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Abstract— This work integrates visual and physical con-
straints to perform real-time depth-only tracking of articulated
objects, with a focus on tracking a robot’s manipulators
and manipulation targets in realistic scenarios. As such, we
extend DART, an existing visual articulated object tracker,
to additionally avoid interpenetration of multiple interacting
objects, and to make use of contact information collected via
torque sensors or touch sensors. To achieve greater stability,
the tracker uses a switching model to detect when an object
is stationary relative to the table or relative to the palm and
then uses information from multiple frames to converge to an
accurate and stable estimate. Deviation from stable states is
detected in order to remain robust to failed grasps and dropped
objects. The tracker is integrated into a shared autonomy
system in which it provides state estimates used by a grasp
planner and the controller of two anthropomorphic hands. We
demonstrate the advantages and performance of the tracking
system in simulation and on a real robot. Qualitative results
are also provided for a number of challenging manipulations
that are made possible by the speed, accuracy, and stability of
the tracking system.

I. INTRODUCTION

In order for a robot to successfully manipulate objects
using a model-based planner, the position and orientation
of the objects relative to the manipulator and the current
values of all manipulator joint angles are needed. A common
solution is to visually track the object within the frame of
reference of some camera; the object pose is then related to
the hand pose through a transform from the camera frame
of reference to the robot base frame of reference followed
by a transform from the robot base frame of reference to
the hand frame of reference [1], [2]. The latter depends on a
calibrated proprioceptive system, while the former depends
on a an extrinsic camera calibration. Any small errors in
these calibration procedures can easily add up to large errors
in the relative hand-to-object pose, potentially leading to
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failure of intended manipulations. Knowledge of manipulator
joint angles can also be inaccurate for tendon driven or
uncalibrated robots, further complicating grasp planning.

Also key to successful manipulation is the stability of
the object pose estimate. If a manipulation is planned based
on the currently estimated poses, but the estimate changes
significantly in the intervening time before the manipulation
is executed, the plan may no longer be valid. A good vision
system for manipulation must therefore extract stable and
accurate estimates even from noisy input data.

We approach the problems caused by calibration errors
by tracking both the object and the robot hands in the
camera frame of reference. Both poses are then subject to
the same intrinsic calibration errors and are already in the
same frame of reference, removing the need for extrinsic
calibration altogether, and allowing for more accurate relative
pose estimation. We perform the tracking by extending our
previous DART tracking framework [3], and show how our
signed distance function representation of the tracked models
lends itself easily to incorporating additional physics-based
terms into the error function. Specifically, we incorporate
terms which penalize object interpenetration and disagree-
ment between touch sensor feedback and physical contact
between objects.

The issue of estimate stability is handled by using a
switching model, which combines several frames of data to
converge to an accurate and more stable object pose estimate
when the object is stationary, either relative to the camera
(while on the table) or relative to one of the hands (while
firmly grasped). Our switching model requires an automated
method for detecting when an object enters and exits these
stable states in order to remain robust to unexpected motion
of the object. We found that the dense visual error term
provides a strong signal for this detection.

In related work, the poses of manipulators and manipu-
lation targets are generally estimated using either physical
information, visual information, information from tactile
sensors, or some combination of the three. Physical laws



provide a rich source of information, as it is known with
certainty that the state of the system must obey these laws.
However, ensuring that all laws are obeyed becomes rather
computationally complex in manipulation scenarios where
the normal and frictional forces of contact are in effect, many
contacts can occur (during grasping), and where impulse
forces are common. Furthermore, it may appear that a state
violates physical laws when in fact the problem might simply
be due to the fact that the models are not perfect and the
sensor measurements are noisy. In this paper, we close the
action-perception loop for manipulation by jointly tracking
the robot hands, the finger joint angles, and the object pose.
We attempt to respect physical constraints as far as possible
by penalizing estimates that imply interpenetration or that are
inconsistent with the contact estimation. Otherwise, we allow
the physical system itself to provide the physics ‘simulation’
for us, and use dense visual information to estimate what has
happened. The estimated state is reported back to the robot
in real-time allowing for online interaction.

This paper is organized as follows. After discussing related
work, Section III introduces our tracking framework. Exper-
iments are given in Section IV, followed by conclusions.

II. RELATED WORK

Physics-based tracking: Lowrey et al. use a physics engine
to estimate the state of a walking robot based on a variety of
sensors within the robot as well as a fast and highly accurate
external marker-based tracking system [4]. While walking,
the robot’s feet repeatedly make contact with the ground,
and as such the simulator is required to reason about contact
forces. To reduce noise, they recompute estimates in a sliding
window whenever new data has arrived.

Vision-based tracking: Many techniques used in object
and robot tracking systems rely on distinctive keypoints in
the image data. Azad et al. propose a method for tracking
(single, rigid) 3D models by instead rendering their edges
and computing the overlap between the image edges [5].
Ulrich et al. similarly match 3D CAD models in monocular
images [6]. In contrast, we use 2.5D sensor data to solve
for model poses directly in the 3D space. As one part of
the 3D visual tracking, we take advantage of the implicitly
represented difference between free and occluded space
present in the depth map. Earlier image-based approaches
to tracking articulated models did this indirectly with back-
ground subtraction and by using multiple cameras to obtain
a sense of the 3D layout [7]. Klingensmith et al. presented a
visual servoing system using an articulated iterative closest
point (ICP) variant to track a robot arm, demonstrating that
using visual feedback in the control of a robot enables greater
robustness to calibration errors [8]. Our work demonstrates
the value of visual feedback for tracking manipulated objects
in addition to the robot itself.

Krainin et al. also use articulated ICP, augmented with
sparse feature matching and dense color information to track
a robot arm and a previously unknown object it has grasped,
and to simultaneously build a model of the object [9].
Our articulated ICP variant, accelerated by signed distance

function lookups and a GPU implementation, allows us to
achieve real-time performance while additionally reasoning
about physics-based constraints. Schulman et al. use color
and depth observations to induce ‘observation forces’ on
a deformable object model and are thereby able to use a
physics simulator to find the low-energy state which has the
least disagreement with the observation [10]. This work has
been developed specifically for deformable objects and it is
not clear how it would perform in our setting, which requires
much faster update rates and the incorporation of additional
constraints.

Contact-sensing-based tracking: Haidacher and Hirzinger
presented ‘a blind man’s approach to grasping’ in which
they search through a set of possible pairings of fingers
and object faces to find the pose of an object using only
contact detection on the fingers [11]. Koval et al. propose
a particle filter that tracks manipulated objects using only
tactile information by sampling particles from a manifold of
state space that respects contact constraints [12]. However, it
seems unlikely that either of these approaches could provide
accuracy commensurate with that provided by a dense visual
data term minimized by gradient descent, unless a very large
number of particles is used such that one always lands on
the correct solution. Furthermore, manipulation of objects
involves states in which the hand is not in contact, in which
case contact-only methods can provide no information about
the location of the object.

Combined manipulated object tracking: Zhang and Trinkle
presented an offline particle filter approach that combines
visual information, physics, and tactile feedback to track
manipulated objects [13]. While they also focus on tracking
through occlusion induced by manipulators, the slow update
rate makes the approach less applicable to real-time manip-
ulation scenarios. Chalon et al., rather than tracking visually
through occlusions, use a vision system to initialize the
object pose and then rely on physics and potentially contact
information to track a manipulation with a particle filter
[14]. As they use the grasp matrix to update the state of the
particle filter, manipulation of objects without grasping is not
considered. Bimbo et al. also approach the occlusion problem
by fusing tactile information with visual information, but
they do not take intersections between object and model into
account [15].

III. TRACKING FRAMEWORK

Our tracking framework is an extension of the DART
tracking system [3]. DART enables tracking of articulated
objects in real-time, i.e. 30 fps, by storing the models implic-
itly as a collection of rigid signed distance functions (SDFs)
that move relative to each other according to a kinematic
tree, and by optimizing a dense visual data term on the GPU.
In this paper, we add physical constraints to the previously-
presented objective function. The tracker takes as input a
depth map, D, and tries to estimate a vector θ describing
the tracked state as depicted in that depth frame. This state
vector includes the position, orientation, and articulation of
all models, as well as the location of contact points between



models (described in more detail in section III-B). This
is done iteratively using gradient descent. The full error
function to be minimized is as follows:

E(θ;D) =Emod(θ;D) + λobsEobs(θ;D)

+ λintEint(θ) + λconEcon(θ) ,
(1)

where Emod and Eobs represent the error terms in the original
DART framework, measuring the error induced by observed
points in the model SDF and by predicted model points in
the observation SDF, respectively. We will now describe the
final two terms, which are contributions of this work.

A. Intersection Term

Based on the simplest physical principles, we know a
priori that the union of physical space occupied by any
pair of rigid bodies must be empty. The visual terms alone
should be sufficient to ensure that the pose estimates satisfy
this condition under full visibility, but in times of heavy
occlusion, as are common in manipulation scenarios, this
physical constraint becomes a useful source of information
for estimating otherwise unconstrained degrees of freedom.

Suppose there are two rigid bodies, A and B, repre-
sented implicitly with continuous signed distance functions
fa(x, y, z) and fb(x, y, z), which give for every point in 3D
space the shortest distance to the surface of the respective
rigid body. Noting that SDFs are negative inside a body, a
natural way to penalize the intersection of these two bodies
would be as follows:˚

min(0, fa(x, y, z)) min(0, fb(x, y, z)) dxdy dz . (2)

However, a triple integral over a discrete representation of a
signed distance function would be quite expensive. We then
note that taking interior parts of both models into account
simultaneously is unnecessary, as no point on the interior of
B can be inside of A without some point on the surface of
B having penetrated first. We can then simplify the triple
integral by replacing it with two surface integrals:‹

min(0, f2a (x, y, z)) dSB +

‹
min(0, f2b (x, y, z)) dSA ,

(3)
where SA and SB are the surfaces of the two rigid bodies.
Finally, we can discretize this surface integral by considering
only a finite set of points on the surface of all rigid bodies.
Thus, as a pre-processing step we store a collection of points
Xm for each model m in our set of tracked models, M ,
such that all x ∈ Xm lie on the surface of model m. This
is done by sampling points on the mesh faces uniformly by
surface area. The points are stored in the frame of reference
of the rigid body from which they were generated, and then
transformed into the global frame via the kinematic chain of
the articulated model. The error induced by points on model
ma penetrating model mb is given by:

ema,mb

int (θ) =
∑

xi∈Xma

min(0, SDFmb
(Tmb,fi(θ)xi))

2 , (4)

where fi is the frame of reference in which point xi moves
rigidly, and Tmb,fi is the transform from that local frame of
reference to the frame of reference of model mb, as defined
by the kinematic chain and the current parameter estimates
θ. The full intersection term we then minimize is:

Eint(θ) =
∑

ma∈M

∑
mb∈M

ema,mb

int (θ) . (5)

Note that (4) is directional, so we consider in (5) both the
possibility of points from ma intersecting mb and vice versa.
We also consider points from ma self-intersecting other parts
of model ma, which can happen if it is an articulated model.

This formulation is almost identical to the error induced by
observed points in the model SDF as presented in previous
work, except for the truncation of the SDF to interior regions.
We are thus able to compute first order derivatives for the
error induced by intersecting points exactly as in [3].

B. Contact Term

While the intersection term applies generally to any rigid
body, many robot hands can provide additionally helpful in-
formation by sensing when contact has been made with other
surfaces. This is particularly useful in grasping scenarios, as
many natural grasps involve the placement of fingers behind
the object, where they are visually occluded.

Given the location of contact on the finger, perhaps from
a high-resolution tactile sensor, the goal would be to simply
minimize the squared distance from the contact point on
the finger to the surface of the object, such that the pose
estimate will reflect that contact is in fact being made.
However, we are interested in a wider range of systems in
which the existence of contact can be detected, perhaps via
torque sensors, but not the location of the contact point; this
location then becomes a hidden variable that needs to be
estimated. While this point is minimally represented as a
point on the two-dimensional manifold of the finger surface,
we instead chose to simplify the optimization objective, and
overparameterize the variable by representing the contact
location as a 3D point in the frame of reference of the finger.
We simply project the estimated point back onto the finger
surface after every step of the gradient descent.

(a) (b) (c)

Fig. 1. (a) A grasp in which contacting fingers are occluded is executed.
(b) and (c) show a rendering of this grasp from another view point; in (b)
the contacts are first detected via the torque sensors in the hand, and in (c)
the estimate of the object pose, hand pose, and the location of the contact
points is updated such that the identified fingers touch the object (see red
dots, best viewed when enlarged).



We define a variable ci for each finger which takes on a
value of 1 if contact was detected on that finger and a value
of 0 otherwise. Our contact error term is then:

Econ(θ) =
∑
i

ciSDFobj(Tobj,i(θ)pi(θ))
2 , (6)

where pi(θ) is the estimate of the contact point on finger
i. Once again, we have an error based on the lookup of
an implicit point-to-surface distance of a point defined in a
local frame of reference in a signed distance function. The
derivatives of this term with respect to the hand and object
poses are thus computed as in the intersection or observation
to model error terms. For the derivatives with respect to each
contact location, we have:

∂

∂pi
Econ(θ) = ci∇SDFobj(Tobj,i(θ)pi(θ)) , (7)

which is simply the gradient of the object SDF evaluated
at the contact point. The effect of this term can be seen in
Fig. 1.

C. Parameterization

When tracking robots that are capable of providing pro-
prioceptive feedback, we do not have to start from scratch
in pose estimation. However, the combination of calibration
errors in the proprioceptive system and the camera means
that the joint angles reported by a robot cannot be trusted
exactly, as demonstrated in Fig. 2. We therefore use the
reported joint angles, but do not rely on them entirely.

One approach for incorporating proprioceptive information
into a visual, gradient-descent-based tracking framework is
to treat reported joint angles as a prior in the Bayesian sense
[9]. However, with our focus on occlusions, we found this
approach to be suboptimal, due to a ‘snap-back effect’: when
any degree of freedom becomes unobserved, it simply reverts
back to the reported prior regardless of whether that prior had
matched observed information in recent frames.

(a) Estimated state (b) Reported state

(c) Estimated state (d) Reported state

Fig. 2. In (a) and (c) we show tracking estimates overlaid on some exemplar
frames. In (b) and (d), the right hand is shown where it has been estimated,
while the left hand is positioned relative to the right hand according to the
forward kinematics and reported joint angles of the left and right arms,
and the fingers are shown positioned as reported. Note the errors that are
particularly evident in the left thumb and right index fingers of (b) and (d).

We instead took the approach of Klingensmith et al.,
choosing parameters that represent relative offsets from the
reported joint angles rather than absolute angles [8]. That is,
at each time step, instead of finding the absolute joint angles
θ that minimize the error function, we optimize over relative
joint angles δ that minimize the error when added to reported
joint angles θ̂:

δ∗ = arg min
δ
E(θ̂ + δ;D) , (8)

where E(θ;D) is the error function of equation (1). This
parameterization has some nice properties, first and foremost
being that if we assume the offset between the actual and
reported joint angles is fairly constant, we can highly regu-
larize our gradient descent steps to ensure the relative values
change slowly and are less sensitive to sensor noise. As the
amount of regularization approaches infinity, the tracker will
follow the joint angles exactly, while a high but finite value
allows for slow and steady adjustments to accommodate
bias inherent to certain camera views and errors in system
calibration (or lack thereof), and also allows the tracker to
function when the offset is not, in fact, constant.

D. Switching Model

While we have a relatively strong signal as to where the
hands are through the forward kinematics of the robot arms,
we are not so lucky when it comes to the object position. To
produce stable estimates of the relative transform between
hand and object as needed by the grasp planner, we follow
the work of Krainin et al. [9] in identifying three possible
states of the object:

1) The object is at rest on a surface
2) The object is in an intermediate unstable state
3) The object is stably grasped by a hand

However, while Krainin et al. assume that they know the
state based on the actions taken by the robot (i.e. the
object is on the surface when the robot places it on the
surface and stably grasped when the robot has performed a
grasp), we make no such assumptions. Instead, we present an
automatic switching model that detects state transitions based
on observations of the model, making our tracker robust to
failed grasps and slippage or unintended dropping of grasped
objects, and also enables manipulations that don’t involve
grasping at all, such as pushing an object along a surface.

In order to detect state transitions, we first define our
measure of the ‘visual error’ of a particular estimate as
the average distance from all observed object points to the
object model SDF surface, plus the average distance from
all predicted object model points to the nearest unobserved
space in the observation SDF. So, if O observed points are
associated with the object and the predicted depth map has
P object points, this metric will be Emod

O + Eobs
P . The intuition

here is that when the estimate is accurate, all predicted object
points and all observed points data associated to the object
should have low error, and when the object moves, there
will be at least some predicted and observed points with
high error, as shown in Fig. 3.
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Fig. 3. Visual error for a sequence of tracked object pose estimates, before
optimization. The object begins in a stable grasp state, transitions to the
intermediate state (frame 2267) due to the high error indicating the object
is not where it is expected to be based odometry update composed on thelast
frame’s estimate, and finally enters the stable rest state (frame 2287).

The object is always initialized in state 2, and transitions
to one of the two stable states once the pre-optimization error
metric falls below a pre-defined threshold. If the fingers are
detecting contact when this happens, the object transitions
to state 3, and otherwise transitions to state 1. The threshold
is set just above the visual error typically observed when
the object is at rest on a surface, which depends on the
noise model of the sensor in use but is easily determined
empirically.

The estimation of object state is useful in that we can
assume that the object is stationary in the stable states
— stationary relative to the world frame in state 1 and
stationary relative to the palm frame in state 3. Based on
this assumption, we could collect a series of frames and solve
for the 6 parameters which minimize the sum of the error in
all frames. We approximate this in a real-time and online
manner by keeping a running estimate of the amount of
information we have about each of the 6 degrees of freedom.
We first note that our Hessian approximation H = JTJ is
the inverse of the covariance matrix, and therefore that entries
along the diagonal are inversely proportional to the (squared)
uncertainty of the corresponding variables, i.e. Hii = 1

σ2
i

. We
therefore store a running sum, ι, of the inverse uncertainty
of the object pose parameters in all the frames since entering
a stable state. If the object is estimated to be in a stable state
at time step t, we set:

ιt+1 := min(ιt + αdiag(Ht), ιmax) , (9)

where α is an ‘accumulation rate’ parameter set and ιmax
limits the amount of regularization that can be applied to
any particular degree of freedom. The exact value of α is not
critical and is generally set anywhere between 0.2 and 0.8
in our experiments. The parameter ιmax actually has a unit,
namely the inverse square of the unit of the corresponding
degree of freedom, and is set accordingly. Then, we solve
the following regularized normal equations for each Gauss-
Newton step:

∆θt = (JTJ + ιt)−1eJ , (10)

As a result, after the object has remained in a stable state for
a number of frames, the estimate will change more slowly,
depending on the amount of uncertainty in all frames, and
should thus converge over time to a stable estimate of the
true object pose and no longer be influenced by noise on
a frame-to-frame basis. Crucially, each degree of freedom is
regularized differently depending on our certainty of its state.
Once we have detected a deviation from the stable state as
previously described, we assume previous information is no
longer valid and set ι = 0 until we have re-entered another
stable state.

IV. EXPERIMENTS

As a platform for the proposed method, we use a shared
autonomy system consisting of DLR’s telepresence robot
combined with online grasp planning [2], as described in
Section IV-A. However, the only system-dependent assump-
tion made is that the hands are capable of estimating
whether each finger is in contact with an object, and the
tracking approach should apply equally well to any system
that satisfies this requirement. Grasps for two five-finger
hands are planned online according to the current hand-
to-object relative pose. This allows for planning of grasps
in unexpected situations as the grasps are not restricted to
those available in a grasp database. The shared autonomy
setup poses additional challenges to the tracking system, as
the human operator can move the arms freely (in contrast
to executing a pre-planned motion), potentially bumping the
objects or otherwise changing the hand-to-object relative
pose, and the new pose is needed by the grasp planner
before a new grasp can be planned. Following previous
work [2], we use the static scene analysis as an initial guess
for the presented tracking method, which, being a local
gradient descent method, needs a rough initialization. We
perform a quantitative evaluation of the tracking accuracy
on real manipulations and show the benefits of the phsyical
constraints using a synthetic manipulation as a baseline. In
the accompanying video, we also present tracking estimates
for a number of challenging manipulations for qualitative

visual
assistance

Fig. 4. Semi-autonomous grasping using DLR’s telepresence system. It
consists of the remote robot SpaceJustin (on the left) and the human-machine
interface HUG (on the right). The visual assistance is displayed using the
head-mounted display.



Fig. 5. Left: tracked joint edges overlayed with color image. Right: distance
map of the color image’s edges, with a cutoff radius of 5 pixels. Note missed
edges at the right hand (insufficient contrast with background).

analysis. All experiments were run with the error function
weighted according to λmod = 4, λint = 10, and λcon = 25.

A. System

The system consists of the multimodal human machine
interface HUG [16] and the remote robot SpaceJustin, which
is a modified version of DLR’s humanoid robot Justin [17]
(see Fig. 4). SpaceJustin has 17 actuated degrees of freedom
(DoF) for its torso, head, and arms, and interacts with the
environment with two DLR-HIT Hands II which have 15
DoF’s each [18]. An Asus Xtion is mounted on the head
and is used to track the hands, fingers, and the object. The
robot arms of HUG and SpaceJustin are coupled in Cartesian
space which allows the operator to control the movements of
SpaceJustin’s arms and experience realistic force feedback. A
one DoF hand interface is used to trigger the grasping com-
mand once a stable grasp is planned. The operator perceives
visual feedback by wearing a head-mounted display (HMD,
NVisorSX60 from NVIS) showing the remote and estimated
environment in 3D. In order to allow a high degree of
immersion, the operator’s head movements are also tracked,
enabling control of the movement of SpaceJustin’s head (and
thus the position of the camera as well).

The robot system reports its current joint angles (47 in
total) to the tracking system at a rate of 1 kHz. Additionally,
the fingers provide a vector of binary inputs to the tracking
system indicating whether each finger is currently in contact
with a foreign object, as estimated by the torque sensors
integrated in every finger. We do not estimate the contact
point on the finger due to a lack of tactile sensing. The Asus
Xtion provides depth information at a rate of 30 fps. Tracking
and grasp planning run at this update rate. The difference
between estimated joint angles and measured joint angles as
calculated by the tracking system is sent back and taken into
account by the control of the hands to correct for the errors
in forward kinematics.

B. Accuracy

Since we use an uncalibrated system, the accuracy of the
tracking is difficult to quantify without using a high-quality
external tracking system and introducing markers with pre-
cisely known positions relative to the joints. Therefore, the
accuracy of the proposed method is evaluated against an
independent information source, namely the RGB image
from the Asus Xtion, by comparing it to the projection of
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Fig. 6. Left: frequencies of distances between corresponding edge pixel
positions in all frames. Right: distribution of mean per-frame RMSE of the
distances between corresponding edge pixels.

the models into the 2D image plane according to the pose
estimate, as in Fig. 9.

Similar to [5], we measure the agreement between the
edge maps computed on the color image and the estimate
rendering by assuming nearest neighbors in the edge maps
are in correspondence, up to some distance threshold. We
report the root mean square error (RMSE) of the nearest
neighbor distances in a frame as a quality-of-fit metric.

The drawback of the method is that it requires strong
intrinsic calibration and edges that can be reliably detected
in the color image, which we don’t always have. However,
the computed scores provide a more accurate measure than
the proportion of overlapping edge pixels used by Azad et
al., and give some intuition into the tracking quality.

It is important to avoid incorrect correspondences by
setting the cutoff distance to a reasonable level. As the
tracking is qualitatively correct, we chose a strict threshold
of 5 pixels in the 320×240 RGB images from the Xtion. As
shown in Fig. 5, the edges of the tracked joints are within this
limit, and we use the maximum value of 5 (rendered white)
when they are not, or when an edge was not detected.

The result for a sequence of 4085 frames (including the
ones in Fig. 3), shown in Fig. 6, indicate that most edges
are overlapping or neighboring. The RMSE for each frame
(which penalizes large errors more strongly) is around 2.2
pixels. Given the unverified intrinsic and extrinsic calibration
of the color and depth sensors, and the other problems
discussed above, the real error is probably lower, and the
results are visually appealing.

C. Synthetic Experiment

To show the contribution of newly introduced components
of the tracking system, we generated a synthetic manipula-
tion of a small sphere using the Bullet physics engine1 and a
corresponding sequence of depth maps. The trajectory from
the physics simulation gave us a baseline for comparison,
although it should be noted that the simulation was not
perfect. The rendered depth maps were corrupted with white
noise with a standard deviation of 2 mm, sampled at a
quarter of the depth map resolution, such that the noise in
neighboring pixels is correlated, and discretized into 1 mm
bins as in consumer depth sensors. The known true odometry
is corrupted by a zero-mean Gaussian walk.

1http://bulletphysics.org/



0 100 200 300 400 500 600 700 800 900
0

20

40
Object Tracking Error through Occlusion

E
rr

or
(m

m
)

Frame

Full objective
Visual tracking only

(a)

(b) Frame 1 (c) Frame 483 (d) Frame 686 (e) Frame 868

Fig. 7. (a) The error in 3D of the estimate of the position of a sphere being
manipulated by a robot hand in a synthetic sequence. (b)-(e) show a selection
of frames from the sequence with the sphere highlighted in orange. Without
physical constraints, tracking fails when the sphere becomes hidden.

We compare in Fig. 7 the tracking performance of the
original vision-only DART system and of the presented
system on this extremely challenging sequence, where the
error metric is given by the Euclidean distance between the
predicted and ground truth sphere center. As shown, the
physical constraints lead to more stable estimates through
the extreme occlusions in this sequence. Furthermore, once
the ball becomes nearly entirely invisible to the camera
(Fig. 7(c)), the vision-only system experiences a track-
ing failure from which it does not recover. With physical
constraints, tracking is successfully maintained through the
entire sequence, with a mean error of 3.5 mm.

D. Real Experiments

Due to the aforementioned difficulties in performing quan-
titative evaluation of markerless tracking methods, we also
qualitatively demonstrate a number of manipulations we were
able to perform due to the accurate and fast pose estimates
provided by the presented tracking system, all of which may
not even have been possible otherwise. The experiments
are conducted using the same method for all objects and
situations; no tuning of parameters is needed either in the
tracking or the grasp planning.

The first challenging manipulation is the execution of a
grasp with a narrow margin of error, which demands a high
degree of accuracy, as any deviation in the estimated joint
angles can cause the fingers to miss the small intended
targets. Fig. 8 shows one such challenging grasp, in which
three fingers are used to grasp a small handle on a coffee
mug. Not only is the target small, but the mug surface is
slippery and the center of mass is far from the contact points,
all of which contribute to the difficulty of the grasp.

Another challenge for a tracking system is the movement
of the camera, as we want the operator to be able to change
her viewpoint to facilitate manipulation. Handling this using
only the forward kinematics of the robot would require
highly accurate knowledge of the camera position relative
to the neck joints, as well as a very high quality intrinsic
calibration of the camera. Instead, we use only a very rough

initial estimate of the extrinsic calibration to predict the
motion of the hands and object relative to the camera during
neck motion, and then rely on the visual tracking to account
for the errors. An example of our robustness to changing
camera viewpoint can be seen in Fig. 9.

We were mostly interested in bi-manual manipulations,
which pose additional challenges to the tracking system. In
previous work on the shared autonomy system [2], the object
pose was estimated while it lay stationary on the table, not
occluded by either hand. When handing the object from one
hand to the other, however, the grasp planner needs to know
the relative transformation between the grasping hand and an
object which is not on the table, is occluded by the fingers
of the other hand, and could be moving.

Finally, we did not want to make the limiting assumption
that every grasp attempted by the operator would be success-
ful, and we did not want to have to restart the tracking system
every time an object moved unexpectedly. We show in the
accompanying video that while our tracking system is able
to use information from multiple frames to stabilize object
pose estimates, it is also able to detect unexpected motion
and react quickly when the object moves during grasping or
drops suddenly from the hand. In these cases, the operator
is usually able to immediately begin correcting the failure,
as an accurate estimate of the object pose is still available.

V. CONCLUSIONS

We presented the benefit of incorporating proprioceptive
information and physical constraints into dense visual artic-
ulated model tracking, and applied it to jointly track robot
hands and the objects they manipulate. The implicit signed
distance function representation of the tracked models allows
us to easily detect interpenetration of multiple interacting
models, as well as self-intersection of a single model, and
to correct these intersections by adding a new term to the
visual error function. After introducing a hidden variable
for the location of contact between models, we are also
able to use our SDF representation to add a fourth term
into the error function which favors pose estimates which

(a) (b)

(c) (d)

Fig. 8. A grasp that demands high accuracy. (a) and (c) show the robot’s
point of view, (b) and (d) show the estimated joint angles and relative hand-
to-object poses, as well as the planned grasp (grey fingers).



explain detected contacts. The intersection term is as trivially
parallelizable as the visual error terms, and the contact term
is processed at essentially no cost on the CPU as all other
terms are being processed on the GPU. We are therefore able
to use the model pose estimates for planning and control in
a bi-manual shared autonomy system, achieving real-time
update rates of 30 frames per second while tracking 48
pose parameters (two 21 degree of freedom hands plus a 6
degree of freedom object). We also introduced an automatic
switching model that detects stationary states of the object
and reacts accordingly, in order to provide tracking estimates
that are stable and highly accurate when the object is not
moving, yet keep up when the object does move quickly.

In the supplemental video, we show a number of manipu-
lations that were enabled by using the estimates provided by
the tracking system to plan and execute grasps. We sought to
make the manipulations challenging by executing grasps with
little room for error, such as lifting a coffee mug by a small
handle, by moving the camera throughout the manipulation
without accurate knowledge of the camera position relative
to the kinematic tree, and by grasping objects that are already
held (and thus occluded) in the other hand. Throughout the
course of the manipulations, there were also failed grasps,
unintentional drops, and non-grasping manipulations such as
pushing the object across the table or using one hand to rotate
an object held in the other hand, and we are able to maintain
accurate tracking through these situations as well.

While we demonstrated all results on tracking manipula-
tions executed by a shared autonomy system, the presented
tracking method is equally applicable to fully autonomous
systems; which we intend to investigate in future work.
It would also be interesting to investigate algorithms for
automatically positioning the camera to reduce uncertainty in
the object pose parameters. Another extension of this work
would be to do real-time model building, as in [9]. This
could be done using a KinectFusion-style truncated signed
distance function to represent the model, allowing the tracker
to use the partial model for tracking with few changes to the
method [19].

(a) (b)

(c)

Fig. 9. Tracking of the hands and object is maintained through changes
in camera view.
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