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Abstract

Knowledge of the physical locations of mobile devices such
as laptops or PDA’s is becoming increasingly important with
the rise of location-based services such as specialized web
search, navigation, and social network applications; further-
more, location information is a key foundation for high-level
activity inferencing. In this paper we propose a novel tech-
nique for accurately estimating the locations of mobile de-
vices and their wearers from wireless signal strengths. Our
technique estimates time-varying device locations on a spa-
tial connectivity graph whose outdoor edges correspond to
streets and whose indoor edges represent hallways, staircases,
elevators,etc. Use of a hierarchical Bayesian framework for
learning a signal strength sensor model allows us not only to
achieve higher accuracy than existing approaches, but to over-
come many of their limitations. In particular, our technique
is able to (1) seamlessly integrate new access points into the
model, (2) make use of negative information (not detecting an
access point), and (3) bootstrap a sensor model from sparse
training data. Experiments demonstrate various properties of
our system.

Introduction
In recent years, the problem of estimating a person’s location
has gained interest in several research communities. The
centrality of location information to such tasks as activity
recognition, surveillance, and context-aware computing can
be seen in many applications. For example, AT&T, Google,
and Microsoft all offer city-scale services including special-
ized web search, navigation and nearby-friend-finding. In
the context of activity recognition, home rehabilitation of
people suffering from traumatic brain injuires (Salazaret al.
2000) could be supported by the ability to monitor patient
movements. On an indoor scale, (Nguyenet al. 2003) are
able recognize complex behaviors of people by analyzing
their motion trajectories.

The goal of our research is to develop a location estima-
tion system that is large-scale and long-term; this broad goal
implies several desirable properties:
Indoor & Outdoor Coverage: Many location-aware appli-
cations would benefit from full coverage of a person’s daily
movements; unfortunately, existing location-estimation sys-
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tems (including GPS) covereither indoor or outdoor loca-
tions, but not both.
Minimum calibration: It is not feasible to collect accu-
rately labeled training data for every location in a large-scale
coverage area; therefore, a location system should be able to
bootstrap from sparse training data and improve its model
using unlabeled data collected through normal system use,
over time. Furthermore, it should be able to integrate new
signals (e.g. WiFi access points or RFID beacons) automat-
ically, without recalibration or manual adjustments.
Minimum hardware requirements: To minimize barriers
to adoption, users should not be required to carry special
hardware, such as cameras, in order to use a system. Fur-
thermore, the high cost of installing environment-embedded
hardware over large areas should be avoided.
Privacy-observant: While a certain loss of privacy is ac-
ceptable in some applications, most users are not willing to
be “tracked by their environment”.

The final two concerns can be addressed by building a
location-estimation system around pre-existing wireless net-
working infrastructures such as 802.11 access points (APs)
and GSM cell towers. Such approaches have indeed been
developed, and they infer location from the strengths of
wireless signals measured by a user’s laptop, PDA, or cell-
phone (Seidel & Rappaport 1992; Bahl & Padmanabhan
2000; Haeberlenet al. 2004; LaMarcaet al. 2005).

Unfortunately, none of the existing WiFi location tech-
niques meet the remaining requirements. Most of them work
only indoors and require extensive training data (Laddet
al. 2002; Haeberlenet al. 2004) or additional information
such as the locations of walls and furniture (Seidel & Rap-
paport 1992; Bahl & Padmanabhan 2000). While systems
such as Active Campus and Place Lab provide outdoor loca-
tion estimates using little or no calibration by leveraging the
widespread deployment of wireless technology in residential
areas (LaMarcaet al. 2005), the accuracy of these systems
is too coarse for indoor use. Lastly, none of the existing
approaches are able to incorporate new APs as they appear
over time, or to use unlabeled data to improve existing AP
sensor models.

In this paper, we introduce a novel approach for large-
scale, long-term, WiFi-based location estimation. Our tech-
nique enables accurate location estimates both indoors and
outdoors, using only small amounts of training data. We use



a hierarchical Bayesian sensor model that is refined as more
data becomes available, through normal use of the system.
The sensor model is integrated into a graph-based represen-
tation which can generate accurate location estimates and
trajectories on a street map or inside buildings.

We derive our sensor model in the next section. We then
describe our graph-based representation and discuss model
refinement from unlabeled data. Experimental results are
next, followed by conclusions and discussion of future work.

Hierarchical Bayesian Sensor Model

The goal of Bayesian localization is to estimate posteriors
over a person’s location,xt, conditioned on all sensor mea-
surements obtained through timet. Our system performs
Bayesian localization using a particle filter, which is a tech-
nique that represents and propagates such posteriors using
sets of weighted samples (Foxet al. 2003). Each sample
x

(i)
t is a potential location of the person, and each has an

associated importance weightw
(i)
t . Standard particle filters

realize Bayes filter updates by propagating samples through
time according to the following sampling procedure:Re-
sampling: Draw with replacement a random samplex

(i)
t−1

from the previous sample set according to the importance
weightsw

(i)
t−1. Sampling: Generate a new particlex(j)

t by

sampling from the motion modelp(x(j)
t | x

(i)
t−1). Impor-

tance sampling:Weight the sample by the measurement
likelihoodp(zt | x(j)

t ).
This section focuses on the sensor model, which is the

system component used in the “importance sampling” step
to determine the likelihood of observing any particular sen-
sor measurement at any given location. A WiFi sensor mea-
surement consists of a list of APs detected at a particular mo-
ment. Each AP detection is annotated with a signal strength,
measured in dbs. Existing WiFi sensor models fall into two
major classes: signal propagation and fingerprinting. We
briefly describe these before introducing our own model.

Signal propagation (SP) modelsassume an exponen-
tial attenuation model for WiFi signals and use this path
loss to determine likelihoods based upon distance from the
AP, whose location is assumed known (Seidel & Rappaport
1992; Bahl & Padmanabhan 2000). SP models can there-
fore generalize even to locations for which no training data
is available. Furthermore, they require storage only for the
location of each AP and a simple description of its signal
attenuation (details follow). Unfortunately, attenuation is
almost never radially symmetric, which severely limits the
accuracy of these techniques.

Fingerprinting (FP) models ignore attenuation and in-
stead compute likelihoods from location-specific statistics
compiled from training data. The form of these statis-
tics ranges from raw measurements (Bahl & Padmanabhan
2000) to histograms (Laddet al. 2002) to Gaussian den-
sities (Haeberlenet al. 2004), but all FP techniques require
far more training data than SP models and do not extrapolate
well into areas not covered by this data.

AP location and signal
propagation model

xi

...

...

θθ θ1 2 n

Z ZZ Measurements observed at
locations

Hyperparameter priors 

Means of signal strengths

α = <α  ,α  ,α  >   x λ0λ

...,σµα,x α
2

1
,σµα,x α

2 ,σµα,x α
2

2 n

 1  2  n

Figure 1: Hierarchical Bayesian model of signal strengths mea-
sured at different locations. Measurements are at the bottom level,
per-location measurement models are at the middle levels, and the
overall model of the AP is estimated at the highest level. The local
models are coupled via the priors provided by the AP model.

Overview of the hierarchical Bayesian model
We will now introduce a sensor model that combines the
benefits of SP and FP techniques. Since measurements of
different APs are independent given the location of the de-
vice, we will restrict our attention to the likelihood model
of a single AP. Similar to the FP technique of (Haeberlen
et al. 2004), our approach uses Gaussians to estimate the
likelihoods of signal strength measurements at each loca-
tion. However, instead of performing maximum likelihood
estimation independently for each Gaussian, we estimate the
Gaussian means using hyperparameters with priors derived
from an SP model (Seidel & Rappaport 1992). In essence,
these hyperparameters perform spatial smoothing that takes
the properties of signal propagation into account.

Figure 1 illustrates our model. The parameters in the
model are estimated from training setsZ1, ...,Zn. Each set
Zi contains the sensor measurements collected at location
xi. In this section, we assume that the measurement loca-
tions are known. The lowest level of the model contains a
Gaussian likelihood model for each locationxi. All Gaus-
sians share the same varianceσ2, since most measurement
variation is due to location-independent sources such as the
orientation of the device antenna or nearby cars/people. Key
parameters of the model are the means,θi, of the local Gaus-
sians. Their values strongly depend on factors such as the
distance from the AP and the objects between the device
and the AP. The value of each meanθi is estimated using
Gaussian hyperparameters. The priors(µα,xi

, σ2
α) of the

hyperparameters at locationxi are extracted from a signal
propagation model, the parameters of which are estimated
at the highest level.

Likelihood model for knownAP parameters
We now derive the likelihood of a signal strength mea-
surementz given the device locationx and AP parameters
α = 〈αx, αλ0 , αλ〉 (since measurements observed at differ-
ent locations are independent given the AP parameters, we
omit the location index whenever possible).αx describes the
AP’s location, andαλ0 andαλ characterize the attenuation
of its signal. Here,αλ0 gives the signal strength measured
at a reference distanced0 from the AP, whileαλ gives the
mean path loss exponent modeling the degree to which sig-
nal strength decreases with distance from the AP.

The likelihood of signal strengths measured at different
locations is modeled by Gaussians with varying means. The



meanθ at a locationx is estimated using Gaussian hyperpa-
rameters〈µα,x, σ2

α〉 (see (Gelmanet al. 2003) for a detailed
discussion of hierarchical Bayesian estimation). We apply
the SP model introduced by Seidel and Rappaport (Seidel &
Rappaport 1992) to generate the prior value for the hyperpa-
rameter meanµα,x:

µα,x = αλ0 − 10 αλ log10

(
||x− αx||

d0

)
(1)

As can be seen, this value is a function of the distance||x−
αx|| betweenx and the AP. It falls off logarithmically with
distance, at a rate depending on the path loss parameterαλ.
Assuming that the varianceσ2

α is known and independent
of location, we get the following prior distribution over the
Gaussian meanθ at locationx:

p(θ | x, α) = N
(
θ; µα,x, σ2

α

)
(2)

The likelihood of observing sensor measurementz at loca-
tion x now follows from the hierarchical model by integra-
tion over the unknown Gaussian mean:

p(z | x, α) =
∫

p(z | x, α, θ) p(θ | x, α) dθ

=
∫
N (z; θ, σ2)N (θ;µα,x, σ2

α) dθ (3)

= N (z; µα,x, σ2 + σ2
α) (4)

(3) follows from the fact that the observation is independent
of the AP’s parameters and location if the parameters of the
local Gaussian are known. (4) is a standard convolution of
the two Gaussians in the hierarchical model.

Thus far, the likelihood model does not take any training
data into account. It can be shown that, given a setZ of mea-
surements collected at locationx, the posterior distribution
over the meanθ at locationx follows as (compare to (2)):

p(θ | x, α,Z) = N
(
θ; µ̂α,x, σ̂2

α

)
, (5)

where the posterior values of the hyperparameters are:

µ̂α,x =
mσ2

α

mσ2
α + σ2

z̄ +
σ2

mσ2
α + σ2

µα,x (6)

1
σ̂2

α

=
1
σ2

α

+
1
σ̄2

. (7)

Herez̄ andσ̄2 = σ2/m are the sample mean and variance of
them observations inZ. The updated mean is the weighted
average of the prior and data means, while the updated vari-
ance shrinks with the amount—independent of the actual
values—of training data.

Combining (5) with (4), we get the likelihood of observ-
ing z given AP parametersα, the device locationx, and pre-
viously observed training dataZ:

p(z | x, α,Z) = N (z; µ̂α,x, σ2 + σ̂2
α) (8)

Likelihood model for unknownAP parameters
In most applications, neither the location of the APs nor their
signal propagation parameters are known. We estimate these
values from data collected at all locations. LetZ1:n denote
the sets of measurements observed at then locationsx1:n.

The probability of a specific parameter vectorα for the cor-
responding AP is then given by:

p(α | Z1:n, x1:n) ∝ p(Z1:n | x1:n, α) (9)

=
n∏

i=1

p(Zi | xi, α) (10)

=
n∏

i=1

N (z̄i; µα,xi
, σ̄2

i + σ2
α) (11)

(9) follows by Bayes rule under a uniform prior. (10) lever-
ages measurement independence given the AP parameters.
Each Gaussian in (11) computes the likelihood of all mea-
surements in a setZi, using the sample mean̄zi and sample
varianceσ̄2

i = σ2/mi, wheremi is the number of observa-
tions inZi (see (Gelmanet al. 2003) for a derivation).

We are now prepared to derive the likelihood of a mea-
surementzi observed at locationxi from an AP with un-
known parameters. The general form of this likelihood is
obtained by integrating over the AP parameters:

p( zi | Z1:n, x1:n)

=
∫

p(zi | α,Z1:n, x1:n) p(α | Z1:n, x1:n) dα (12)

=
∫

p(zi | α,Zi, xi) p(α | Z1:n, x1:n) dα (13)

The two terms in the integral correspond to (8) and (11), re-
spectively. (13) does not have a closed-form solution, so we
approximate the integration by importance sampling from
the posterior over the parameterα. We generate differentα’s
from a grid of reasonable AP locationsαx and signal prop-
agation parametersαλ andαλ0 . The importance weight of
eachα is then given by (11); using these weights we sample
k valuesαg at which (13) is then evaluated:

p(zi | Z1:n, x1:n) ≈ 1
k

k∑
g=1

p(zi | αg,Zi, xi) (14)

=
1
k

k∑
g=1

N (zi; µ̂αg,xi , σ
2 + σ̂2

αg
) (15)

The resulting likelihood is a mixture ofk Gaussians, with
one mixture component for each sampled AP parameter vec-
tor. For efficiency, we collapse the mixture at each location
into a single Gaussian using the technique described in (Lau-
ritzen 1996).

This finalizes the derivation of our sensor model for sig-
nal strength measurements. To summarize, the hierarchical
Bayesian technique estimates local Gaussian models using
hyperparameters with priors that are estimated using a signal
propagation model along with data collected at all locations.
More training data available at a specific location generates
a more focused Gaussian likelihood. At each location, the
model smoothly blends between signal propagation (hyper-
parameter priors) and fingerprinting approaches (local pos-
teriors), thereby inheriting the benefits of both.



Figure 2: Connectivity graph of our six-story test building (for
clarity, basement and fourth floor are shown as shaded planes).
Diagonal edges between floors are stairs; vertical edges elevators.
The outgoing edges can be connected to an outdoor street graph.

Graph-based Location Estimation System
We will now describe how to integrate the likelihood model
into a graph-based particle filter for location estimation.

Graph-based location estimation
Our tracking system is an extension of the approach intro-
duced by Liao and colleagues, in which location is esti-
mated on a spatial connectivity graph (Liaoet al. 2003;
Liao, Fox, & Kautz 2004). Outdoor graph edges correspond
to streets or footpaths (for the U.S., such graphs are pub-
licly available on the web), and indoor edges correspond to
hallways, staircases, elevators,etc. (see Fig. 2). The major
advantages of using a graph are its abilities to (1) bias mo-
tion models, and (2) simplify sequential location estimates
into smooth trajectories.

In graph-based localization, the motion update step of the
Bayes filter moves a particle along an edge of the graph.
When the particle reaches a vertex, it continues its motion
along a randomly-selected outgoing edge connected to that
vertex. Motion updates and motion model learning are not
the focus of this paper, and we refer the reader to (Liaoet al.
2003; Liao, Fox, & Kautz 2004) for more information. The
measurement likelihood is then computed from the sensor
model described in the previous section. Since this model
assumes a set of discrete locations, we discretize the edges
on the graph and estimate a Gaussian sensor model for each
discrete bin.

Learning sensor models from unlabeled data
We will now describe how to learn/improve a sensor model
using unlabeled training data (i.e., data without location la-
bels). To do so we assume that an initial, possibly crude,
sensor model is available. Such an initial model can either
be learned from sparse, labeled data traces, or from a signal
propagation model if the locations of APs are known.

Our sensor model derivation assumed knowledge of the
locationsxi at which training data setsZi were obtained.
To relax this assumption, we use expectation maximization
(EM) to simultaneously estimate the sensor model and the
locations at which the data was observed. Table 1 illustrates
the learning algorithm. Its input is a connectivity graph over

Algorithm Learn sensormodel (G,M,S,Z)
1.Inputs: Graph structure G := (V, E)

Motion model M := p(x′ | x)
Initial sensor model S := p(z | x)
Unlabeled data log Z := {z1, . . . , zN},

2.k = 0; S0 = S
3.do
4. k = k + 1
5. Xk = bayesfilter smoothing(G,M,Sk−1,Z)
6. Ak = AP parametersamples(Xk,Z)
7. Sk = sensormodelposterior(Xk,Ak,Z)
8.until (Sk − Sk−1) < ε
9.return Sk

Table 1. EM-based sensor model learning.

the environment, a motion model, an initial sensor model,
and a time-stamped log of sensor measurements. At each
iteration (Lines 3–8), the algorithm first performs forward-
backward smoothing on the data log using the current sensor
model. To do so, distributions over the discretized edges of
the graph are extracted from the particles of the forward and
backward pass. Multiplication of these distributions gives
Xk, a sequence of smoothed location estimates.

For each AP, the smoothed location estimatesXk are used
with the sensor measurementsZ to generate a setAk of AP
parameter samples. The samples for each AP are drawn ac-
cording to (11), where the sample meanz̄i and sample vari-
anceσ̄2

i are computed from the expectations generated by
the smoothed location estimates inXk. The AP parameter
samples are used with the data log and location estimates
to compute posteriors over the Gaussian likelihood models
at each location. The prior means for these models are ex-
tracted from the AP parameters using (1), and the posteri-
ors are then computed according to (5)–(7). The resulting
posterior Gaussians are then collapsed to generate a single
Gaussian for each location.

At each iteration of EM, the updated sensor model is used
to perform smoothing over the unknown data locations. Typ-
ically, these location estimates become more peaked, and the
sensor models more focused. EM is stopped as soon as the
sensor model does not change significantly.

Using negative information
The sensor model discussed thus far ignores the “negative”
information contained innot detectinga certain AP. Such an
approach is reasonable during tracking, since positive infor-
mation from several APs is generally enough for localiza-
tion. This approach also avoids the necessity of reasoning
about all non-detected APs, of which there can be thousands.

During learning, however, negative information can be
very useful for estimating the AP parameter vector. If an AP
is not detected at a given location, then the signal strength
at that location is below the detectable range of the mobile
device’s sensor. To reflect this, we insert a dummy mea-
surment into the data at that location, with signal strength
sampled uniformly from values below the device’s threshold
(determined empirically). This is done for all negative mea-
surements within a certain range of a positive AP dectection.
In our tests we found that this approach provides helpful bi-
asing of AP location and parameter estimates in situations



Type ML mean ML median Particle mean
HSM Global 1.8 ± 0.9 0.8 ± 0.1 3.4 ± 0.4
HSM Track 1.2 ± 0.7 0.7 ± 0.1 2.3 ± 0.5

FSM Global 2.1 ± 0.6 1.0 ± 0.1 4.4 ± 0.4
FSM Track 1.8 ± 0.7 0.9 ± 0.1 4.1 ± 0.4

Table 2. Indoor localization error [meters] and 95% confidence in-
tervals using our hierarchical sensor model (HSM) and a flat sensor
model (FSM) that uses only local Gaussians.

where the positive data alone is sparse and/or symmetric;
see Figure 3, for example.

Experimental Results
In these experiments we evaluate the accuracy of location
estimates obtained with our approach, both indoors and out-
doors; we also demonstrate that the system can bootstrap
from sparse training data. Our data was collected using a
standard laptop worn in a backpack by a person walking
through a building or driving a car. All experiments used
1,000 particles for localization. Our motion model was a
mixture of zero motion (stopping) and a Gaussian velocity
with mean at 0.8m indoors and 5.0m outdoors. The on-graph
sensor model discretization was 0.5m indoors and 10m out-
doors. The same discretizations were used to compute maxi-
mum likelihood (ML) location estimates by determining the
bin with the highest sum of weighted particles.

Indoor localization This experiment demonstrates the
ability of our approach to accurately estimate locations in-
side large buildings. The 7-floor test environment is rep-
resented by the graph shown in Fig. 2. Indoor ground
truth was interpolated from a small set of pre-specified way-
points. When our subject reached one of these waypoints,
he pressed a button to correlate his location with the current
timestamp. These synchronization points were later used to
generate ground truth location along the entirety of the trace.
We first learned a sparse initial sensor model from a data log
annotated with ground truth location, and then used Lines 6
and 7 of the algorithm shown in Table 1 with unlabeled data
to learn a refined sensor model.

The top half of Table 2 shows localization accuracy of
our model averaged over five test traces, each of which in-
cluded multiple floor transitions via staircases. The left two
columns provide the averages over the mean and median er-
rors of the most likely location estimates during each run.
The right column gives the average error per particle. The er-
rors in the “global” row correspond to experiments in which
the initial location of the device was unknown. In these tests,
the particles typically converged to the correct location (and
the correct floor) after less than 15 seconds. The “track-
ing” row shows results obtained when the first 15 seconds
were removed from the evaluations; that is, they show typi-
cal tracking errors.

The bottom half of Table 2 shows the estimation ac-
curacy when using the sensor model introduced by (Hae-
berlenet al. 2004). Here, the training data at each location
was used to estimate the mean and variance of a flat, non-
hierarchical Gaussian sensor model. As can be seen, the ac-
curacy is lower, which is mostly due to the fact that the flat

sensor model underestimates the variability of sensor mea-
surements. Furthermore, in contrast to our technique, this
flat model provides no means to “extrapolate” into areas in
which no training data is available. While a direct compar-
ison to other existing approaches is difficult due to differ-
ing representations and environments, our results are con-
sistently more accurate than those reported in the literature,
including those based on sophisticated calibration (Bahl &
Padmanabhan 2000; Krishnanet al. 2004).

Outdoor localization In this experiment, our subject
drove a car through the residential area shown in the left
panel of Fig. 3. One GPS-annotated data log was used to
generate a sensor model, which was then used to localize a
user on the test trace shown in the figure. The average local-
ization errors are summarized in the upper row of Table 3.

Model ML mean ML median Particle mean
Full data 15.6 12.3 26.0
Gap data 27.9 ± 13.7 16.1 ± 3.2 39.6 ± 13.1
Unlabeled 16.9 ± 6.7 11.2 ± 0.9 28.1 ± 6.6

Table 3. Outdoor localization error in meters, using sensor models
learned from: a complete training set; sets with gaps; and sets with
gaps plus additional, unlabeled data.

To assess the ability of our approach to bootstrap a sensor
model from sparse training data, we manually removed the
training data on one of the six street blocks in the test trace.
This resulted in six different test runs, each with a training
data gap of one block (up to 200m long). Our hierarchi-
cal Bayesian sensor model “filled” these gaps with priors
extracted from estimates of the AP parameters. These esti-
mates were generated from measurements obtained outside
the gap (Fig. 3, (a)-(c)). The average localization errors are
presented in the middle row of Table 3. Not surprisingly, the
error increased signficantly relative to results obtained with
full training data.

We then added another, unlabeled training trace, and im-
proved the sensor model by running the EM algorithm de-
scribed in Table 1. After convergence (typically 5 itera-
tions), we evaluated the new sensor model on our test trace
(results in the bottom row of Table 3). Note that this accu-
racy is nearly identical to that of the sensor model learned
from full data (top row), indicating that the priors generated
by our system are good enough to allow bootstrapping of
EM from training data with gaps of 200m. This result is sig-
nificant because it demonstrates that our approach does not
require training data covering the full region of deployment;
instead, it can learn from unlabeled data collected by users.

Conclusions and Future Work
Recent research interest in activity recognition and commer-
cial interest in context-aware services have created a strong
demand for large-scale, long-term location-estimation tech-
niques. The near-ubiquitous availability of wireless APs in
urban areas allows us to leverage WiFi as a location sensor
both indoors and outdoors. We have introduced a hierar-
chical Bayesian technique for learning local Gaussian like-
lihood models of signal strength. Our approach estimates



Test trace

(a) (b) (c)

Figure 3:(Left) : Residential neighborhood used for outdoor localization.(a): Measurements from one AP in the training data (darker color
indicates higher mean; width indicates variance). All data collected on the right, vertical block is manually removed.(b): Sensor model
extracted from the data in (a). The gap is “filled” by the prior extracted from the estimated AP parameters. The small circles indicate the five
most likely AP locations. Due to the use of negative information, these locations are not symmetric around the AP detections in (a) (the AP
was never detected in the left, vertical street).(c): Sensor model from (b) refined using EM with an additional, unlabeled trace (dark edges).

global AP parameters and uses them to generate priors for
local Gaussian means. In frequently-visited locations, the
local models become more specific and accurate as more
data is collected and added to the model.

The sensor model is integrated into a graph-based location
estimation system. We showed how EM can be applied to re-
fine the parameters of our sensor model using unlabeled sen-
sor data. The model can be bootstrapped from sparse train-
ing data, or from AP parameter estimates. We believe that
we have presented the first broad-area location estimation
system that can (1) improve its sensor model and add new
APs using unlabeled data, (2) work both outdoors and in-
side multi-story buildings, and (3) leverage negative sensor
information. Furthermore, our approach achieves higher ac-
curacy than do existing approaches, while requiring smaller
amounts of training data.

The success of our approach indicates that our system
would benefit from the relaxation of its current limitations.
For example, large open spaces such as parking lots or build-
ing lobbies are poorly modeled by connectivity graphs; we
are currently devleoping a mixed spatial representation that
includes bounded, open spaces inside of which particles can
depart from the graph and move freely. Entrances/exits to
these spaces will connect to vertices of our standard graph.
Additionally, to address the problem of insufficient WiFi
density in rural areas, we are exploring the use of GSM cell-
phone signal strength. We believe that our framework can
readily incorporate this information.

Finally, we are currently conducting experiments to boot-
strap our sensor model from known AP locations and un-
labeled WiFi traces. Initial indoor results indicate that we
can achieve median errors of less than 2m. Outdoors, we
can leverage public AP location databases such as wigle.net,
which currently contains the locations of over 2.4 million
APs! These databases are created by WiFi hobbyists who
pool their data logs, and can therefore contain inaccuracies;
however, we believe that our system’s tolerance for uncer-
tainty and ability to improve through EM will allow it to
provide accurate location estimates from this data, resulting
in a system that requires no additionally labeled data at all.
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