P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox.

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments

Proc. of International Symposium on Experimental Robotics (ISER), 2010



RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used in the context of robotics, specifically for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manip- ulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features and shape-based alignment. Visual and depth information are also combined for view-based loop closure detection, followed by pose optimization to achieve globally consistent maps. We evaluate RGB-D Mapping on two large indoor environments, and show that it effectively combines the visual and shape information available from RGB-D cameras.


Full paper [pdf] (15 pages)


[To the RSE-lab]