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Abstract

We present an application of hierarchical
Bayesian estimation to robot map building. The
revisiting problemoccurs when a robot has to
decide whether it is seeing a previously-built
portion of a map, or is exploring new territory.
This is a difficult decision problem, requiring the
probability of beingoutsideof the current known
map. To estimate this probability, we model the
structure of a "typical” environment as a hidden
Markov model that generates sequences of views
observed by a robot navigating through the envi-
ronment. A Dirichlet prior over structural mod-
els is learned from previously explored environ-
ments. Whenever a robot explores a new en-
vironment, the posterior over the model is es-
timated by Dirichlet hyperparameters. Our ap-
proach is implemented and tested in the context
of multi-robot map merging, a particularly dif-
ficult instance of the revisiting problem. Ex-
periments with robot data show that the tech-
nigue yields strong improvements over alterna-
tive methods.
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and moved clockwise around the large loop. At the end,
it moves down the right hallway, but due to the accumu-
lated uncertainty in its own position, it can not determine
whether it is in the same hallway as in the beginning or
whether it is in a parallel hallway.

Multiple robots exploring the same environment from un-
known start locations face a particularly difficult instance
of the revisiting problem. For coordinated exploration, the
robots have to merge their maps so as to build a shared
world model. Map merging requires the determination of
the robots’ relative location. Consider the situation shown
in Fig. 1(b). Here, two robots have explored parts of the
large environment shown below. In order to merge the
partial maps, they have to determine whether they visited
the same locations in the environment and if so, they have
to determine the offset between their maps. The diffi-
culty of this problem lies in the first stepe. in decid-

ing whether there is an overlap between the two maps or
not. To avoid this decision problem, most existing ap-
proaches assume knowledge about the robots’ relative start
locations [5, 15, 14]. At the minimum, these techniques
require that one robot is known to start in the map already
built by the other robot.

If we consider the revisiting problem in a Bayesian context,
then to make an informed decision, we require probabili-
ties for two different hypotheses, one for the robot moving
through area that has already been mapped, and one for the
robot moving through unexplored area. While it is well-

Building maps of unknown environments is one of the fun-understood how to compute the likelihood of sensor mea-
damental problems in mobile robotics. As a robot exploresurements in areas already mapped by a robot, this problem
an unknown environment, it incrementally builds a mapadditionally requires to compute the likelihood of sensor
consisting of the locations of objects or landmarks. Typ-measurements in areas the robot has not yet explored. Vir-
ically, as it explores larger areas, its uncertainty relative tdually all existing approaches to map building implicitly de-
older portions of the map increases; for example, in closingermine the likelihood for "out of map” measurements un-

a large loop. Thus, a key problem is determining whetheder the assumption that objects are distributed uniformly,
the current position of the robot is in an unexplored area oi.e. they assign fixed, identical likelihoods to all observa-
in the already-constructed map (tlewisiting problen). tions in unexplored areas [13, 4, 12, 8]. However, such ap-
proaches ignore valuable information since most environ-

The revisiting problem for single robots is illustrated in ments are structured rather than randomly patched together.

Fig. 1(a). Shown there is a map built by a robot during
exploration. The robot started in the lower right hallway The key contribution of this paper is a method for estimat-
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Figure 1. (a) Loop closing: A robot explores an environment o esents the prior distribution over maps. The structure of each
and has to decide whether it returned to the hallway it started i%ap is captured by a Dirichlet procegsdescribing how map
(1) or whether itis in a parallel hallway (If). (b) Multi-robot map  y¢ches are connected. The Dirichlet processes generaté; data
merging: Two robots built the partial maps (1) and (1) and have seqences of views observed by a robot during exploration.
to decide whether they explored an overlapping part of the envi-
ronment,.e. whether they can merge their maps or not. These patches, especially the way they are connected, gen-
. o ) eratesequences of viewabserved by a robot as it moves
ing the probability of the out-of-map hypothesis I,n a through an environment. For example, many indoor envi-
n.utshell, we construct a str.uctural' model of a typical €N ronments consist of straight hallways, hallway crossings,
vironment; when the rqbot IS out5|de_ the partlal Map, Weand rooms. These local pieces are not patched together by
use the model to predict what a typical view would 00k 16 chance, but rather according to the global structure of
like, given th.e robot's histary of ob_servauons. The Currentine environment. For instance, while there is no surprise
observation is then compared against the generated view {0, o0t observes a straight hallway piece directly after

compute a likelihood. another straight hallway piece, it is rather uncommon to
More specifically, we introduce a hierarchical Bayesian ap-observe two hallway crossings next to each other.

proach that captures the structure of an environment by &y,q pierarchical Bayesian model for map structures is il-
hlldden Markov process that represents tr_ansmons betweq[]strated in Fig. 2. Shown there are maps of typical indoor
views of the environment. An offline !e_arnlng process takesenvironments. Each map generates sequences of views

a set of maps a”?' g.enera'aes a D"II’IChlet prior OVer MaRyisiribyted according to the transition parametgrsf the
structures. The prior is the typlca_l generative map use%ap structure. All maps share a common hyperparameter
by the robot at the start of exploration. An adaptation pro-, ¢ serves as a prior distribution from which the different
cess refmgs the mpdel Q|str|but|on online, as the robot enl'nap structures are drawn. The key idea of our hierarchical
counters views of its environment. approach is to learn this hyperparametebased on a col-

To prove the validity of the approach, we have constructedection of previously encountered maps. Whenever a robot
an efficient implementation, using a particle filter that de-explores a new environment, it can then us@s aprior

rives the likelihoods of the out-of-map hypothesis underfor the structure of this new environment. The estimate of
the structural model. Views are discrete features extractethe structure is updated as the robots observes data in the
from laser range-finder scans. Experiments using a multinew environment.
robot exploration scgnario show that our techniql_Je clearly ;e specifically,
outperforms alternative approaches to map merging.

we assume that a robot can observe a
finite numberv of distinctive views. The structure of an
This paper is organized as follows. In the next section, weenvironment is captured by parametefg, 1 <i,j <v,

will describe the Bayesian approach to learning and estiwhich describe the probability of observing viewgiven
mating the structure of environments. Section 3 presentthat the robot previously saw viey Let q|; denote the

the generative model for partial map merging and imple-multinomial distribution over views following viey. The
mentational details are given in Section 4. Experiments aréomplete structure of an individual environmeris thus

described in Section 5, followed by a discussion. represented by a collection efmultinomial distributions
qj;- The model priokx is av x v matrix, where each; =
2 Hierarchical Model for Map Structures (a1;,az,,..., a,,) serves as a conjugate Dirichlet prior for

the multinomialq) ;.
Our model of map structures is based on the idea that in-

door environments consist of collections of local patcheszl1 Inference

In the context of hypothesis testing, for example, this proba- . .
bility can be used to evaluate the null hypothesis for the questionL-€t Us first describe how to update the map structure param-
"Am | in this previously mapped area?”. eters based on observations made during exploration of an



environment. To do so, we assume that the prioyover  and between the individual Dirichlet priors, we can maxi-
model parameters are known. As a robot moves througimize (3) over the individual priorsx;. A rather straight-
the environment, it makes a sequence of observations, désrward derivation similar to [10] shows that the likelihood
noted byz;.;. We make the simplifying assumption that functionp(d | c;) is given by

it is possible to extract from such an observation sequence

frequency countg; ;, which describe how often the robot [LT(f, +ai,)T (@)
observed view after observing view 2. Correspondingly, pld|ay) = H T(fL 4 a;) [, T(as,)’ “4)
fi; = (f1): 215 - - - » f|;) denotes the vector of frequency L L

counts following view;j. Given the Dirichlet prior; and i T
the countsf;; up to timet, the posterior distribution over wherel is the gamma distributiory;; ; denotes how often

qy; is Dirichlet with parametere; + fi; [7]: view i follows view j in the data observed in mapandﬁj

. anda; are the sums over aflilj anda;,, respectively. The
p(aj| ey, f;) ~ Dirichlet(a; + f};) (1) MAP a* can be found by maximizing the log of (4) using
a conjugate gradients method (see also [10, 11]).

The posterior predictive probability that viewfollows
view j can be determined by integrating over the posteriofTo summarize, the structure of an environment is captured

of the transition probabilitieq;: by a collection of multinomial distributiongy; describ-
ing the sequence of views observed by a robot as it nav-
ploe=i|vi-1=j, a5, f;) = /p(q\i laj, £i5) a5 day igates through the environment. A Dirichlet priarover
B these structural parameters is learned from data collected
= /D'”Chlet(q\i | aj +1i5) gij; day in previously explored environments. As the robot moves
ai; + fi through a new env_ironmgnt, it estimate; _the postgri_or over
= m (2)  the structure of this environment. Sufficient statistics for

) . . the posterior over multinomials are given by the Dirichlet
where (2) follows from the properties of the Dirichlet dis- yyiqr and the frequency counts of view transitions observed
tribution [10]. Thus, the prior and the frequency countsiy, the new environment. In the next section we show how

are sufficient statistics for the posterior over the parameterg,;q predictive model can be used in the context of multi-
of our structural model. The individual;,’s are often re- robot map merging.

ferred to as prior samples, since they serve as initial counts
added to the observed frequencfgs.

As can be seen, whenever a robot makes an observatio?l"l Generative Model for Map Merging

in the new environment, the posterior over the structural

model is updated by simply incrementing the frequencyS described in Section 1, the multi-robot map merging
count f; ; of the most recently observed view transition. problem is a particularly difficult instance of the revisiting
' problem. Imagine two robots exploring an environment

from different, unknown start locations. As soon as they
can communicate via wireless connection, the robots try to

It remains to be shown how to learn the prior for transitionsdetérmine whether they can merge their maps by estimating
between views. To do so, we use ddtaollected in typ-  the relative offset between the maps (the robots can not see

ical indoor environments previously explored by a robot.&ach other). To do so, one robot transmits the sensor data

While a full Bayesian treatment would require to learn alt collected so far and the other robot estimates the location

distribution over hyperparametets = (v, as, . . ., o), of this robot relative to its own, partial map. Once the rel-

we restrict our model to the MAP estimate : ative offset between the maps is determined, map merging
can be performed by a mapping algorithm such as [14].

2.2 Learning Priors Over Map Structures

* d - .
a’ = argmaxp(a | d) = % ~ p(d|a) (3)  Existing approaches to map merging assume knowledge

about the robots’ relative start locations [5, 15, 14]. At the
Here the rightmost term follows from a uniform prior over minimum, these techniques require that one robot is known
the hyperparametex and the fact thap(d) has no impact o startin the map built by the other robot. In this case, map
on the MAP estimate. The dath= (d;, ..., d;) consists ~merging can be solved by localizing one robot in the other
of frequency counts observed in thepreviously explored robot’s map using a localization approach capable of global

maps. Assuming independence between the different magecalization [6]. To the best of our knowledge, map merg-
_ ing has not been addressed for completely unknown start

2 1 1 . . . .
Note that the robot actually does not observe discrete Viewsy-ations including a chance that the partial maps do not

but rather continuous, noisy versions thereof. In our approachO | tall. Si th . bl is cl |
we determine the frequency counts; using the views that are verlap at all. since the map merging problem IS Closely

most likely to have generated the observations. See [1, 16] fofelated to robot localization, we start with a brief discus-
approaches dealing with partially observable views. sion of Bayes filters for localization.



3.1 Bayes Filters for Robot Localization n»
.
Consider the recursive Bayes filter, which underlies virtu-
ally all probabilistic robot localization techniques [6]: e
p(xt \ Z1:z,u1:t—1) X p(Zt | U:c,,) : l
/p(:ct | 2t—1,ut—1) p(Te—1 | 21:4-1,U1:4—2) drs—1. () n
Herez,; denotes the position of the robot at timeypically
given in continuous two-dimensional Cartesian coordinates @

and orientation.zy.; is the history of all sensor measure-
ments obtained up to time andwu;.;—; iS the control in-  Figure 3: Generative model for partial map localization. The
formation. In robot localization the terpi(z; | x¢—1, us—1) hyperparametey; estimates the structure of the environment and
is a probabilistic model of robot motiornw,,, denotes the emits transition probabilities(v, | v:—1). Depending on whether
expectedview, or observation, given a map of the envi- the robot is inside or outside the partial map, views are generated
ronment and the robot’s locatian, therein. p(z; | v,,) by the structural model or the partial map.

describes the likelihood of making observationgiven

that the robot is expected to observe viey. Ina nut-  theny, can be extracted deterministically from the map. If,
shell, the Bayes filter recursively updates a posterior OVeRowever,z, is outside the explored area, thenis not di-

the robot's location whenever the robot moves or new senrectly observable and has to be extracted from the structural
sor information is available. Sensor observationare in-  model of the environment. This model is estimated by the
corporated by multiplying the probability of each location stryctural parametey,, as described in the previous sec-
with the likelihoodp(z; | v.,) of making the observation tion. The key idea of our hierarchical model is that the node
at this location. Observations are typically obtained from &, outputs transition probabilitigs(v, = i | v,_, = j) for
robot's cameras, ultrasound sensors, or laser range-findekgeyws according to (2). These transitions can be used to
Posteriors over robot locations can be represented by (m%redict the expected view at time > According to the

tures of) Gaussians, discrete grids, or samples drawn frofgodel shown in Fig. 3, the posterior over the robot’s loca-
the posterior (see [6] for a discussion). In our experimentsjon ¢, is given by

we use data collected by a laser range-finder and a sample-
based posterior representation. p(ae | 210, une-1) o

> // /p(zt |ve) p(ve | qe, oo, ve-1)p(qe [ qe—1, vi-1) -
VU1 :
The Bayes filter described above assumes that a completé’(”“‘tmt—h“t—l) P(xi-1) P(vi-1) (ge—1) dgrdgr—1dze—1(6)
map of an environment is known. In the context of esti-
mating a robot’s location relative to @artial map, loca-
tionsz, can be both inside and outside the map. This raise

3.2 Partial Map Localization

wherep(-) is short forp(- | z1.4—1,u1.+—2). This equation
can be simplified significantly if we split the update into

. . . ?wo different cases, one for locations inside and one for
the question of how to determine the expected vigewfor . ; . . .

o ; ; - locations outside the partial map. We will now discuss the
positionsoutsidethe partial mapij.e. in unexplored areas. WO Cases

Existing approaches to map merging assume that views are

uniformly distributed throughout the environment. SuchLocations inside the partial map: If x; is in the partial
an approach corresponds to using a fixed likelihood formap, then the expected viewy is uniquely determined by
all observations; made at locations; outside the partial «; and the partial map,e. p(v; | ¢:, x¢, vi—1) becomes a
map. Obviously, this technique ignores valuable informa-Dirac delta function at; = v,,. Accordingly, the sum-
tion about the structure of an environment and results irmation overv; andv,_; and the integrations ovey and
brittle estimates for map merging. q¢—1 collapse and, not surprisingly, it can be shown that (6)

. becomes identical to the Bayes filter update rule for robot
We will now show how to use the structural model de- o . .
localization in complete maps given in (5).

scribed in Section 2 to estimate the likelihood of observa-
tions outside a partial map. The generative model for outocations outside the partial map: In this case it is not
technique is shown in Fig. 3. Here; denotes the posi- possible to extract the expected view from the partial map.
tion of the other robot in the partial map at timéz; is  Rather; has to be predicted using the previous vigw;

not restricted to positions within the partial map). Just asand the structural model encoded gh We make the

in regular ropot Ioca}lization,_the robot's positian solely 30Obviously, the transitions between_; andv, also depend
depends on its previous position and the contzal, . The on how far the robot moved. In our current implementation we

position determines the expected viewwhich itself gen-  ypdate the view whenever the robot moved two meters, which
erates a noisy observatiop If z, is inside the partial map, makes the transition probabilities sufficiently stable.



assumption that for locations outside the partial map, nally weight these new states/samples proportional to the
is independent of the actual location (it only depends observation likelihood(z: | v.,). The last step, impor-

on the previous view and the structure). Thus, the termtance sampling, adjusts for the fact that samples are not
J oo | @, @e,ve-1)p(ae | qe—1,ve—1)P(qe—1)dqedgqi—1 drawn from the actual posterior distribution but from the
in (6) can be solved analytically for our Dirichlet model predictive distribution.

described in Section 2.1. As shown in (1), the posterio

"The generative model for map merging described in the
over the structural parametgrcan be computed by incre- 9 b ging

. " )}Jrevious section requires to estimate the posterior over
menting the transition frequency count of the most recentl_ robot locations both inside and outside the partial map. We

observed view transition. The views used for the transi- sume that the size of the area outside the partial map can

tion counts are those that are most likely to have generate@S . . )
. . e set based on an estimate of the total size of the environ-
the raw observations;_; andz;. Oncegq; is updated, the

- . ) L ment. Clearly, a representation of all locations outside the
predictive probability for, is computed by normalization map would require too many samples for online estimation
of the obtained counts, as given in (2). To emphasize th P q y P '

simplicity of these update steps, we replace the double inte?_Dur solution to this problem is based on the idea that, along

i with its history, a sample can be seen as the end point of a
gration term byp(v; |vi—1, @, f,), wherea and f, are the . :
. . robot trajectory. This allows us represent only those sam-
Dirichlet prior and the frequency counts used for the pos- ; . . L .
. . e ples (trajectories) for which the robot was inside the partial
terior over the map structure at timeThese modifications

yield the following, more simple update rule for locations map at some point in “T“e' To dp S0, our a}pp.roach |n|t|al!y
outside the partial map. generates samples uniformly distributed inside the partial

_ map. At later iterations, samples enter and exit the map, de-
p(as |z, ur—1) o Z /p(Zt |ve) ploe|vi1, e, ) - pending_on th_eir location and t_he_robot’s motion (see_ [9D).
vy, o] At each iteration, the samples inside the map are weighted
by p(z: | vs,), i.e. likelihood of the observation given the
robot’s position in the partial map. All samples outside the
To summarize, the key idea of our approach to map mergpartial map are weighted by(z; | outside, the likelihood
ing is to sequentially estimate a robot’s location both insideof the observation computed from the structural model:
and outside the partial map built by the other robot. Lo-
cations inside the map are updated using (5) and locations P(z: | outsidg oc >~ p(zt|ve) p(ve|vi-1, @, f,)p(vi-1) (8)
outside the map are updated based on (7). To estimate the Vel
likelihood of observations outside the map, the techniquerpis term for the importance weight follows directly
estimates a structural parameigralong with the robot's  from (7). The structural parameter and the distribution
location. At each iteration, this parameter is updated Uspyer viewsy, is updated as described in Section 2. After
ing the frequency counts based on the most likely viewssach iteration, the samples represent a robot’s location rel-

p(ze|we—1,us—1) p(xt-1) P(ve—1) dwr1 (7)

extracted from the observations. ative to the partial map built by another robot. Each sample
along with its history represents a uniqgue match between

4 Implementation the partial maps built by the two robots. Once a match with
sufficiently high probability is found, map merging can be

4.1 Particle filter for partial map localization performed by a mapping algorithm such as [14]. The par-

tial map localization algorithm is highly efficient and can
The generative model for map merging is implemented usbe computed in real time on a state-of-the-art laptop.
ing a particle filter [6, 3]. A detailed description of this
implementation can be found in [9]. Particle filters repre-4.2 View extraction
sent posteriors over a robot’s continuous position by sets
S, = {<x§i)7w§i)> | i =1,...,N} of N weighted sam- To testour approach using data collected by real robots we
ples distributed according to the posterior. Here 4, have to extract discrete views from sensor data. Since this

. i) , is not the current focus of our work, we implemented a
is a sample (or state), and t are non-negative nu- : . i :

. X . . rather simple technique that extracts structural information
merical factors calledmportance weightswhich sum up

to one. Sets at timeé are generated from previous sets from laser range-scans. To do so, the approach sequen-

S,_, by a sampling procedure often referred to as SISR, Set_lally evaluates the individual beams of a laser scan and

uential importance sampling with re-sampling [3] SISRchecks for differences between neighboring beams. De-
q b mpiing ) piing 13]. St ending on their relationship, consecutive beams are clus-
implements the recursive Bayes filter update rule (5) in a{)

S {EZ% ered into groups denotedg,m , andc. Groupw (for wall
three stage process. First, dr.a_\w sFat s, from Fhe Pré- orflat obstacle) is assigned to groups of beams for which all
vious sample set with probability given by the importance

) @ neighboring beams measure similar distangefor large
weightsw,,, then draw for each suqh state a new stateyaps between two beammsfor max range readings, ard
from the predictive distributiop(z; | xE’_)l, us—1), and fi-  for corners (based on lines extracted from the scan). Thus



[

. Epested View
Vi
Vi
Vi

| || m
T et U, T (b) T e, 5 () et ()

tservéd view -+ (@)
Figure 5:Learned models: (a) Observation model. (b)—(d) View transitiorighey-axes represent views_; and thez-axes give the
following view v:. Shown are only the 15 most frequent views, higher probabilities are darker. (bpRidracted from all maps, (c)
posterior for map 4, and (d) posterior for mayn Fig. 2.

probability matrix for the 15 most frequent views. These

15 views cover approximately 80% of all observed scans.
View 1 and 2 are the stringgmwand wmwgwillustrated

in Fig. 4(a) and (b), respectively. Fig. 5(a) shows the obser-
vation modelp(z;|v,) extracted from the data. This model

. - - was learned using the same hierarchical approach as the
Figure 4:Two laser scans corresponding to the most frequently . . . .

) _ ' . ~~’one described in Section 2.2 for map structures. In this
observed views. The robot is on the left side moving to the right.

(a) wmwis typically observed when a robot moves down a hall- context the hyperparameters smooth the extracted counts
: of p(z;|v;). The high probabilities on the diagonal indicate

way. (b)wmrvgw|nd|cates that the robot approaches an OPENNGhat our view extraction is very robust. The prior transition
(gap) onits left. modela extracted from all maps is shown in Fig. 5(b). Not
estgrprisingly, most views have a high probability to transi-
fion to the hallway view 1, since the training environments
contain many long corridors. When comparing the poste-
riors shown in Fig. 4(c) and (d), it becomes clear that the
The key advantage of this model is that it is extremely ro-approach was able to extract the fact that environréiais
bust in capturing the main structural elements of an envifar less hallways than environmehntn Fig. 2.

ronment such as hallways, junctions, rooms, and corners.
Furthermore, the detected features are robust with respeét
to rescaling €.g.different widths of hallways). A disadvan-
tage of these views is that they do not provide accurate loc
tion information. We overcome this problem by weighting

each laser scan is represented as a string of these four |
ters. Fig. 4 shows two example laser scans along with th
corresponding feature strings (counterclockwise).

2 Partial map localization

We systematically evaluated our approach to map merg-

6}hg under global uncertainty using the following scenario.

samples inside the partial map using the raw laser scanImaglne two _robots are placed at random locations in an
Tinknown environment. Both robots start to explore the en-

Wh.'Ch proylde highly gccurate location |_nformat|0n [E.;]'. vironment and at some point they can communicate. At
This technigue has no impact on our solution to the revisit-

ing problem, since these samples are still weighted againthat point, one robot I.ocallzes the other .robot in its own
| t’side using the views as described in the rev?f}ap so as to determine whether there is an overlap be-
iirsngeistigrl: 9 Pre¥Eveen the two maps. We genere}ted 15 partial maps based
' on data collected in the three environments labeled 2, 4, and
The parameters of the model were hand-tuned so as to gétin Fig. 2. Some of these maps are shown in Fig. 6. In our
satisfying results. After merging symmetric views, in the scenario, one robot used these partial maps to localize the
35,000 laser scans collected in the environments showather robot based on data collected in the same environ-
in Fig. 3, onlyr = 37 different scan “strings” occurred. ment. For each environment, we generated a prior struc-
tural modela based on the other environments only. The
data of the other robot consisted of 25 data sequences for
each environment, resulting in a total®f 25 = 125 map-
. . . .trajectory pairs for each environment. The results given be-
The experiments were carried out using data collected in d over the average performances in the three
the five environments shown in Fig. 3. oware average ge pe
different environments. For each pair we proceeded as fol-
_ lows. LetA denote the robot with the partial map adthe
5.1 Leamning structural models other robot. At each iteration of the particle filter, rofot
determines the probability of the most likely hypothesis for

To leam structural models, we used 35,000 pairs of CoNgs position in its mapA considers a hypothesis to be valid

secutlye views (strings) cpllected by mobile robots whenif its probability exceeds a certain thresheld
mapping the different environments. The parameters of the

learned modes are shown in Fig. 5. Each graph plots th&he solid line in Fig. 7 shows the resulting precision-recall

5 Experiments
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Figure 6:Partial maps used for evaluation of map merging. The maps were taken from three different environments. In each experiment,

one robot built such a partial map and receives data from another robot collected in the same environment. The robot has to determine

when and if so where the other robot is in its partial map.
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Figure 7:Precisionvs recall: Each point represents an average Figure 8: Precisionvs recall for different adaptive techniques.

over 375 pairs of partial maps and trajectories. Each curve showshe plack, dashed line is obtained when using pure frequency
the trade-off for different thresholds (0.05-0.99). The dashed ounts for the individual features.

lines indicate results obtained with different fixed valuesfor | _ o _ o
outsidg and the solid line represents the results of our approachtimes this view was observed in the training data by the
total number of observations. The bad performance of this

trade-off for different thresholds using our approach (eachethod confirms our belief that it is crucial to consider the
point on the line represents a different threshold). For eachignnective structuref environments as modeled by our

thresholdd, precisionmeasures the fraction of the correct pirichiet process. The dotted line represents the results ob-
matches among those hypotheses that are considered validined without updating the structural parameteguring

i.e. above the threshold. Correctness is tested by COMPafyan merging.e. ¢; is set to the priok. It can be seen

ing the positio_n of the hypoth_esis toa grounql truth estimatey, 5¢ adjusting the estimation process during map merging

computed offline. To determine recall, we first checked af,creases the robustness of the approach. Finally, the short
what times roboB was in robotA's partial map. Recall  gashed, best curve shows a variant of our hierarchical ap-
then, measures the fraction of this time for which robot, oach that weights the observed frequencies proportional

A generated a correct hypothesis, at the correct posi- {4 the ratio between the size of the partial map and the size
tion and with probability above the threshdld To show 4t the entire environment. In essence, this approach extrap-
the advantage of our approach, we compared it to an abjates the observations made in the partial map assuming

ternative method that usedfiaedlikelihood p(z:|outsidg  that the unexplored areas have the same structure.
for locations outside the partial map (compare to (8) for

our approach). The trade-offs resulting from different fixed!n these experiments we only tested the quality of the es-
likelihoods are plotted as dashed lines in Fig. 7 (data point§mation process underlying the decision problem in multi-
are omitted for clarity). The graph clearly shows the supefobot map merging. Our current project aims to field 100
rior performance of our approach. It achieves 26% highefobots in an indoor exploration and reconnaissance task.
precision than the best likelihood value for the alternativeT0 achieve maximum robustness against false positive map
method. Note that high precision values are more impornerges, our multi-robot control system additionally veri-
tant than high recalls since low precision results in wrongfies the hypotheses generated by the partial localization ap-
map merges while low recall only delays the map mergingaroach described here. Robots verify a match hypothesis
decision. Note also that one cannot expect very high reDy meeting at a location that follows from the hypothesis.
call values since robd has to be in the partial map for a The integration of this approach into a decision-theoretic
certain duration before a valid hypothesis can be generate#obot exploration strategy is described in [9].

Fig. 8 shows the same evaluation for different ways of up- .

dating and learning map structures. The dashed line de6 Conclusions and Future Work

noted by “Frequency” represents the results obtained within this paper, we introduced a novel approach to addressing
out considering the transition model for views. This ap-the revisiting problem in mobile robot map building. Multi-
proach uses frequency counts obtained from the trainingobot map merging, a particularly difficult instance of this
maps to compute the likelihoog(z:|outsidg of a view.  problem, requires the localization of one robot relative to
This likelihood is computed by dividing the number of a partial map built by another robot. The key problem in
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