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Abstract— In this work, we present an approach to deep
visuomotor control using structured deep dynamics models. Our
model, a variant of SE3-Nets, learns a low-dimensional pose
embedding for visuomotor control via an encoder-decoder struc-
ture. Unlike prior work, our model is structured: given an input
scene, our network explicitly learns to segment salient parts and
predict their pose embedding and motion, modeled as a change
in the pose due to the applied actions. We train our model
using a pair of point clouds separated by an action and show
that given supervision only through point-wise data associations
between the frames our network is able to learn a meaningful
segmentation of the scene along with consistent poses. We
further show that our model can be used for closed-loop control
directly in the learned low-dimensional pose space, where the
actions are computed by minimizing pose error using gradient-
based methods, similar to traditional model-based control. We
present results on controlling a Baxter robot from raw depth
data in simulation and RGBD data in the real world and com-
pare against two baseline deep networks. We also test the robust-
ness and generalization performance of our controller under
changes in camera pose, lighting, occlusion, and motion. Our
method is robust, runs in real-time, achieves good prediction of
scene dynamics, and outperforms baselines on multiple control
runs. Video results can be found at: https://rse-lab.cs.
washington.edu/se3-structured-deep-ctrl/

I. INTRODUCTION

Imagine we are receiving observations of a scene from
a camera and we would like to control our robot to reach
a target scene. Traditional approaches to visual servoing
[1] decompose this problem into two parts: data-associating
the current scene to the target (usually through the use of
features) and modeling the effect of applied actions to changes
to the scene, combining these in a tight loop to servo to
the target. Recent work on deep learning has looked at
learning similar predictive models directly in the space of
observations, relating changes in pixels or 3D points directly
to the applied actions [2]–[4]. Given a target scene, we can
use this predictive model to generate suitable controls to
visually servo to the target using model-predictive control [5].
Unfortunately, for this pipeline to work, we need an external
system (such as [6], [7]) capable of providing long range
data-associations to measure progress.

As we showed in prior work [4], instead of reasoning about
raw pixels, we can predict scene dynamics by decomposing
the scene into objects and predicting object dynamics instead.
While this significantly improves prediction results, it still
does not provide a clear solution to the data association
problem that we encounter during control - we still lack
the capability to explicitly associate objects/parts across
scenes. We observe three key points: 1) We can data-associate

Fig. 1: An example scenario showing the initial (left) and target
depth clouds (right). SE3-POSE-NETS can be used to control the
robot to reach the target state based on raw depth (and optionally,
color) data. Depth images colorized for display purposes only.

across scenes by learning to predict a "pose" representation
of detected objects/parts in the scene (the pose implicitly
provides tracking), 2) We can model the dynamics of an
object directly in the learned low-dimensional pose space,
and 3) We can predict scene dynamics by combining the
dynamics predictions of each detected part.

We combine these ideas in this work to propose SE3-POSE-
NETS, a deep network architecture for efficient visuomotor
control that jointly learns to data-associate across long term
sequences. We make the following contributions:

• We show how to learn predictive models that detect
parts of the scene and jointly learn a consistent pose
representation for these parts with minimal supervision.

• We demonstrate how a deep predictive model can
be used for reactive visuomotor control using simple
gradient backpropagation and a more sophisticated
Gauss-Newton optimization, reminiscent of approaches
in inverse kinematics [8].

• We present results on real-time reactive control of a
Baxter arm using raw depth/color images and velocity
control, both in simulation and on real data.

• Finally, we present results on testing the robustness and
generalization of the real-world controller under various
changes to imaging conditions.

Fig 1 shows an example scenario where our proposed method
can be applied to control the robot to reach the target state
(right) from the initial state (left).

II. RELATED WORK

Modeling scenes and dynamics: Our work builds on
top of prior work on learning structured models of scene
dynamics [4]. Unlike SE3-NETS, we now explicitly model
data associations through a low-dimensional pose embedding
that we train to be consistent across long sequences. Similar
to Boots et al. [2], our model learns to predict point clouds
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based on applied actions, but through a structured intermediate
representation that reasons about objects and their motions.
Unlike Finn et al. [3], we also use depth data and reason
about 3D motion using masks and SE(3) transforms while
using point-wise data association as supervision.

Visuomotor control: Recently, there has been a lot of
work on visuomotor control, primarily through the use of deep
networks [5], [9]–[13]. These methods either directly regress
to controls from visual data [10], [11], generate controls
by planning on learned forward dynamics models [5], [9],
through inverse dynamics models [12] or by reinforcement
learning [13]. Like some of these methods, we generate
controls by planning with a learned dynamics model, albeit
in a learned low-dimensional latent space. Specifically, work
by Finn et al. [5] is closely related, but differs in two main
ways: unlike their approach which controls in the observation
space through sampled actions (at ≈ 5Hz), our controller
runs gradient optimization on a learned low-dimensional
pose embedding in real-time (> 30 Hz). Also, their approach
requires an external tracker to measure progress while we
explicitly learn to data-associate across large motions.

Our work borrows several ideas from prior work by Watter
et al. [9] which learns a latent low-dimensional embedding for
fast reactive control from pairs of images related by an action.
Unlike their work, we use a structured latent representation
(object poses), predict object masks, and use a physically
grounded 3D loss that only models changes in observations
as opposed to a restrictive image reconstruction loss. Lastly,
our losses are physically motivated, similar to those proposed
for training position-velocity encoders [13], but our learned
pose embedding is significantly more structured and we train
our networks end-to-end directly for control.

Data association: Related work in the computer vision
literature has looked at tackling the data association problem,
primarily by matching visual descriptors, either hand-tuned
[14], or more recently, learned using deep networks [15],
[16]. In prior work, Schmidt et al. [15] learn robust visual
descriptors for long-range associations using correspondences
over short training sequences. We however only use corre-
spondences between pairs of frames to learn a consistent pose
space that lets us data-associate across long sequences.

Pose estimation: There has also been a lot of recent
work on object and camera pose estimation from RGB/D
data using learning methods [17]–[19], most of which use
some form of explicit supervision. Unlike these methods, our
method learns a low-dimensional pose representation purely
through self-supervised consistency losses – this resulting
pose space can be used for robust control but does not directly
correspond to the canonical pose of objects in the scene.

Visual servoing: Finally, there have been multiple
approaches to visual servoing over the years [1], [20], [21],
including some newer methods that use deep learned features
and reinforcement learning [22]. While these methods depend
on an external system for data association or on pre-specified
features, our system is trained end-to-end and can control
directly from raw visual data.

III. SE3-POSE-NETS

Our deep dynamics model SE3-POSE-NETS decomposes
the problem of modeling scene dynamics into three sub-
problems: a) modeling scene structure by identifying parts of
the scene that move distinctly and by encoding their latent
state as a 6D pose, b) modeling the dynamics of individual
parts under the effect of the applied actions as a change in the
latent pose space (parameterized as an SE(3) transform), and
finally c) combining these local pose changes to model the
dynamics of the entire scene. Each sub-problem is modeled
by a separate component of the SE3-POSE-NET:

• Modeling scene structure: An encoder (henc) that
decomposes the input point cloud (x1) into a set of
K rigid parts, predicting per part a 6D pose (pk,
k = 1 . . .K) and a dense segmentation mask (mk) that
highlights points belonging to that part

• Modeling part dynamics: A pose transition network
(htrans) that models dynamics in the pose space, taking
in the current poses (pt) and action (ut) to predict the
change in poses (∆pt)

• Predicting scene dynamics: A transform layer (htfm)
that generates the next point cloud (x̂t+1) given the
current point cloud (xt), predicted object masks (mt) and
the predicted pose deltas (∆pt) by explicitly applying
3D rigid body SE(3) transforms on the input point cloud.

Fig. 2 shows the network architecture of the SE3-POSE-NET.
Next, we present the details of the three sub-components and
outline a training procedure for training the SE3-POSE-NET
end-to-end with minimal supervision.

A. Modeling scene structure

Given a 3D point cloud x from an RGBD sensor (rep-
resented as a 3-channel H x W image), the encoder (blue
block in Fig. 2, top half) segments the scene into distinctly
moving parts (m) and predicts a 6D pose (p) per part:

(p,m) = henc(x) (1)

The encoder has three components, the first is a convolu-
tional network that generates a latent representation of the
input point cloud (x). This network has five convolutional
layers, each followed by a max pooling layer. The latent
representation is further used as input for the mask and pose
predictions.

Object masks: We use a fully-convolutional network
with five de-convolutional layers and a skip-add architecture
(similar to prior work [4]) to predict a dense pixel-wise
segmentation of the scene into its constituent parts (m).
The masks predicted by this network are at full resolution
with K channels (K x H x W), where K is a pre-specified
hyper-parameter that is greater than or equal to the number
of moving parts in the scene (including background). The
predicted segmentation mask learns to attend to parts of the
scene that move together, representing areas of the scene that
can move independently as different parts. As in prior work
[4], we formalize mask prediction as soft-classification where

1Bold fonts denote collections of items
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Fig. 2: Top: SE3-POSE-NET architecture consisting of three components: the encoder (henc, shown in blue) models scene structure
(explained in Sec. III-A), the pose transition net (htrans) models object/part dynamics (Sec. III-B) and the transform layer (htfm) which
transforms point clouds based on the predicted object dynamics (Sec. III-C). Bottom Left: Schematic showing the training procedure for
SE3-POSE-NET (Sec. III-D). Bottom Right: Procedure for closed loop control using the SE3-POSE-NET (Sec. IV)

the network outputs a k-length probability distribution which
we sharpen to get a binary segmentation mask.

Object poses: Given the encoded latent representation,
we use a three layer fully-connected network to predict the
6D pose pk of each of the K segmented parts. We represent
each pose by 6 numbers: a 3D position (y ∈ R3) and an
orientation (R ∈ SO(3)), represented as a 3-parameter axis-
angle vector. As we show later, our pose network learns to
predict consistent poses which can be used to data-associate
observations over long sequences of motions.

At a high level, the encoder implicitly learns the structure
of observed scenes by persistently identifying parts, and by
predicting consistent poses for parts across multiple scenes.

B. Modeling part dynamics

Next, we reason about the effect of applied actions on the
identified parts. We model this notion of "part dynamics"
through a fully-connected pose transition network that takes
predicted poses from the encoder (p) and applied actions
(u) as input to predict the change in pose (∆p) for all K
segmented parts:

∆p = htrans(p,u) (2)

where ∆p = [R,T] is represented as an SE(3) transform per
part (parameterized similar to the poses). Fig. 2 (top half)
shows the architecture of the transition network. As we show
later in Sec. IV we rely on good predictions of pose-deltas
through the pose-transition network for efficient control.

C. Predicting scene dynamics

Finally, given the predicted segmentation (mt) and the
change in poses (∆pt), we model the dynamics of the input
scene (xt) due to the applied action (ut). We do this through
the Transform layer (htfm) which applies the predicted rigid
rotations (Rt) and translations (Tt) to the input depth cloud,
weighted by the predicted mask probabilities (mt). We predict
the transformed point cloud as:

x̂jt+1 =

K∑
k=1

mkj
t

(
Rk

t x
j
t + T k

t

)
(3)

where x̂jt+1 is the 3D output corresponding to input point xjt .
In effect, we apply the kth rotation and translation (∆pk =
[Rk, T k]) to all points xj that belong to the corresponding
object as indicated by the kth mask channel mk (assuming
binary masks) to predict the transformed points x̂j for that
object. Repeating this for all objects gives us the transformed
output point cloud (x̂). Note that this part has no trainable
parameters. For more details, please refer to prior work [4].

D. Training

We now outline a procedure to train the SE3-POSE-NET
end-to-end, using supervision in the form of point-wise
data associations between a pair of point clouds (xt, xt+1),
related by an action (ut) i.e. for each input point (xit), we
know its corresponding point (xit+1) if it is visible. No other
supervision is given for learning the masks, poses, and the



change in poses. Fig. 2 (bottom left) shows a schematic of
this procedure. Given two point clouds xt,xt+1, we use the
encoder to predict the corresponding masks and poses:

pt,mt = henc(xt) ; pt+1,mt+1 = henc(xt+1) (4)

Next, the predicted pose (pt) and control (ut) are used as
input to the pose transition net to predict the change in pose
from t to t+ 1:

∆pt = htrans(pt,ut) (5)

Finally, we predict the next point cloud using the transform
layer (3):

x̂t+1 = htfm(xt,mt,∆pt) (6)

The predicted mask (mt+1) at time t+ 1 is discarded. We
use two losses to train the entire pipeline end to end:

• A 3D loss (Lx) that penalizes the error between the
predicted point cloud (x̂t+1) and the data associated
target point cloud (x̃t+1). We use a normalized version
of the mean-squared error (MSE) that scales based on
the target magnitude:

Lx =
1

N

HW∑
i=1

(x̂it+1 − x̃it+1)2

αf̃ i + β
(7)

where (f̃ i = x̃it+1−xit) denotes the ground truth motion
for point i relative to the input point cloud xt, N is the
number of points that actually move between t and t+ 1
and α & β are hyper-parameters (α = 0.5, β = 1e− 3
in all our experiments). This loss is aimed to tackle two
main issues with a standard MSE loss: a) By normalizing
the loss by a separate scalar per dimension (f̃ i) that
depends on the target magnitude we make the loss scale
invariant, allowing us to treat equally parts that move
less (such as the end-effector when only the wrist rotates)
as those that have large motion (e.g. the elbow), and b)
By dividing the total error by the number of points (N )
that move in the scene, we treat scenes where very few
points move equally as those where large parts move.

• A pose consistency loss (Lp) that encourages consistency
between the poses predicted by the encoder (pt,pt+1)
and the change in pose predicted by the pose transition
network (∆pt):
p̂t+1 = pt ⊕∆pt ; Lp =

1

I

I∑
i=1

(p̂it+1 − pit+1)2 (8)

where ⊕ refers to composition in SE(3) pose space,
p̂t+1 is the expected pose at t+ 1 from composing the
current pose (pt) and the predicted pose change from the
transition model (∆pt) and I is the cardinality of pt. In
essence, this loss constrains the encoder to predict poses
that are consistent with the pose-deltas predicted by the
transition model. This loss encourages global consistency
in the pose space by enforcing local consistency over
pairs of frames and is crucial for learning a pose space
that is consistent across long term motions.

The total loss for training L = Lx + γLp, where γ controls
the relative strengths of the two losses. We set γ = 10 in
all our experiments. A key point to note is that we do not
provide any explicit supervision to learn the pose space. While

the consistency loss ensures that the poses are more or less
globally consistent, it does not anchor them to a specific
reference frame such as the object’s center and its principal
axes. As such, the poses learned by the network need not
correspond directly to the canonical 6D pose of the parts
making direct comparisons to pose estimation networks hard.
Providing more constraints to physically ground the pose
space is an interesting area for future work.

IV. CLOSED-LOOP VISUOMOTOR CONTROL

We now show how an SE3-POSE-NET can be used for
closed-loop visuomotor control to reach a target specified as
a depth image, essentially performing visual servoing [1].
A crucial component of every visual servoing system is
to perform data association between the current image
and the target image, which can then be used to generate
controls that reduce the corresponding offsets. SE3-POSE-
NETS solve this problem by making use of the learned,
low-dimensional latent pose space. By enforcing frame-to-
frame consistency in the pose space through the consistency
loss (Eqn. 8), the pose space becomes consistent, that is,
our encoder network learns to data-associate observations to
unique poses which are consistent under the effect of actions.
Importantly, these data associations are generated at the mask,
or object level, resulting in an ability akin to object detection
in computer vision. Unlike prior work [4], [23] which is
restricted to operate in the observation space, we can now
directly minimize error between the poses p0 and pT , which
are automatically extracted from the initial and the target
observations, to recover the sequence of actions that takes
the robot from p0 to pT . Additionally, unlike prior work
[23], we do not need an external tracking system to measure
progress toward the goal as our learned encoder implicitly
tracks in the pose space.

A. Reactive control

Algorithm 1 presents a simple algorithm for reactive control
using SE3-POSE-NETS that efficiently computes a closed-
loop sequence of controls that takes the robot from any
initial state x0 to the specified target xT (Fig. 2, bottom
right). Given a target point cloud, xT , the algorithm uses the
learned encoder to predict the poses of the constituent parts
pT = henc(xT ). This becomes the target to the controller.

At every time step, the algorithm computes the pose
embedding pt of the current observation xt. We would
like to find controls that move these poses closer to the
target poses. To do this, the algorithm makes a prediction
through the learned pose transition model using the current
poses (pt) and an initial guess for the controls (here we use
ut = 0), resulting in a predicted change in poses (∆pt) and
the corresponding predicted next pose (p̂t+1) 2. We measure
the mean-squared error (E) between the predicted poses
(p̂t+1) and the target poses (p̂T ), compute its gradient with
respect to the control inputs (g) and use it to generate the
next control. We propose two ways of computing this update:

2Even when using a zero control initialization, this forward pass through
the network is necessary to get the correct gradients for the backward pass.



Algorithm 1: Reactive visuomotor control

Given: Target point cloud (xT )
Given: Pre-trained encoder (henc) and transition model (htrans)
Given: Control magnitude: umax

Compute target pose: pT = henc(xT )
while Pose Error (E) > ε do

Receive current observation (xt)
Predict current pose: pt = henc(xt)
Initialize control to all zeros: ut = 0
Predict change in pose: ∆pt = htrans(pt,ut)
Predict next pose: p̂t+1 = pt ⊕ ∆pt

Compute pose error: E = 1
I

∑I
i=1(p̂it+1 − piT )2

Compute gradient of error w.r.t. control: g = dE
dUt

Compute control: ut = −umax × g
||g||

Execute control ut on the robot

• Backpropagation: A simple approach to compute the
update is to backpropagate the gradients of the pose error
E through the transition model. Unlike backpropagation
during training, where we compute gradients w.r.t. the
network weights, here we fix the weights and compute
gradients over the input controls. The resulting control
scheme is analogous to the Jacobian Transpose method
from inverse kinematics [8].

• Gauss-Newton: A better approach is to compute the
Gauss-Newton update:

g = (JTJ + λI)−1JT dE

dp̂t+1
(9)

where J is the Jacobian of the transition model, and
dE

dp̂t+1
is the gradient of the pose error (E) w.r.t the

predicted poses p̂t+1. This update conditions the pose
error gradient through the Jacobian’s pseudo-inverse,
where λ controls the strength of the conditioning
(set to 1e-4 in all our experiments). In practice, this
leads to significantly faster convergence with little to
no additional overhead in computation compared to
the backpropagation method as the Jacobian can be
computed efficiently through finite differencing. We
do this by running a single forward propagation with
perturbed control inputs (perturbation set to 1e-3) stacked
along the batch dimension to take advantage of GPU
parallelism. Eqn. 9 is analogous to the Damped Least
Squares technique from inverse kinematics [8].

Finally, the algorithm computes the unit-vector in the direction
of the computed update and scales this by a pre-specified
control magnitude umax (1 radian in all our experiments)
to get the next control ut. We execute this control on the
robot and repeat in a closed-loop either until convergence,
measured by reaching a small error in the pose space (E < ε)
or a maximum number of iterations, whichever comes first.

V. EVALUATION

We first evaluate SE3-POSE-NETS on predicting the
dynamics of a scene where a Baxter robot moves its right arm
in front of the RGBD camera, both in simulation and in the
real world. We also present results on control performance
where the task is to control the joints of the Baxter’s right
arm to reach a specified target observation.

A. Task and Data collection

We first provide details on the task setting in simulation.
Our simulator uses OpenGL to render depth images from
a camera pointed towards the robot (see Fig. 3) and is
kinematic with little to no dynamics in the motion and no
depth noise. We use this as a test bed to parse the effectiveness
of the proposed algorithm and compare it to various baselines.
We collected around 800K training images (from a single
viewpoint) in the simulator where the robot moves all joints
on its right arm. Around half of the examples are whole
arm motions where the robot plans a trajectory to reach a
target end-effector position sampled randomly in front of the
robot. The remaining motions are perturbations to individual
joints from various initial configurations sampled to be within
the viewpoint of the camera. These additional motions help
de-correlate kinematic dependencies, improving performance
especially on joints lower down the kinematic chain.

Additionally, we collected (RGBD) data from the real robot
where the Baxter moves its right arm in front of an ASUS
Xtion Pro camera placed around 2.5 meters from the robot.
Data associations, ground truth masks, and ground truth flows
are determined via the DART tracker [6]. We collected around
7 hours of training data on the real robot with a 1:1 mix of
whole arm and single joint motions (specifically of the lower
joints of the arm). This data has some (unintended) variations
in the background and minor changes in the camera pose
and lighting. Unlike the simulated data, the depth data in the
real world is quite noisy and there are significant physical
and dynamic effects. For both the simulated and real world
settings, our controls are joint velocities (u).

B. Baselines

We compare against five different baselines:
• SE3-POSE-NETS + Joint Angles: Our proposed

network with the robot’s joint angles given as an extra
input to the encoder. This is a strong baseline that uses
significant extra information to inform pose prediction.

• SE3-NETS: Prior work from [4] which directly predicts
masks and change in poses given input point clouds and
control. As there is no explicit pose space, we control
in the point cloud space with this network.

• SE3-NETS + Joint Angles: SE3-NETS that addition-
ally take in joint angles as inputs.

• Flow Net: Baseline flow model from prior work [4].
This network directly regresses to a per-point 3D flow
without any SE(3) transforms or masks. Similar to SE3-
NETS we control in point cloud space with this network.

• Flow Net + Joint Angles: Baseline flow network that
additionally takes in joint angles as input.

All baseline networks are trained on the same data as the
SE3-POSE-NETS using the 3D normalized loss (Lx).

C. Training details

We implemented our networks in PyTorch using the
RMSprop/ADAM optimizers for training with a learning
rate of 1e-4 (baselines work best with ADAM). We set the
maximum number of moving objects K = 8 for all our



Fig. 3: Masks generated by different networks on simulated (top) and real data (bottom, with additional color input shown). Both
SE3-NETS and SE3-POSE-NETS segment the arm into multiple "physically consistent" parts without any explicit supervision. Note:
Colors are for display only. Predicted mask colors do not need to match the colors of ground truth masks.

Setting SE3-POSE-NETS SE3-POSE-NETS + Joint Angles SE3-NETS SE3-NETS + Joint Angles Flow Flow + Joint Angles
Simulated 0.027 0.017 0.022 0.012 0.037 0.021

Real 0.209 0.200 0.182 0.170 0.201 0.193

TABLE I: Average per-point flow RMSE (cm) across tasks and networks, normalized by the number of points M that have ground truth
motion > 1mm. Our network achieves results comparable/better than baseline networks on simulated data and performs slightly worse on
real data. However, it is also solving additional tasks necessary for control.

experiments (7 joints + background). We train each network
for 100K iterations, and use the one with the least 3D loss
(Lx) on a separate validation set for our results. Additionally
for the real-world experiments, we use RGB images as an
extra input to the pose-mask encoder (concatenated with the
depth image) for training all networks including baselines.

D. Results on modeling scene dynamics

First, we present results on the prediction task used for
training all networks. Table I shows the average per-point
flow RMSE (cm) across all baselines on both simulated
and real data. SE3-NETS achieve the best results while the
baseline flow network performs slightly worse. Unsurprisingly,
networks that have access to the joint angles do better than
those which do not, as they have strictly more information
that is highly correlated with the sensor data. To our initial
surprise, SE3-POSE-NETS had the largest prediction errors
among all baseline models (on real data). However, this
makes sense given the following considerations: a) SE3-
POSE-NETS are trained to explicitly embed the observations
in a pose space from which they predict the scene dynamics,
rather than using the input point cloud directly. While this
provides more structure and is necessary for the control task,
it also restricts the prediction to go through an information
bottleneck which generally makes training hard. b) SE3-
POSE-NETS additionally have to optimize the consistency
loss, which enforces constraints that are different from those
of the prediction problem evaluated in this experiment.
Fig. 3 visualizes the masks predicted by SE3-POSE-NETS
and the baseline SE3-NET on an example each from the
simulated and real data along with the ground truth masks.
Even without any supervision, SE3-POSE-NETS and SE3-
NETS learn a detailed segmentation of the arm into multiple
salient parts, most of which are consistent with ground truth
segments on both the simulated and real data.

E. Control performance

Next, we test the performance of the networks on control-
ling the first six joints of the Baxter’s right arm to reach a

target configuration, specified as a point cloud xT . We test
both the gradient update schemes from Sec. IV, comparing
their performance on a set of 11 distinct servoing tasks (each
with an average initial error of ~25 degrees per joint).

Control with baseline models: As most of our baseline
models operate directly in the observation space (unlike
the learned pose space in SE3-POSE-NETS), they require
external data associations to be able to do any control at
all. For the simulation experiments, we provide the baselines
with ground-truth associations and use the procedure outlined
in Alg. 1 using the MSE between the predicted point cloud
x̂t+1 and the target xT as the error to be minimized for
generating controls. It is important to keep in mind that the
baseline models have an advantage over SE3-POSE-NETS
for the control task as they get strictly more information in
the form of ground-truth data associations.

Metric and Task specification: We use the mean absolute
error in the joint angles as the metric for measuring control
performance. We run all models to convergence (based on the
pose error for SE3-POSE-NETS and 3D point/flow error for
the baseline models) or for a maximum of 200/500 iterations
(sim/real). We integrate joint velocities forward to generate
position commands both in simulation and the real world.

Simulation results: Fig. 4 plots the error in joint angles
as a function of the number of control iterations. The first
two plots (from the left) show results in simulation, both for
networks that do not use joint angles (leftmost) and otherwise
(middle). In general, SE3-POSE-NETS achieve excellent
performance compared to the baseline models, converging
quickly to an almost zero error even in the absence any
external data associations. We highlight a few key results:
1) For all networks, Gauss-Newton based optimization (GN)
leads to faster convergence than backprop. This is to be
expected as Gauss-Newton conditions the gradient based
on pseudo-second order information. 2) Baseline SE3-NET
models perform worse given joint angles than without. This
is due to an issue of credit assignment during gradient
computation - the networks learn erroneous causations (when
there are only correlations) between the input joint angles
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Fig. 5: Examples of different generalization tests. Clockwise from
top left: 1) Low light setting, 2) Motion in the background (person
on the chair), 3) Fixed distractor(s) in the foreground and 4) Change
in camera pose (rotated ~10 degrees to the right).

and the predicted flows which diminishes the control’s
contribution to the prediction problem and subsequently
affects the gradient. Additionally, SE3-NETS performance is
affected by the lack of a good control initialization (needed
to ensure that they get a good segmentation) - given zero
controls the SE3-NET can choose not to segment the arm
at all 3) All models struggle with the motion of the final
wrist joint due to increasing correlations along the kinematic
chain that result in a small contribution of the joint’s own
motion to the full movement of the wrist. SE3-POSE-NETS
(and other baselines) do overcome this problem given input
joint angles in a separate experiment, achieving < 1 deg error
across all 11 examples when controlling the entire right arm.
This provides encouraging proof that adding in the joint state
supplements information that is hard to parse directly from
vision, establishing the case for including them systematically,
and finally 4) Good performance of SE3-POSE-NETS indicate
that the learned pose space is consistent across large motions
and can be used for fast, robust, and reactive control.

Real robot results: We further test the control perfor-
mance of SE3-POSE-NETS in the real world (RGBD input)
on the same set of configurations. We do not compare to any
baselines as they need an explicit external data association
system to be feasible. Fig. 4 shows the results - SE3-POSE-
NETS converge very quickly to nearly zero error on all
examples indicating that our network can control robustly
even in the presence of sensor noise and unmodeled dynamics.
Once again, Gauss-Newton significantly outperforms the
backprop update which fails to converge in the absence of
joint angles. Additionally, adding joint angles does allow us
to control the wrist, albeit not as robustly as in simulation.

Result Lighting Camera Occlusion Motion
Average Error 3.8 1.4 1.9 2.5

Failures 0/11 1/11 1/11 2/11

TABLE II: Average final joint angle error (degrees) and number
of failures (divergent examples) out of 11 tasks across different
perturbations. Reported errors averaged over non-divergent examples.

Generalization/Robustness results: Finally, we tested
the generalization performance and robustness of real-robot
control using SE3-POSE-NETS (GN, no joint angles) to novel
perturbations of the scene. We tested control performance
across all 11 servoing tasks for the following four variations:
1) Change in lighting: We considered a low-light setup,
significantly darker than the training set (Fig. 5, top left), 2)
Varying camera pose: We considered three variations to the
camera pose: moving forward by 10 cm and rotating by 10
degrees to the left & right (Fig. 5, bottom right), 3) Occlusion:
We tested three settings where we added multiple fixed
occluders to the robot: cloth attached to the robot torso only,
additionally occluding the base joint and adding occluders
to the torso, base joint and end-effector (Fig. 5, bottom left)
and finally, 4) Motion: We tested four different settings with
moving distractors (people, books) in the foreground (in front
of the robot) and background Fig. 5, top right).

Table II summarizes the control results under perturbations.
In general, SE3-POSE-NETS can control robustly even in the
presence of scene changes, achieving low joint angle error
at the end of the control optimization. There is a caveat
though: we observed divergent behavior for joints lower
down in the kinematic chain (primarily joints 5,6) for 1-
2 servoing examples under some perturbations (Table II, last
row). While improvements in robustness and a more thorough
evaluation (also in simulation) are necessary, we believe that
these results serve as a good proof of concept of the strengths
of SE3-POSE-NETS. Also, these results highlight some of the
advantages of learning methods as opposed to more traditional
model-based tracking methods (such as DART [6]) which
need significant additional work to handle such variations.
A video showing real-robot control (with and without scene
variations) can be found here.

Speed: SE3-POSE-NETS optimize errors directly in
the low-dimensional pose space for control. This leads to
significant speedups: while both the flow and SE3-NETS can
operate at around 10Hz (excluding data association), SE3-
POSE-NETS run in real-time (30Hz) including pose detection.

https://rse-lab.cs.washington.edu/se3-structured-deep-ctrl/


VI. DISCUSSION

This paper presents SE3-POSE-NETS, a framework for
learning predictive models that enable control of objects in
a scene. In the context of a robot manipulator, we showed
how to solve this problem by learning a predictive model
for the individual parts of the manipulator, as in prior work
[4]. Additionally, SE3-POSE-NETS learn a consistent pose
space for these parts, essentially learning to detect the 6D
poses of manipulator parts in the raw depth images. This
detection capability enables SE3-POSE-NETS to solve the
data association problem that is crucial for relating the
current observation of the manipulator to a desired target
observation. The difference between these poses can be
used to generate control signals to move the manipulator
to its target pose, similar to visual servoing applied to
an image of the manipulator. We also showed how the
learned network can be used to determine the gradients
needed for the control signals. Our experiments show that
SE3-POSE-NETS generate control superior to representations
learned by previous techniques, even when these are provided
with external data associations. Furthermore, in addition
to providing data associations, SE3-POSE-NETS allow us
to compute controls directly in the low dimensional pose
space, enabling far more efficient control than techniques that
operate in the raw perception space. Additionally, control
using SE3-POSE-NETS is robust to some perturbations to
imaging conditions. Crucially, all these abilities are learned in
a single framework based on raw data traces solely annotated
with frame-to-frame point cloud correspondences.

Overall, the control performance shown by our SE3-POSE-
NETS is extremely encouraging and provides strong evidence
that such networks can learn a consistent pose space that
provides long-range correspondences for fast reactive control.
While this provides reason to rejoice, there are multiple areas
for improvement: 1) As shown in the generalization results,
SE3-POSE-NETS can exhibit non-convergent behavior under
some perturbations - this is primarily for joints lower down the
kinematic chain (joints 5–7). There are potentially multiple
ways to tackle this problem, including curriculum and active
learning, physical grounding of the pose space and through
the use of domain randomization [24] techniques to facilitate
sim-to-real transfer and generalization to novel scenarios.
2) A key area for future work is in extending our system
to interact with and manipulate external objects. Here, a
consistent pose space for objects will help the robot to plan
its motion toward the objects, enabling smooth interactions. 3)
SE3-POSE-NETS decompose the visuomotor control problem
into state estimation and dynamics learning, resulting in a
modular architecture reminiscent of traditional model-based
methods. We plan to exploit this modularity by pre-training
parts of our system on sub-problems followed by fine-tuning,
reducing data needs for generalization to novel settings. 4)
Finally, while we have shown that SE3-POSE-NETS can be
used for single-step reactive control, we would like to do
long-term planning using model based techniques such as
iLQG [25] to leverage the full strength of the latent pose

space, i.e., fast real-time rollouts directly in the pose space.
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