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Abstract. We present an application of hierarchical Bayesian estimation to robot map build-
ing. Therevisiting problenmoccurs when a robot has to decide whether it is seeing a previously-
built portion of a map, or is exploring new territory. This is a difficult decision problem, re-
quiring the probability of beingutsideof the current known map. To estimate this probability,

we model the structure of a "typical" environment as a hidden Markov model that generates
sequences of views observed by a robot navigating through the environment. A Dirichlet
prior over structural models is learned from previously explored environments. Whenever a
robot explores a new environment, the posterior over the model is estimated using Dirichlet
hyperparameters. Our approach is implemented and tested in the context of multi-robot map
merging, a particularly difficult instance of the revisiting problem. Experiments with robot
data show that the technique yields strong improvements over alternative methods.

1 Introduction

Building maps of unknown environments is one of the fundamental problems in
mobile robotics. As a robot explores an unknown environment, it incrementally
builds a map consisting of the locations of objects or landmarks. Typically, as it
explores larger areas, its uncertainty relative to older portions of the map increases;
for example, in closing a large loop. Thus, a key problem is determining whether the
current position of the robot is in an unexplored area or in the already-constructed
map (therevisiting problen). The revisiting problem for single robots is illustrated

in Fig. 1(a). Shown there is a map built by a robot during exploration. The robot
started in the lower right hallway and moved clockwise around the large loop. At
the end, it moves down the right hallway, but due to the accumulated uncertainty
in its own position, it can not determine whether it is in the same hallway as in the
beginning or whether it is in a parallel hallway.

Multiple robots exploring an environment from unknown start locations face a
particularly difficult instance of the revisiting problem. For coordinated exploration,
the robots have to merge their maps so as to build a shared world model. Map
merging requires the determination of the robots’ relative location. Consider the
situation shown in Fig. 1(b). Here, two robots have explored parts of the large
environment shown below. In order to merge the partial maps, they have to determine
whether they visited the same locations in the environment and if so, they have to
determine the offset between their maps. The main difficulty of this problem lies
in the first stepj.e. in deciding whether there is an overlap between the two maps



o Y s
—au

——

Robot position ||
pos !

M an
.. A
Start position

(a) fhosf (b)
Fig.1. (a) Loop closing: A robot explores an environment and has to decide whether it
returned to the hallway it started in (I) or whether it is in a parallel hallway (I1). (b) Multi-
robot map merging: Two robots built the partial maps (I) and (II) and have to decide whether
they explored an overlapping part of the environmeatwhether they can merge their maps.

or not. To avoid this decision problem, existing approaches to multi-robot mapping

assume knowledge about the robots’ relative start locations. At the minimum, these
techniques require either that one robot is known to start in the map already built by
the other robot [4,15,14] or that there exists an overlap between the maps [3].

If we consider the revisiting problem in a Bayesian context, then to make an
informed decision, we require probabilities for two different hypotheses, one for
the robot moving through area that has already been mapped, and one for the robot
moving through unexplored area. To compute these probabilities, it is necessary
to determine the likelihood of sensor measurements under the two hypotheses.
While it is well-understood how to compute the measurement likelihood in areas
already mapped by a robot, it is not clear how to compute the likelihood of sensor
measurements in areas the robot has not yet explored. Existing approaches to map
building implicitly determine the likelihood for "out of map" measurements under
the assumption that objects are distributed uniforirgythey assign fixed, identical
likelihoods to all observations in unexplored areas [12,11,7,14]. Obviously, such
approaches ignore valuable information since most environments are structured
rather than randomly patched together.

The key contribution of this paper is a method for estimating the probability
of the out-of-map hypothesis. In a nutshell, we construct a structural model of a
typical environment; when the robot is outside the partial map, we use the model to
predict what a typical view would look like, given the robot’s history of observations.
The current observation is then compared against the generated view to compute a
likelihood. More specifically, we introduce a hierarchical Bayesian approach that
captures the structure of an environment by a hidden Markov process that represents
transitions between views of the environment. An offline learning process takes a set
of maps and generates a Dirichlet prior over map structures. The prior is the "typical”
generative map used by the robot at the start of exploration. An adaptation process
refines the model distribution as the robot encounters new views of its environment.

To prove the validity of the approach, we have constructed an efficientimplemen-
tation, using a patrticle filter that derives the likelihoods of the out-of-map hypothesis



under the structural model. Views are discrete features extracted from laser range-
finder scans. Experiments using a multi-robot exploration scenario show that our
technique clearly outperforms alternative approaches to map merging.

This paper is organized as follows. In the next section, we will describe the
Bayesian approach to learning and estimating the structure of environments. Sec-
tion 3 outlines the generative model for map merging. Experiments are described
in Section 4, followed by a discussion.

2 Bayesian Estimation of Map Structures

Our model of map structures is based on the idea that indoor environments consist of
collections of local patches. These patches, especially the way they are connected,
generatesequences of viewabserved by a robot as it moves through an environ-
ment. For example, many indoor environments consist of straight hallways, hallway
crossings, and rooms. These local pieces are not patched together by pure chance,
but rather according to the global structure of the environment. We use discrete,
multinomial distributions to describe the connectivity between the views (patches)
observed by a robot. Before we give the details of our approach, we will review some
properties of Dirichlet distributions, which form the basis for estimating multinomial
distributions (see also [10,9,6] for details).

2.1 Dirichlet Hyperparameters

Assume we want to estimate the parameters of a multinomial distribgtien
(q1,92,---,qn) With n bins. The value of each; gives the probability of biri

and the parameters are constrained to sum up to 1. In Bayesian estimation, these
parameters are treated as random variables and we estimate distributions over their
values. Because of its convenient mathematical propertieBjittohlet distribution

is a standard choice for estimating multinomials. The Dirichlet distribution over
multinomials withn bins is parameterized by a vectar= (a1, as, ..., ay,), with

all componentsy; > 0. These parameters are also callggberparameterssince

they represent distributions over distributions (multinomials in our case). Under a
Dirichlet with parametety, the probability of a multinomiad is given by
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where!” is the gamma distribution. Animportantinference task in our contextis to es-
timate posteriors over multinomiadsgiven frequency countg = (f1, fo, ..., fu).

Each countf; describes how often theth bin of the multinomialy was observed.
Let the prior distribution over multinomialgbe given by a Dirichlet with parameter
a. Then it can be shown that the posterior is Dirichlet with the following parameters:

p(flga)plq|a)
p(f| )
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The property that a Dirichlet priotx along with frequency countg results in a
Dirichlet posterior ovey is also called conjugacy and is one of the key advantages
of Dirichlets for estimating multinomials. Furthermore, (2) shows that the posterior
is given by simply adding the observed frequency counts to the prior. Hence, the
prior can be seen as initial counts in the different bins obselpeddrethe dataf.

The higher the values of the’s, the stronger the prior.e.the more datg is needed

to dominate over the prior.

Another important task is to determine the expected probability of the different
binsi of the multinomial given the prior and the observed data. This value, also called
the posterior predictive distribution, is computed by integrating over all possible
multinomials weighted by their probability.
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The rightmost equation follows from the properties of the Dirichlet. (3) shows that
the predictive probability of bin has an extremely convenient form, since it is
proportional to the number of timésvas observed plus the initial counts provided
by the prior. The denominator is simply a normalizer to ensure that the probabilities
sum up to one. This finalizes the review of Dirichlet distributions and in the next
two sections we will describe how to estimate and learn map structures.

p(i| f,a) = /Dirichlet(q | f+a)gdg = (3)

2.2 Inferring Map Structure

As noted above, we represent the structure of an environment by the way the lo-
cal patches, or views, are observed by a robot moving through the environment.
We assume that a robot can observe a finite numbef distinctive views. The
structure of an environment is captured by v parameters; ;, which describe

the probability of observing view given that the robot previously saw vieiwLet

q); = (q1;, 925> - - - » 4v|;) dENOte the multinomial distribution over views following
view j. The complete structure of an environment is thus represented by a collec-
tion of » multinomial distributionsy, ;, one for each view. Since the structure of an
environment is not directly observable, it has to be estimated from data collected
by a robot. As a robot moves through the environment, it observes a sequence of
views, which results in frequency coutfits = (f1;, fa);5 - - -, fu|;), where eaclf; ;
describes how often the robot observed viesiter observing view 1. We can use
these counts to estimate the parameters of the multinoepial3o do so, let us first
assume that the Dirichlet prioes; = (a1, as;, ..., a,,) for these distributions are
known. Then, given the priat; and the counts§);, the posterior distribution over

qy; is given by (4), which follows directly from (2).

p(qy; |f|;, a;) = Dirichlet(qy; | f}; + ;) 4)

! The robot actually does not observe discrete views, but rather continuous, noisy versions
thereof. We determine the frequency coufits using the views that are most likely to have
generated the observations. See [1] for an approach for partially observable views.



Fig. 2. Hierarchical Bayesian model: The hyperparameteepresents the prior distribution
over maps. The structure of each map is captured by a Dirichlet procedsch describes
how map patches are connected. The Dirichlet processes generatk datpiences of views
observed by a robot during exploration.

The key inference task for addressing the revisiting problemis to use the structural
parameters to predict the next view observed by the robot Ldg¢note the random
variable over views at time Following (3), the predictive distribution far, given
the previous view; 1, the frequency count§; observed so far, and the prior;,
is given by
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As can be seen, the prior and the frequency counts are sufficient statistics for the
predictive distribution. Furthermore, whenever a robot makes an observation in a
new environment, (5) can be updated by simply incrementing the frequency count
fi; of the most recently observed view transition. It remains to be shown how to
determine the Dirichlet priotx over map structures.
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2.3 Learning Prior Map Structure

Estimating a Dirichlet prior over map structures is an important component of
our approach since this prior will be used by a robot when it enters an unknown
environment. We estimate the prior using a hierarchical Bayesian approach [6] based
on data collected in previously encountered environments. The hierarchical Bayesian
model is illustrated in Fig. 2. Shown there are maps of typical indoor environments.
As a robot moves through one of these environments, it observes a sequence of
views d' distributed according to the transition parametgref the map structure.

We assume thatindoor environments are similar in the way their local patches (views)
are connected. This similarity is captured by the common hyperparanagidrich
serves as the prior distribution from which all map structures are drawn. While a full
Bayesian treatment would require to use the data so as to ledistribution over
hyperparametera, we restrict our model to the MAP estimai&:

p(d | @) p(a)
p(d)

*

a* = argmaxp(a | d) = argmax ~ argmaxp(d | a) (6)
« (a3 «



Here the rightmost term follows from a non-informative prior over the hyperpa-
rametera and the fact thap(d) has no impact on the MAP estimate. The data

d = (d',...,d") consists of frequency counts observed inktpeviously explored
maps. More specifically, eaeH containsy x v countsfillj specifying how often

the robot observed a transition from vieito view i in environment.. Assuming
independence between the different maps and between the Dirichlet priors for the
different views, we can maximize (6) over the individual priersas follows:
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The rightmost equation follows by algebraic manipulation using properties of the
Dirichlet distribution [9]. We determine the MAB* by maximizing the log of (7)
using a conjugate gradients method for each compangiisee also [9,10]).

To summarize, the structure of an environment is captured by a collection of
multinomial distributionsy|; describing the sequence of views observed by a robot
as it navigates through the environment. A Dirichlet pioover these structural
parameters is learned from data collected in previously explored environments.
As the robot moves through a new environment, it estimates the posterior over the
structure of this environment. Sufficient statistics for the posterior over multinomials
are given by the Dirichlet prior and the frequency counts of view transitions observed
in the new environment. In the next section we will outline how this predictive model
can be used in the context of multi-robot map merging (our implementation of map
merging is not the main focus of this paper and details can be found in [13,8]).

(7)

3 Application to Multi-robot Map Merging

As described in Section 1, the multi-robot map merging problem is a particularly
difficult instance of the revisiting problem. Imagine two robots exploring an envi-
ronment from different, unknown start locations. As soon as they can communicate
via wireless connection, the robots trydo-locate that is they try to determine the
relative offset between their maps (the robots can not see each other). To do so, one
robot transmits the sensor data it collected so far and the other robot estimates the
location of this robot relative to its own, partial map. The main difficulty of this task

is to determine whether the paths of the robots overlap at all. If the relative offset
between the maps can be established, map merging can be performed by a mapping
algorithm such as [14,7,4,15].

Our approach addresses the co-location problem by estimating the location of a
robot both inside and outside the partial map of the other robot. We do this by using
a particle filter similar to robot localization in complete maps [5]. Particle filters
represent posteriors over a robot's continuous position by%ets {(mf), wﬁ”) |
i=1,...,N} of N weighted samples distributed according to the posterior. Here
eachr,Ei) is arobot position (or state), and t’wé“ are non-negative numerical factors
calledimportance weightswhich sum up to one. Sets at timare generated from



previous setsS; 1 by a sampling procedure often referred to as SISR, sequential
importance sampling with re-sampling. SISR implements the recursive Bayes filter

in a three stage process: First, draw statﬁ%i from the previous sample set with
probability given by the importance weightéi)l. Then draw for each such state a

new state from the motion mode(z; | ngl, u¢—1), Whereu;_; typically describes

an odometry measurement. Finally, weight these new states/samples proportional to
the observation likelihoog(z; | =), which describes the likelihood of observing

the sensor measurementgiven the robot’s location,.

As noted above, we estimate the posterior over robot locatipbsth inside and
outside the partial map (see [8,13] for details). If a particle is inside the partial map,
the likelihood of a measurementcan be computed by comparing the measurement
with the measurement expected at the location in the map (identical to regular robot
localization). If, on the other hand, the particle is outside the partial map, then we
compute the expected observation using the structural model discussed in Section 2.2.
To do so, we extract discrete viewsfrom laser range-scans. These views roughly
correspond to map patches such as hallways, openings, retenfl,3]. At each
iteration, the next view is predicted using the estimate of the previouswiemwand
the view transition given by (5). The transition model is based on the frequency counts
f|; already observed in this environment and the préoyswhich are computed from
previously explored maps by maximization of (7). The likelihood weight for particles
outside the map is then determined by comparing the predicted view to the view
extracted from the current laser measurement.

To summarize, our approach to map merging sequentially estimates a robot’s
location both inside and outside the partial map built by the other robot. Particles
inside the map are updated using expected measurements extracted from the map,
and locations outside the map are updated using measurements predicted by the
structural model. At each iteration, the parameters of the model are updated using
the frequency counts of view transitions extracted from the observations.

4 Experiments

Our technique to map merging under global uncertainty was tested using data col-
lected in the five environments shown in Fig. 2. We generated 15 partial maps
from different environments and estimated the location of a robot relative to these
maps [13]. The relative position was estimated from sensor logs collected in the
same environments. The sensor logs were chosen randomly and some of them had
no overlap with the corresponding partial map at all. For each map-trajectory pair
we proceeded as follows. At each iteration of the particle filter, we determined the
most likely hypothesis for the robot’s location. If the probability of this hypothe-

sis exceeded a certain threshdéldhen this hypothesis was considered valid. For
each threshold, precisionmeasures the fraction of correct valid hypotheses,
hypotheses above the threshold. Correctness is tested by comparing the position of
the hypothesis to a ground truth estimate computed offline. To determine recall, we
first checked at what times the robot was in the partial rigzall then, measures
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Fig. 3. (a) Precisionvs recall: Each point represents an average over 375 pairs of partial
maps and trajectories. Each curve shows the trade-off for different thregh(dd35-0.99).

The dashed lines indicate results obtained with different fixed values(fof outsidg and

the solid line represents the results for our approach. (b) Predictive likelihood of different
approaches averaged over 45 data sequences in three environments.

the fraction of this time for which the approach generated a correct hypothesis,

at the correct position and with probability above the thresi#oldve compared

our approach to an alternative method that usézeal likelihood p(z|outside for
locations outside the partial map (this corresponds to existing mapping techniques).

The precision-recall trade-offs for different threshofdare shown in Fig. 3(a)
(each point represents a different threshold). The solid line represents the results
obtained with our approach and the dashed lines are results for the fixed approach
using different likelihoodo(z|outsidg for measurements outside the maps (data
points are omitted for clarity). The graphs clearly show the superior performance
of our approach. It achieves 26% higher precision than the best likelihood value
for the alternative method. Note that high precision values are more important than
high recalls since low precision results in wrong map merging while low recall only
delays the map merging decision. Note also that one cannot expect very high recall
values since a robot has to be in the partial map for a certain duration before a valid
hypothesis can be generated.

To evaluate the predictive quality of our approach, we used sequences of data
collected in three environments. At each iteration (after approximately 2m of robot
motion), we computed the likelihood of the next view in the data log given the
view prediction of the structural model. The predictive quality is then determined
by accumulating the logarithm of the measurement likelihoods over time. Fig. 3(b)
shows the results for alternative techniques, averaged over 45 data sequences. The
solid line represents the results for our approaghusing (5) to predict the next
view. The dashed line gives the results using our approachyithautupdating the
structural modeli.e. only the Dirichlet prior learned from other maps is used. Even
though the (logarithmic) difference between these top two graphs seems small, the
average likelihood of a complete sensor sequence using our adaptive approach is
approximately 360 times as high as with the prior only approach. This indicates that
it is important to update the structural model during exploration. The dotted line
shows the result if we predict views using the frequency counts of view transitions
observed in the other maps. These predictions are clearly inferior to those of the



Dirichlet prior learned with the hierarchical Bayesian approach (dashed line), which
shows that our learning method improves the performance over straightforward
transition frequency counting. Finally, the dashed-dotted line gives the result based
on frequency counts of individual viewisg. without considering transitions between
views. This graph demonstrates that consideringcthrenectivityof environments

is superior to predicting views simply based on their frequency. These graphs are
averages over different environments. We found our approach to yield much stronger
improvements in more predictable environments such as the rightmost one in Fig. 2.

5 Conclusions and Future Work

In this paper, we introduced a novel approach to addressing the revisiting problem in
mobile robot map building. Multi-robot map merging, a particularly difficult instance

of this problem, requires the localization of one robot relative to a partial map built by
another robot. The key problem in map merging without knowledge about the robots’
relative locations is to get accurate estimates for the likelihoods of observations
outsidethe partial map. To solve this problem, we introduce a structural model of
an environment that can be used to predict the observations made by the robot.
The structural model is a hidden Markov model that generates sequences of views
observed by a robot when navigating through the environment. The parameters of
the model are updated during exploration via Dirichlet hyperparameters. A Dirichlet
prior is learned from previously encountered environments.

The structural model is integrated into a particle filter that uses samples to rep-
resent a robot’s location and that updates the structural parameters as more data
becomes available. Extensive experiments show that our approach clearly outper-
forms alternative techniques. In [8], we additionally show how to integrate this
approach into a multi-robot exploration strategy. The approach enables teams of
robots to efficiently explore environments from different, completely unknown start
locations. The system has been shown to efficiently generate maps that consistently
combine the information collected by multiple robots.

Our Bayesian approach can be readily applied to the loop closing problem in
single robot mapping (see Fig. 1(a)). Here, a robot has to decide whether it came back
to a previously explored location, or whether it moves through a similar, unexplored
area. Especially mapping approaches based on Rao-Blackwellised particle filters [11]
and topological SLAM [2] can easily incorporate our structural model.

Despite these encouraging results, this is only the first step towards using struc-
tural models of environments. For example, our current approach uses maximum
likelihood estimates to update the parameters of the model. More sophisticated EM-
based techniques such as [1] might yield further improvements. Other areas for
improvement are better algorithms for extracting views from sensor data. Another
application of our method is to improve robot exploration strategieprbgicting
partial maps into unexplored areas. Thereby, for example, a robot can actively try to
close loops so as to improve map quality.

We consider hierarchical Bayesian techniques such as the one used in this paper
to be an extremely promising tool for achieving more robust estimation and reasoning
processes in robotics. Most existing approaches to state estimation in robotics are



fixed in that they do not adapt to the environment. For example, if a map building
approach is based on the assumption that the environment is rectilinear, then it will
fail in environments that violate this assumption. On the other hand, not making
use of the fact that most environments are rectilinear obviously discards valuable
information. Using a hyperparameter that models the type of environment, a mapping
approach can work reliably in different types of environments while still being able
to make use of the structure underlying a specific environment.
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