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Abstract

We present an application of hierarchical
Bayesian estimation to robot map building. The
revisiting problemoccurs when a robot has to
decide whether it is seeing a previously-built
portion of a map, or is exploring new territory.
This is a difficult decision problem, requiring the
probability of beingoutsideof the current known
map. To estimate this probability, we model the
structure of a ”typical” environment as a hidden
Markov model that generates sequences of views
observed by a robot navigating through the envi-
ronment. A Dirichlet prior over structural mod-
els is learned from previously explored environ-
ments. Whenever a robot explores a new en-
vironment, the posterior over the model is es-
timated by Dirichlet hyperparameters. Our ap-
proach is implemented and tested in the context
of multi-robot map merging, a particularly dif-
ficult instance of the revisiting problem. Ex-
periments with robot data show that the tech-
nique yields strong improvements over alterna-
tive methods.

1 Introduction

Building maps of unknown environments is one of the fun-
damental problems in mobile robotics. As a robot explores
an unknown environment, it incrementally builds a map
consisting of the locations of objects or landmarks. Typ-
ically, as it explores larger areas, its uncertainty relative to
older portions of the map increases; for example, in closing
a large loop. Thus, a key problem is determining whether
the current position of the robot is in an unexplored area or
in the already-constructed map (therevisiting problem).

The revisiting problem for single robots is illustrated in
Fig. 1(a). Shown there is a map built by a robot during
exploration. The robot started in the lower right hallway

and moved clockwise around the large loop. At the end,
it moves down the right hallway, but due to the accumu-
lated uncertainty in its own position, it can not determine
whether it is in the same hallway as in the beginning or
whether it is in a parallel hallway.

Multiple robots exploring the same environment from un-
known start locations face a particularly difficult instance
of the revisiting problem. For coordinated exploration, the
robots have to merge their maps so as to build a shared
world model. Map merging requires the determination of
the robots’ relative location. Consider the situation shown
in Fig. 1(b). Here, two robots have explored parts of the
large environment shown below. In order to merge the
partial maps, they have to determine whether they visited
the same locations in the environment and if so, they have
to determine the offset between their maps. The diffi-
culty of this problem lies in the first step,i.e. in decid-
ing whether there is an overlap between the two maps or
not. To avoid this decision problem, most existing ap-
proaches assume knowledge about the robots’ relative start
locations [5, 15, 14]. At the minimum, these techniques
require that one robot is known to start in the map already
built by the other robot.

If we consider the revisiting problem in a Bayesian context,
then to make an informed decision, we require probabili-
ties for two different hypotheses, one for the robot moving
through area that has already been mapped, and one for the
robot moving through unexplored area. While it is well-
understood how to compute the likelihood of sensor mea-
surements in areas already mapped by a robot, this problem
additionally requires to compute the likelihood of sensor
measurements in areas the robot has not yet explored. Vir-
tually all existing approaches to map building implicitly de-
termine the likelihood for ”out of map” measurements un-
der the assumption that objects are distributed uniformly,
i.e. they assign fixed, identical likelihoods to all observa-
tions in unexplored areas [13, 4, 12, 8]. However, such ap-
proaches ignore valuable information since most environ-
ments are structured rather than randomly patched together.

The key contribution of this paper is a method for estimat-
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Figure 1: (a) Loop closing: A robot explores an environment
and has to decide whether it returned to the hallway it started in
(I) or whether it is in a parallel hallway (II). (b) Multi-robot map
merging: Two robots built the partial maps (I) and (II) and have
to decide whether they explored an overlapping part of the envi-
ronment,i.e.whether they can merge their maps or not.

ing the probability of the out-of-map hypothesis1. In a
nutshell, we construct a structural model of a typical en-
vironment; when the robot is outside the partial map, we
use the model to predict what a typical view would look
like, given the robot’s history of observations. The current
observation is then compared against the generated view to
compute a likelihood.

More specifically, we introduce a hierarchical Bayesian ap-
proach that captures the structure of an environment by a
hidden Markov process that represents transitions between
views of the environment. An offline learning process takes
a set of maps and generates a Dirichlet prior over map
structures. The prior is the ”typical” generative map used
by the robot at the start of exploration. An adaptation pro-
cess refines the model distribution online, as the robot en-
counters views of its environment.

To prove the validity of the approach, we have constructed
an efficient implementation, using a particle filter that de-
rives the likelihoods of the out-of-map hypothesis under
the structural model. Views are discrete features extracted
from laser range-finder scans. Experiments using a multi-
robot exploration scenario show that our technique clearly
outperforms alternative approaches to map merging.

This paper is organized as follows. In the next section, we
will describe the Bayesian approach to learning and esti-
mating the structure of environments. Section 3 presents
the generative model for partial map merging and imple-
mentational details are given in Section 4. Experiments are
described in Section 5, followed by a discussion.

2 Hierarchical Model for Map Structures

Our model of map structures is based on the idea that in-
door environments consist of collections of local patches.

1In the context of hypothesis testing, for example, this proba-
bility can be used to evaluate the null hypothesis for the question,
”Am I in this previously mapped area?”.
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Figure 2:Hierarchical Bayesian model: The hyperparameterα

represents the prior distribution over maps. The structure of each
map is captured by a Dirichlet processql describing how map
patches are connected. The Dirichlet processes generate datadl,
sequences of views observed by a robot during exploration.

These patches, especially the way they are connected, gen-
eratesequences of viewsobserved by a robot as it moves
through an environment. For example, many indoor envi-
ronments consist of straight hallways, hallway crossings,
and rooms. These local pieces are not patched together by
pure chance, but rather according to the global structure of
the environment. For instance, while there is no surprise
if a robot observes a straight hallway piece directly after
another straight hallway piece, it is rather uncommon to
observe two hallway crossings next to each other.

The hierarchical Bayesian model for map structures is il-
lustrated in Fig. 2. Shown there are maps of typical indoor
environments. Each map generates sequences of viewsdl

distributed according to the transition parametersql of the
map structure. All maps share a common hyperparameter
α that serves as a prior distribution from which the different
map structures are drawn. The key idea of our hierarchical
approach is to learn this hyperparameterα based on a col-
lection of previously encountered maps. Whenever a robot
explores a new environment, it can then useα as aprior
for the structure of this new environment. The estimate of
the structure is updated as the robots observes data in the
new environment.

More specifically, we assume that a robot can observe a
finite numberν of distinctive views. The structure of an
environment is captured by parametersqi|j , 1 ≤ i, j ≤ ν,
which describe the probability of observing viewi given
that the robot previously saw viewj. Let q|j denote the
multinomial distribution over views following viewj. The
complete structure of an individual environmentl is thus
represented by a collection ofν multinomial distributions
q|j . The model priorα is aν×ν matrix, where eachαj =
〈α1j

, α2j
, . . . , ανj

〉 serves as a conjugate Dirichlet prior for
the multinomialq|j .

2.1 Inference

Let us first describe how to update the map structure param-
eters based on observations made during exploration of an



environment. To do so, we assume that the priorsαj over
model parameters are known. As a robot moves through
the environment, it makes a sequence of observations, de-
noted byz1:t. We make the simplifying assumption that
it is possible to extract from such an observation sequence
frequency countsfi|j , which describe how often the robot
observed viewi after observing viewj 2. Correspondingly,
f|j = 〈f1|j , f2|j , . . . , fν|j〉 denotes the vector of frequency
counts following viewj. Given the Dirichlet priorαj and
the countsf|j up to timet, the posterior distribution over
q|j is Dirichlet with parametersαj + f|j [7]:

p(q|j |αj , f|j) ∼ Dirichlet(αj + f|j) (1)

The posterior predictive probability that viewi follows
view j can be determined by integrating over the posterior
of the transition probabilitiesq|j :

p(vt = i | vt−1 =j, αj , f|j) =

∫
p(q|j |αj , f|j) qi|j dq|j

=

∫
Dirichlet(q|j | αj + f|j) qi|j dq|j

=
αij + fi|j∑
i′ αi′j + fi′|j

, (2)

where (2) follows from the properties of the Dirichlet dis-
tribution [10]. Thus, the prior and the frequency counts
are sufficient statistics for the posterior over the parameters
of our structural model. The individualαij

’s are often re-
ferred to as prior samples, since they serve as initial counts
added to the observed frequenciesfi|j .

As can be seen, whenever a robot makes an observation
in the new environment, the posterior over the structural
model is updated by simply incrementing the frequency
countfi|j of the most recently observed view transition.

2.2 Learning Priors Over Map Structures

It remains to be shown how to learn the prior for transitions
between views. To do so, we use datad collected in typ-
ical indoor environments previously explored by a robot.
While a full Bayesian treatment would require to learn a
distribution over hyperparametersα = 〈α1,α2, . . . ,αν〉,
we restrict our model to the MAP estimateα∗:

α∗ = argmax
α

p(α | d) =
p(d | α) p(α)

p(d)
≈ p(d | α) (3)

Here the rightmost term follows from a uniform prior over
the hyperparameterα and the fact thatp(d) has no impact
on the MAP estimate. The datad = 〈d1, . . . , dk〉 consists
of frequency counts observed in thek previously explored
maps. Assuming independence between the different maps

2Note that the robot actually does not observe discrete views,
but rather continuous, noisy versions thereof. In our approach,
we determine the frequency countsfi|j using the views that are
most likely to have generated the observations. See [1, 16] for
approaches dealing with partially observable views.

and between the individual Dirichlet priors, we can maxi-
mize (3) over the individual priorsαj . A rather straight-
forward derivation similar to [10] shows that the likelihood
functionp(d | αj) is given by

p(d | αj) =
∏

l=1,...,k

∏
i Γ(f l

i|j + αij
)Γ(ᾱj)

Γ(f̄ l
|j + ᾱj)

∏
i Γ(αij

)
, (4)

whereΓ is the gamma distribution,f l
i|j denotes how often

view i follows viewj in the data observed in mapl, andf̄ l
|j

andᾱj are the sums over allf l
i|j andαij

, respectively. The
MAP α∗ can be found by maximizing the log of (4) using
a conjugate gradients method (see also [10, 11]).

To summarize, the structure of an environment is captured
by a collection of multinomial distributionsq|j describ-
ing the sequence of views observed by a robot as it nav-
igates through the environment. A Dirichlet priorα over
these structural parameters is learned from data collected
in previously explored environments. As the robot moves
through a new environment, it estimates the posterior over
the structure of this environment. Sufficient statistics for
the posterior over multinomials are given by the Dirichlet
prior and the frequency counts of view transitions observed
in the new environment. In the next section we show how
this predictive model can be used in the context of multi-
robot map merging.

3 Generative Model for Map Merging

As described in Section 1, the multi-robot map merging
problem is a particularly difficult instance of the revisiting
problem. Imagine two robots exploring an environment
from different, unknown start locations. As soon as they
can communicate via wireless connection, the robots try to
determine whether they can merge their maps by estimating
the relative offset between the maps (the robots can not see
each other). To do so, one robot transmits the sensor data
it collected so far and the other robot estimates the location
of this robot relative to its own, partial map. Once the rel-
ative offset between the maps is determined, map merging
can be performed by a mapping algorithm such as [14].

Existing approaches to map merging assume knowledge
about the robots’ relative start locations [5, 15, 14]. At the
minimum, these techniques require that one robot is known
to start in the map built by the other robot. In this case, map
merging can be solved by localizing one robot in the other
robot’s map using a localization approach capable of global
localization [6]. To the best of our knowledge, map merg-
ing has not been addressed for completely unknown start
locations including a chance that the partial maps do not
overlap at all. Since the map merging problem is closely
related to robot localization, we start with a brief discus-
sion of Bayes filters for localization.



3.1 Bayes Filters for Robot Localization

Consider the recursive Bayes filter, which underlies virtu-
ally all probabilistic robot localization techniques [6]:

p(xt | z1:t, u1:t−1) ∝ p(zt | vxt) ·∫
p(xt | xt−1, ut−1) p(xt−1 | z1:t−1, u1:t−2) dxt−1. (5)

Herext denotes the position of the robot at timet, typically
given in continuous two-dimensional Cartesian coordinates
and orientation.z1:t is the history of all sensor measure-
ments obtained up to timet, andu1:t−1 is the control in-
formation. In robot localization the termp(xt |xt−1, ut−1)
is a probabilistic model of robot motion.vxt

denotes the
expectedview, or observation, given a map of the envi-
ronment and the robot’s locationxt therein. p(zt | vxt

)
describes the likelihood of making observationzt given
that the robot is expected to observe viewvxt . In a nut-
shell, the Bayes filter recursively updates a posterior over
the robot’s location whenever the robot moves or new sen-
sor information is available. Sensor observationszt are in-
corporated by multiplying the probability of each location
with the likelihoodp(zt | vxt) of making the observation
at this location. Observations are typically obtained from a
robot’s cameras, ultrasound sensors, or laser range-finders.
Posteriors over robot locations can be represented by (mix-
tures of) Gaussians, discrete grids, or samples drawn from
the posterior (see [6] for a discussion). In our experiments
we use data collected by a laser range-finder and a sample-
based posterior representation.

3.2 Partial Map Localization

The Bayes filter described above assumes that a complete
map of an environment is known. In the context of esti-
mating a robot’s location relative to apartial map, loca-
tionsxt can be both inside and outside the map. This raises
the question of how to determine the expected viewvxt for
positionsoutsidethe partial map,i.e. in unexplored areas.
Existing approaches to map merging assume that views are
uniformly distributed throughout the environment. Such
an approach corresponds to using a fixed likelihood for
all observationszt made at locationsxt outside the partial
map. Obviously, this technique ignores valuable informa-
tion about the structure of an environment and results in
brittle estimates for map merging.

We will now show how to use the structural model de-
scribed in Section 2 to estimate the likelihood of observa-
tions outside a partial map. The generative model for our
technique is shown in Fig. 3. Here,xt denotes the posi-
tion of the other robot in the partial map at timet (xt is
not restricted to positions within the partial map). Just as
in regular robot localization, the robot’s positionxt solely
depends on its previous position and the controlut−1. The
position determines the expected viewvt, which itself gen-
erates a noisy observationzt. If xt is inside the partial map,

v t−1
v t

z t

x t−1 x t

q tq t−1

u t−1

z t−1

Figure 3: Generative model for partial map localization. The
hyperparameterqt estimates the structure of the environment and
emits transition probabilitiesp(vt | vt−1). Depending on whether
the robot is inside or outside the partial map, views are generated
by the structural model or the partial map.

thenvt can be extracted deterministically from the map. If,
however,xt is outside the explored area, thenvt is not di-
rectly observable and has to be extracted from the structural
model of the environment. This model is estimated by the
structural parameterqt, as described in the previous sec-
tion. The key idea of our hierarchical model is that the node
qt outputs transition probabilitiesp(vt = i | vt−1 = j) for
views according to (2). These transitions can be used to
predict the expected view at timet. 3 According to the
model shown in Fig. 3, the posterior over the robot’s loca-
tion xt is given by

p(xt | z1:t, u1:t−1) ∝∑
vt,vt−1

∫ ∫ ∫
p(zt |vt) p(vt |qt, xt, vt−1)p(qt |qt−1, vt−1) ·

p(xt |xt−1, ut−1) p̃(xt−1) p̃(vt−1) p̃(qt−1) dqtdqt−1dxt−1(6)

wherep̃(·) is short forp(· | z1:t−1, u1:t−2). This equation
can be simplified significantly if we split the update into
two different cases, one for locations inside and one for
locations outside the partial map. We will now discuss the
two cases.

Locations inside the partial map: If xt is in the partial
map, then the expected viewvt is uniquely determined by
xt and the partial map,i.e. p(vt | qt, xt, vt−1) becomes a
Dirac delta function atvt = vxt

. Accordingly, the sum-
mation overvt andvt−1 and the integrations overqt and
qt−1 collapse and, not surprisingly, it can be shown that (6)
becomes identical to the Bayes filter update rule for robot
localization in complete maps given in (5).

Locations outside the partial map: In this case it is not
possible to extract the expected view from the partial map.
Rather,vt has to be predicted using the previous viewvt−1

and the structural model encoded inqt. We make the

3Obviously, the transitions betweenvt−1 andvt also depend
on how far the robot moved. In our current implementation we
update the view whenever the robot moved two meters, which
makes the transition probabilities sufficiently stable.



assumption that for locations outside the partial map,vt

is independent of the actual locationxt (it only depends
on the previous view and the structure). Thus, the term∫ ∫

p(vt | qt, xt, vt−1)p(qt | qt−1, vt−1)p̃(qt−1)dqtdqt−1

in (6) can be solved analytically for our Dirichlet model
described in Section 2.1. As shown in (1), the posterior
over the structural parameterqt can be computed by incre-
menting the transition frequency count of the most recently
observed view transition. The views used for the transi-
tion counts are those that are most likely to have generated
the raw observationszt−1 andzt. Onceqt is updated, the
predictive probability forvt is computed by normalization
of the obtained counts, as given in (2). To emphasize the
simplicity of these update steps, we replace the double inte-
gration term byp(vt |vt−1,α,f t), whereα andf t are the
Dirichlet prior and the frequency counts used for the pos-
terior over the map structure at timet. These modifications
yield the following, more simple update rule for locations
outside the partial map.

p(xt | z1:t, u1:t−1) ∝
∑

vt,vt−1

∫
p(zt |vt) p(vt |vt−1, α, f t) ·

p(xt |xt−1, ut−1) p̃(xt−1) p̃(vt−1) dxt−1 (7)

To summarize, the key idea of our approach to map merg-
ing is to sequentially estimate a robot’s location both inside
and outside the partial map built by the other robot. Lo-
cations inside the map are updated using (5) and locations
outside the map are updated based on (7). To estimate the
likelihood of observations outside the map, the technique
estimates a structural parameterqt along with the robot’s
location. At each iteration, this parameter is updated us-
ing the frequency counts based on the most likely views
extracted from the observations.

4 Implementation

4.1 Particle filter for partial map localization

The generative model for map merging is implemented us-
ing a particle filter [6, 3]. A detailed description of this
implementation can be found in [9]. Particle filters repre-
sent posteriors over a robot’s continuous position by sets
St = {〈x(i)

t , w
(i)
t 〉 | i = 1, . . . , N} of N weighted sam-

ples distributed according to the posterior. Here eachx
(i)
t

is a sample (or state), and thew(i)
t are non-negative nu-

merical factors calledimportance weights, which sum up
to one. Sets at timet are generated from previous sets
St−1 by a sampling procedure often referred to as SISR, se-
quential importance sampling with re-sampling [3]. SISR
implements the recursive Bayes filter update rule (5) in a
three stage process: First, draw statesx

(i)
t−1 from the pre-

vious sample set with probability given by the importance
weightsw

(i)
t−1, then draw for each such state a new state

from the predictive distributionp(xt | x
(i)
t−1, ut−1), and fi-

nally weight these new states/samples proportional to the
observation likelihoodp(zt | vxt

). The last step, impor-
tance sampling, adjusts for the fact that samples are not
drawn from the actual posterior distribution but from the
predictive distribution.

The generative model for map merging described in the
previous section requires to estimate the posterior over
robot locations both inside and outside the partial map. We
assume that the size of the area outside the partial map can
be set based on an estimate of the total size of the environ-
ment. Clearly, a representation of all locations outside the
map would require too many samples for online estimation.
Our solution to this problem is based on the idea that, along
with its history, a sample can be seen as the end point of a
robot trajectory. This allows us represent only those sam-
ples (trajectories) for which the robot was inside the partial
map at some point in time. To do so, our approach initially
generates samples uniformly distributed inside the partial
map. At later iterations, samples enter and exit the map, de-
pending on their location and the robot’s motion (see [9]).
At each iteration, the samples inside the map are weighted
by p(zt | vxt

), i.e. likelihood of the observation given the
robot’s position in the partial map. All samples outside the
partial map are weighted byp(zt | outside), the likelihood
of the observation computed from the structural model:

p(zt | outside)∝
∑

vt,vt−1

p(zt |vt) p(vt |vt−1, α, f t)p̃(vt−1) (8)

This term for the importance weight follows directly
from (7). The structural parameterqt and the distribution
over viewsvt is updated as described in Section 2. After
each iteration, the samples represent a robot’s location rel-
ative to the partial map built by another robot. Each sample
along with its history represents a unique match between
the partial maps built by the two robots. Once a match with
sufficiently high probability is found, map merging can be
performed by a mapping algorithm such as [14]. The par-
tial map localization algorithm is highly efficient and can
be computed in real time on a state-of-the-art laptop.

4.2 View extraction

To test our approach using data collected by real robots we
have to extract discrete views from sensor data. Since this
is not the current focus of our work, we implemented a
rather simple technique that extracts structural information
from laser range-scans. To do so, the approach sequen-
tially evaluates the individual beams of a laser scan and
checks for differences between neighboring beams. De-
pending on their relationship, consecutive beams are clus-
tered into groups denotedw,g,m , andc . Groupw(for wall
or flat obstacle) is assigned to groups of beams for which all
neighboring beams measure similar distances,g for large
gaps between two beams,mfor max range readings, andc
for corners (based on lines extracted from the scan). Thus
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Figure 5:Learned models: (a) Observation model. (b)–(d) View transitionsq. They-axes represent viewsvt−1 and thex-axes give the
following view vt. Shown are only the 15 most frequent views, higher probabilities are darker. (b) Priorα extracted from all maps, (c)
posterior for map 4, and (d) posterior for mapk in Fig. 2.
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Figure 4:Two laser scans corresponding to the most frequently
observed views. The robot is on the left side moving to the right.
(a) wmw, is typically observed when a robot moves down a hall-
way. (b)wmwgw, indicates that the robot approaches an opening
(gap) on its left.

each laser scan is represented as a string of these four let-
ters. Fig. 4 shows two example laser scans along with the
corresponding feature strings (counterclockwise).

The key advantage of this model is that it is extremely ro-
bust in capturing the main structural elements of an envi-
ronment such as hallways, junctions, rooms, and corners.
Furthermore, the detected features are robust with respect
to rescaling (e.g.different widths of hallways). A disadvan-
tage of these views is that they do not provide accurate loca-
tion information. We overcome this problem by weighting
samples inside the partial map using the raw laser scans,
which provide highly accurate location information [6].
This technique has no impact on our solution to the revisit-
ing problem, since these samples are still weighted against
samples outside using the views as described in the previ-
ous section.

The parameters of the model were hand-tuned so as to get
satisfying results. After merging symmetric views, in the
35,000 laser scans collected in the environments shown
in Fig. 3, onlyν = 37 different scan “strings” occurred.

5 Experiments

The experiments were carried out using data collected in
the five environments shown in Fig. 3.

5.1 Learning structural models

To learn structural models, we used 35,000 pairs of con-
secutive views (strings) collected by mobile robots when
mapping the different environments. The parameters of the
learned modes are shown in Fig. 5. Each graph plots the

probability matrix for the 15 most frequent views. These
15 views cover approximately 80% of all observed scans.
View 1 and 2 are the stringswmwandwmwgw, illustrated
in Fig. 4(a) and (b), respectively. Fig. 5(a) shows the obser-
vation modelp(zi|vj) extracted from the data. This model
was learned using the same hierarchical approach as the
one described in Section 2.2 for map structures. In this
context the hyperparameters smooth the extracted counts
of p(zi|vj). The high probabilities on the diagonal indicate
that our view extraction is very robust. The prior transition
modelα extracted from all maps is shown in Fig. 5(b). Not
surprisingly, most views have a high probability to transi-
tion to the hallway view 1, since the training environments
contain many long corridors. When comparing the poste-
riors shown in Fig. 4(c) and (d), it becomes clear that the
approach was able to extract the fact that environment4 has
far less hallways than environmentk in Fig. 2.

5.2 Partial map localization

We systematically evaluated our approach to map merg-
ing under global uncertainty using the following scenario.
Imagine two robots are placed at random locations in an
unknown environment. Both robots start to explore the en-
vironment and at some point they can communicate. At
that point, one robot localizes the other robot in its own
map so as to determine whether there is an overlap be-
tween the two maps. We generated 15 partial maps based
on data collected in the three environments labeled 2, 4, and
k in Fig. 2. Some of these maps are shown in Fig. 6. In our
scenario, one robot used these partial maps to localize the
other robot based on data collected in the same environ-
ment. For each environment, we generated a prior struc-
tural modelα based on the other environments only. The
data of the other robot consisted of 25 data sequences for
each environment, resulting in a total of5 · 25 = 125 map-
trajectory pairs for each environment. The results given be-
low are averaged over the average performances in the three
different environments. For each pair we proceeded as fol-
lows. LetA denote the robot with the partial map andB the
other robot. At each iteration of the particle filter, robotA
determines the probability of the most likely hypothesis for
B’s position in its map.A considers a hypothesis to be valid
if its probability exceeds a certain thresholdθ.

The solid line in Fig. 7 shows the resulting precision-recall



Figure 6:Partial maps used for evaluation of map merging. The maps were taken from three different environments. In each experiment,
one robot built such a partial map and receives data from another robot collected in the same environment. The robot has to determine
when and if so where the other robot is in its partial map.
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Figure 7:Precisionvs. recall: Each point represents an average
over 375 pairs of partial maps and trajectories. Each curve shows
the trade-off for different thresholdsθ (0.05-0.99). The dashed
lines indicate results obtained with different fixed values forp(z |
outside) and the solid line represents the results of our approach.

trade-off for different thresholds using our approach (each
point on the line represents a different threshold). For each
thresholdθ, precisionmeasures the fraction of the correct
matches among those hypotheses that are considered valid,
i.e. above the threshold. Correctness is tested by compar-
ing the position of the hypothesis to a ground truth estimate
computed offline. To determine recall, we first checked at
what times robotB was in robotA’s partial map. Recall,
then, measures the fraction of this time for which robot
A generated a correct hypothesis,i.e. at the correct posi-
tion and with probability above the thresholdθ. To show
the advantage of our approach, we compared it to an al-
ternative method that uses afixed likelihood p(zt|outside)
for locations outside the partial map (compare to (8) for
our approach). The trade-offs resulting from different fixed
likelihoods are plotted as dashed lines in Fig. 7 (data points
are omitted for clarity). The graph clearly shows the supe-
rior performance of our approach. It achieves 26% higher
precision than the best likelihood value for the alternative
method. Note that high precision values are more impor-
tant than high recalls since low precision results in wrong
map merges while low recall only delays the map merging
decision. Note also that one cannot expect very high re-
call values since robotB has to be in the partial map for a
certain duration before a valid hypothesis can be generated.

Fig. 8 shows the same evaluation for different ways of up-
dating and learning map structures. The dashed line de-
noted by “Frequency” represents the results obtained with-
out considering the transition model for views. This ap-
proach uses frequency counts obtained from the training
maps to compute the likelihoodp(zt|outside) of a view.
This likelihood is computed by dividing the number of
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Figure 8: Precisionvs. recall for different adaptive techniques.
The black, dashed line is obtained when using pure frequency
counts for the individual features.

times this view was observed in the training data by the
total number of observations. The bad performance of this
method confirms our belief that it is crucial to consider the
connective structureof environments as modeled by our
Dirichlet process. The dotted line represents the results ob-
tained without updating the structural parameterq during
map merging,i.e. qt is set to the priorα. It can be seen
that adjusting the estimation process during map merging
increases the robustness of the approach. Finally, the short
dashed, best curve shows a variant of our hierarchical ap-
proach that weights the observed frequencies proportional
to the ratio between the size of the partial map and the size
of the entire environment. In essence, this approach extrap-
olates the observations made in the partial map assuming
that the unexplored areas have the same structure.

In these experiments we only tested the quality of the es-
timation process underlying the decision problem in multi-
robot map merging. Our current project aims to field 100
robots in an indoor exploration and reconnaissance task.
To achieve maximum robustness against false positive map
merges, our multi-robot control system additionally veri-
fies the hypotheses generated by the partial localization ap-
proach described here. Robots verify a match hypothesis
by meeting at a location that follows from the hypothesis.
The integration of this approach into a decision-theoretic
robot exploration strategy is described in [9].

6 Conclusions and Future Work
In this paper, we introduced a novel approach to addressing
the revisiting problem in mobile robot map building. Multi-
robot map merging, a particularly difficult instance of this
problem, requires the localization of one robot relative to
a partial map built by another robot. The key problem in



map merging without knowledge about the robot’s relative
locations is to get accurate estimates for the likelihoods of
observationsoutsidethe partial map. To solve this problem,
we introduce a structural model of an environment that can
be used to predict the observations made by the robot. The
structural model is a hidden Markov model that generates
sequences of views observed by a robot when navigating
through the environment. The parameters of the model are
updated during exploration via Dirichlet hyperparameters.
A Dirichlet prior is learned from previously encountered
environments.

The structural model is integrated into a particle filter that
uses samples to represent a robot’s location and that up-
dates the structural parameters as more data becomes avail-
able. Extensive experiments show that our approach sig-
nificantly outperforms an alternative technique that uses a
fixed likelihood for observations outside the partial map.
We were not able to find a likelihood that yielded results
comparable to our method.

The approach presented here can be readily applied
to the loop closing problem in single robot mapping
(see Fig. 1(b)). Here, a robot has to decide whether it
came back to a previously explored location, or whether it
moves through a similar, unexplored area. Especially map-
ping approaches based on Rao-Blackwellised particle fil-
ters [2, 12, 4] can easily incorporate our structural model.
Just like in multi-robot map merging, the model can then
be used to assign appropriate probabilities to location hy-
potheses (particles) in unexplored areas.

Despite these encouraging results, this is only the first step
towards using structural models of environments. For ex-
ample, our current approach uses maximum likelihood esti-
mates to update the parameters of the model. More sophis-
ticated EM-based techniques such as [1, 16] might yield
further improvements. Other areas for improvement are
better algorithms for extracting views from sensor data.
Another application of our method is to improve robot ex-
ploration strategies by predicting partial maps into unex-
plored areas. Thereby, for example, a robot can actively try
to close loops so as to improve map quality.

We consider hierarchical Bayesian techniques such as the
one used in this paper to be an extremely promising tool for
achieving more robust estimation and reasoning processes
in robotics. Most existing approaches to state estimation
in robotics are fixed in that they do not adapt to the envi-
ronment. For example, if a map building approach is based
on the assumption that the environment is rectilinear it will
fail in environments that violate this assumption. On the
other hand, not making use of the fact that most environ-
ments are rectilinear obviously discards valuable informa-
tion. Using a hyperparameter modeling the type of environ-
ment, a mapping approach would work reliably in different
types of environments while still being able to make use of
the structure underlying a specific environment.
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