1502.03044, 2015.

[37] Jiaji Zhou, Robert Paolini, J Andrew Bagnell, and Matthew T
Mason. A convex polynomial force-motion model for planar
sliding: Identification and application. 2016.

	Introduction
	Related work
	SE3-Nets
	Decoder
	Transform layer

	Evaluation
	Training
	Comparison networks
	Results

	Discussion

