
©Copyright 2016

Yuyin Sun



Toward Never-Ending Object Learning for Robots

Yuyin Sun

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2016

Reading Committee:

Dieter Fox, Chair

Ali Farhadi

Yejin Choi

Program Authorized to Offer Degree:
Computer Science and Engineering





University of Washington

Abstract

Toward Never-Ending Object Learning for Robots

Yuyin Sun

Chair of the Supervisory Committee:
Professor Dieter Fox

Computer Science and Engineering

A household robot usually works in a complex working environment, where it will continuously see

new objects and encounter new concepts in its lifetime. Therefore, being able to learn more objects

is crucial for the robot to be continuously useful over its lifespan. Moving beyond previous object

learning research problem, of which mostly focuses on learning with given training objects and

concepts, this research addresses the problem of enabling a robot to learn new objects and concepts

continuously. Specifically, our contributions are as follows:

First, we study how to accurately identify target objects in scenes based on human users’

language descriptions. We propose a novel identification system using an object’s visual attributes

and names to recognize objects. We also propose a method to enable the system to recognize

objects based on new names without seeing any training instances of the names. The attribute-

based identification system improves both usability and accuracy over the previous ID-based object

identification methods.

Next, we consider the problem of organizing a large number of concepts into a semantic hierarchy.

We propose a principle approach for creating semantic hierarchies of concepts via crowdsourcing.

The approach can build hierarchies for various tasks and capture the uncertainty that naturally

exists in these hierarchies. Experiments demonstrate that our method is more efficient, scalable,

and accurate than previous methods. We also design a crowdsourcing evaluation to compare the

hierarchies built by our method to expertly built ones. Results of the evaluation demonstrate that



our approach outputs task-dependent hierarchies that can significantly improve user’s performance

of desired tasks.

Finally, we build the first never-ending object learning framework, NEOL, that lets robots learn

objects continuously. NEOL automatically learns to organize object names into a semantic hierarchy

using the crowdsourcing method we propose. It then uses the hierarchy to improve the consistency

and efficiency of annotating objects. Further, it adapts information from additional image datasets to

learn object classifiers from a very small number of training examples. Experiments show that NEOL

significantly improves robots’ accuracy and efficiency in learning objects over previous methods.
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Chapter 1

INTRODUCTION

1.1 Never-Ending Object Learning for Robots

A household robot working in a complex working environment will continuously encounter new

objects and new concepts in its lifetime. Therefore, being able to learn new concepts and recognize

new objects is a crucial capability for a household robot to be continuously useful over its lifespan.

Whereas people gain knowledge of objects over many years, most current robot systems learn about

objects just once. Moving beyond previous work on object learning, which mostly focuses on

learning and recognizing with given training and testing objects and concepts, this research focuses

on enabling a robot to learn new objects and concepts continuously.

A personal robot interacting with human users should be able to recognize new objects based

on humans’ object descriptions. Computer vision and robotics communities have made substantial

progress in object recognition [50, 94, 121]. However, virtually all work on object recognition

assumes that an object can be identified by some known category names. However, this is not how

people would use language to identify objects in everyday settings [44] and does not generalize to

new objects. People often use an object’s name and additional attributes to identify objects, as doing

so allows them to refer even to unusual objects. To address this question, Chapter 2 and Chapter 3

of this thesis explore the problem of language-based object identification. Specifically, we study

how to recognize both familiar and unusual objects based on names and attributes.

A robot continuously learning objects will encounter growing numbers of objects and object

names. Whereas humans can recognize thousands of object types, most existing robots are unable to

do so. Inspired by human object recognition [103], many computer vision systems utilize semantic

hierarchies of concepts to improve object categorization with thousands of classes [50, 121].

However, most methods assume that the semantic hierarchies are already provided. This assumption
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will not hold in the robotic settings because no existing hierarchy can cover all concepts that a robot

may encounter. Chapters 4 and 5 of this thesis explore methods for robots themselves to build

semantic hierarchies for any concepts they encounter. To be more specific, we propose a series of

crowdsourcing algorithms to create, extend, and evaluate hierarchies.

The predominant pipeline of a visual recognition system is to train a set of classifiers on a

predetermined set of objects with a predetermined set of labels and then to test their performance on

new instances of the same set of names. This train-once-then-test approach is inadequate for personal

robots due to two main reasons. First, it is infeasible to assume that all objects and all possible labels

are known to the robots in advance. A robot will continuously encounter new objects and labels over

its lifetime. Therefore, it should be able to learn objects and labels continuously. Second, current

visual recognition systems are trained to recognize objects based on categories, which are mostly

words from dictionaries, like WordNet [69]. These “words” might not be the “names” used by a

human in his/her language to refer to the objects [166]. A robot should be able to recognize objects

based on real “names”. Chapter 6 of this thesis proposes a Never-Ending Object Learning (NEOL)

framework for robots. NEOL has three major components built upon the techniques introduced

in Chapter 2 - 5: 1) it enables a robot to organize concepts into a semantic hierarchy, 2) it utilizes

the hierarchy to annotate objects efficiently, and 3) it uses existing background knowledge bases to

learn objects with just a few instances.

1.2 Background and Related Work

In this section, we will present a high-level overview of concepts and related work described in the

thesis. Each subsequent chapter details work specifically related to this section.

1.2.1 Object Recognition

Object recognition [79] is an active research area of computer vision. Its ultimate goal is to

understand the semantic meaning of every pixel of an image. Object recognition can be categorized

into sub-tasks, such as classification, localization, and detection. In this thesis, we will focus
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Figure 1.1: Predominant object recognition pipeline is to learn classifiers based on labeled training data and

to test the classifiers on held out data.

on the classification task, which is about learning visual categories and then identifying new

instances of learned classes. The predominant approach to object recognition/classification (shown

in Figure 1.1) is to learn classifiers based on labeled training data and to test the classifiers on held

out data [122, 50, 115]. Object recognition is a very broad field, so we will focus on discussing

topics in object recognition, which are most relevant to our work.

RGB-D Object Recognition: Traditional visual recognition algorithms assume that sensors

provide RGB images [50, 68, 6, 43, 66, 80]. Recently, commercialized RGB-D cameras, such

as Microsoft Kinect [219] and PrimeSensor, can sense depth registered with RGB images with

centimeter or millimeter accuracy. Depth information presents an opportunity for algorithms to

increase their object recognition accuracy [122, 169, 14, 17, 16, 15]. Currently, RGB-D cameras

have become standard sensors for most indoor robots. In this thesis, we assume all the visual inputs

are RGB-D image pairs captured using Kinect sensors.
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Feature Learning: Object recognition relies on robust feature representations of RGB images

and depth maps. Hand-designed features, such as SIFT [133], HOG [43], and SURF [7], were

the favorite features until the development of modern feature learning techniques [89, 215, 16, 14,

17, 115, 216, 170, 172, 85]. Feature learning, especially deep learning based methods, can learn

features from raw images and have achieved huge success in the computer vision community [115,

216, 170, 172, 85]. Early deep learning methods [89, 215, 16, 14, 17] learned to extract hierarchies

of features, layer by layer, using unlabelled image data. Recently, the creation of several large-scale

labeled image datasets [50, 167] and the development of Graphics Processing Units (GPUs) have

made the training of very deep and supervised deep learning model tractable [115, 172, 85]. Deep

convolutional networks (ConvNets) have recently enjoyed great success in large-scale image and

video recognition [115, 216, 170, 172, 85].

Domain Adaptation: Many large-scale labeled image datasets, such as ImageNet [50] and La-

belMe [167], have been established recently for evaluating computer vision algorithms and training

deep convolutional neural networks. These datasets are inherently biased to their application do-

mains [192], however, and models built using them do not generalize well to robotics applications,

which were not their intended applications. Many visual domain adaptation methods have been de-

veloped to deal with the dataset bias problems, for example, unsupervised adaptation [76, 75, 20, 97]

and supervised adaptation [47, 118]. Recent work [93, 74, 137] trains deep neural networks to

align multiple domains.

Attribute Learning: Visual attributes have been successfully used in object recognition re-

search. Farhadi et al. describe unfamiliar objects by their attributes and show that attributes are

generalizable to new categories. Lampert et al. use attributes for doing “zero-shot” learning and

show that attributes are useful to detect unseen object categories. Parikh and Grauman model relative

attributes and show the advantages over binary attributes in solving tasks such as image retrieval. Sun

et al. use visual attributes extracted from natural language description to identify objects in complex

scenes. Besides appearance attributes, like color, shape, and material, names are also treated as
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attributes. Most work on attribute learning [66, 123, 153, 183] assumes that all attribute values are

known beforehand to train corresponding classifiers. In practice, however, a robot is likely to face

new names since people may use various names to refer to both known and unknown objects.

1.2.2 Integrating Language and Vision

Understanding Referral Language: Using language to refer an object in a scene to a hearer

(other people or an autonomous robot) has been studied extensively by linguistics and cognitive

scientists. Dale and Reiter [44] found that, for the goal of identification, people tend to use

easily perceivable attribute-value pairs, like color-red, which do not lead to false implications.

Kazemzadeh et al. design a crowdsourcing game to collect sentences used by humans to refer to

objects in cluttered photographs. Ordonez et al. study how to predict entry-level categories, which

are the labels people use frequently to name objects. Ordonez et al. propose models combining visual

recognition predictions with linguistic resources like WordNet and proxies for word “naturalness”

mined from the text corpus on the web to predict entry-level categories for a large number of images.

The proposed models can generate more natural, human-like labels for images. Feng et al. study

how to assign an entry-level name to every synset in WordNet.

Generating Descriptions: Computer vision researchers remain interested in generating language

description of images. Some pioneering methods [91, 176, 67, 151, 100] treat the generation task

as a retrieval task and search the most compatible captions in the training set as the prediction for

the testing images. Other earlier approaches [84, 116, 67, 213, 61, 5] generate image descriptions

based on fixed sentence templates. These earlier works are limited in their ability to generate

various possible outputs. The most recent work [107], especially Recurrent Neural Network based

methods [139, 200, 58, 108, 65, 34], can generate full sentence descriptions for images and has

made significant improvements over previous methods.
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1.2.3 Never-Ending Learning

Never-ending learning, a new learning paradigm, learns many functions in a cumulative manner.

These functions, learned over years of accumulation, form an extensive background knowledge that

improves subsequent learning [148]. Early works have focused on learning natural language (e.g.,

Never-Ending Language Learning [31]), visual information (e.g., Never-Ending Image Learning [36,

96]), autonomous control [189], etc.. It is worth noting that most never-ending learners focus on

coverage, and therefore, usually deploy autonomous or semi-autonomous algorithms to learn from

the web. Coverage-oriented learning systems often suffer from the problem of concept drift and low

accuracy. In this thesis, we will propose a new never-ending learner for robots that will emphasize

both coverage and accuracy.

1.2.4 Crowdsourcing

Putting humans in the loop of intelligent systems has provided many solutions to difficult problems

that are hard for computers but relatively easy for people [153, 154, 220, 40, 131, 24, 203, 56].

Some successful applications of crowd-powered systems include protein folding [40] and galaxy

discovery [131]. The computer vision community has also been deploying crowdsourcing to build

better and more robust recognition systems. Some useful tasks include image annotation verifica-

tion [24, 203], free-form object annotation [201], feature selection [56], and others. Many robotics

researchers also start deploying crowdsourcing to teach robots capabilities such as grasping novel

objects [177], learning human preferences [98, 1] for planning, and imitating human behaviors [39].

In this work, we utilize crowdsourcing to learn the semantic structure of names as well as to annotate

objects.

1.3 Thesis Statement

The central thesis of this work follows

A robot can learn new objects more efficiently and accurately by integrating knowledge from

multiple resources, such as semantic structures of concepts, the vision knowledge, natural language
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Figure 1.2: This thesis argues that a robot can learn new objects efficiently and accurately by integrating

multiple knowledge sources.

description, established knowledge bases, and human teachers.

Figure 1.2 illustrates the idea. The robot, at the center of the diagram, has multiple resources

from which it can acquire knowledge. For example, it could get well-structured and clean knowledge

from established knowledge bases, such as ImageNet [50], which provides labeled images, and

WordNet [69], which provides semantic knowledge of concepts, et al. Unfortunately, the online

databases might be inadequate to answer all its questions. In this case, the robot could post the

questions to humans, who might be the teachers or the workers for some crowdsourcing platforms.

The robot has the access to various kinds of knowledge resources, the flexibility to choose resources

to acquire knowledge, and the capability to combine all the information to learn objects more

efficiently.

We also claim that the robot should keep a structured semantic representation of knowledge.

Semantic knowledge, more specifically a hierarchy of concepts, lets the robot acquire future

knowledge more efficiently. And future knowledge also enriches the robots’ semantic hierarchy.

Moreover, the semantic hierarchy of concepts can be easily shared with other robots around the



8

world.

Finally, we want to emphasize that robots learning process is trigged by its communication with

human users and the environment, therefore, it involves understanding natural language descriptions

and recognizing objects in working environments. Most existing never-ending learners, such as

NELL [31] and NEIL [36], gather general knowledge existing on the web. In contrast, our robot has

to learn new objects based on users’ requirements. The involvement of humans makes the learning

task less predictable and establishes a new direction for the Never-Ending Learning paradigm.

1.4 Thesis Outline

1.4.1 Attribute-Based Object Identification

In Chapter 2, we focus on how to identify objects based on language descriptions. While the

computer vision community recently started to investigate the use of attributes for object recog-

nition, these approaches do not consider the task settings typically observed in robotics, where

a combination of appearance attributes and object names might be used in referral language to

identify specific objects in a scene. In this chapter, we introduce an approach for identifying objects

based on natural language containing appearance and name attributes. To learn the rich RGB-D

features needed for classifying attributes, we extend recently introduced sparse coding techniques

so as to learn attribute-dependent features automatically. We present a large dataset of attribute

descriptions of objects in the RGB-D object dataset. Experiments on this dataset demonstrate the

strong performance of our approach for language-based object identification. We also show that

our attribute-dependent features provide significantly better generalization to previously unseen

attribute values, thereby enabling more rapid learning of new attribute values.

The main research contributions of the chapter are: (1) establishing work as a pioneering effort

on attribute learning for robots, and (2) Proposing a method to extract task-dependent features based

on unsupervised feature learning techniques.
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1.4.2 Learning to Identify New Names

In Chapter 3, we focus on a method of understanding new names and identifying objects based

on new names without seeing any examples. Identifying objects based on language descriptions

is an important capability for robots interacting with people in everyday environments. People

naturally use attributes and names to refer to objects of interest. Due to the complexity of indoor

environments and the fact that people refer to objects in various ways, a robot frequently encounters

new objects or object names. To respond to such situations, it must be able to grow its object

knowledge base continuously. In this chapter, we introduce a system that organizes objects and

names in a semantic hierarchy. Then, the vector representation of words is learned to embed the

hierarchy information. The vector representation allows measuring the similarity between words;

therefore, it enables mapping novel objects and names to existing ones. Novel objects are inserted

automatically into the knowledge base, where their exact location in the hierarchy is determined by

asking a user questions. The questions are informed by the current hierarchy and the appearance of

the object. Experiments demonstrate that the learned representation captures the meaning of names

and is helpful for object identification with new names.

The main research contributions of the chapter are: (1) studying the novel problem of recognizing

objects based on new object names without seeing any instances, and (2) proposing a metric learning

method to learn hierarchy-embedded vector representation of names.

1.4.3 Building Semantic Hierarchies via Crowdsourcing

In Chapter 4, we focus on methods of building hierarchies of concepts using crowdsourcing.

Hierarchies of concepts are useful in many applications, from navigation to organization of objects.

Usually, a hierarchy is created in a centralized manner by employing a group of domain experts,

a time-consuming and expensive process. The experts often design one single hierarchy to best

explain the semantic relationships among the concepts, and they ignore the inherent uncertainty that

may exist in the process. In this chapter, we propose a crowdsourcing system to build a hierarchy and

furthermore capture the underlying uncertainty. Our system maintains a distribution over possible



10

hierarchies and actively selects questions to ask using an information gain criterion. We evaluate

our method on simulated data and a set of real-world application domains. Experimental results

show that our system is robust to noise, efficient in picking questions, cost-effective, and can build

high-quality hierarchies.

The main research contributions of the chapter are: (1) proposing a novel method to create

semantic hierarchies over a given set of words, (2) conducting extensive evaluations to demonstrate

that the proposed method is robust, efficient and accurate in building various kinds of hierarchies,

and 3) proposing a new model to enable a robot to infer user-dependent hierarchies as described in

Appendix B.

1.4.4 Building and Deploying Task-Dependent Hierarchies: Theory Meets Practice

In Chapter 5, we perform an extensive user study of the proposed hierarchy learning systems.

We propose a new evaluation method utilizing crowdsourcing to evaluate the quality of the built

hierarchies. We use the crowdsourcing experiments to measure the performance of different

hierarchies for an image retrieval task. Extensive evaluations demonstrate that our method can learn

hierarchies more suitable for the task.

The main research contributions of the chapter are: designing a new evaluation experiment to

estimate the quality of hierarchies for fulfilling tasks directly.

1.4.5 Never-Ending Object Learning for Robots

In Chapter 6, we propose a framework to enable a robot to learn objects over its lifetime. Learning to

recognize objects based on names is a crucial capability for personal robots interacting with people

in their environment. Recent recognition methods successfully learn to recognize objects in a train-

once-then-test setting. These methods do not apply readily to robotic settings, where a robot might

continuously encounter new objects and people might use new names to refer to them. In this work,

we present a framework for Never-Ending Object Learning (NEOL). Our framework automatically

learns to organize object names into a semantic hierarchy using crowdsourcing and background
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knowledge bases. It then uses the hierarchy to improve the consistency and efficiency of annotating

objects. It also adapts information from additional image data sets to learn object classifiers from a

small number of training examples. We present experiments to test the performance of the adaptation

method and demonstrate the full system in a never-ending object learning experiment.

The main research contributions of the chapter are: (1) presenting the first Never-Ending Object

Learner for robots and (2) achieving both coverage and precision in the process of never-ending

learning.
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Chapter 2

ATTRIBUTE-BASED OBJECT IDENTIFICATION

2.1 Introduction

Identifying objects in complex scenes is a crucial capability in order for an autonomous robot to

understand and interact with the physical world and be of use in everyday life scenarios. Over the last

few years, the robotics community has made substantial progress in detection and 3D pose estimation

of both known and unknown objects [94, 121]. The development of features and algorithms for

combining color and depth information provided by RGB-D cameras further increased the accuracy

of object detection [94]. So far, virtually all work on object instance recognition assumes that

each object has a unique ID by which it is referenced. However, this is not how people would use

language to identify objects in everyday settings [44]. Since not every object in an environment has

a unique language identifier, people often use object name and additional attributes - such as color

(blue), shape (round), size (large), material (metal), and others - to refer to specific objects. For

instance, a person might say, “Bring me my coffee mug; it’s the blue one.” or “Pick up the Oreos on

the kitchen counter.” (see Figure 2.1). While the first statement requires a color attribute to identify

the correct object, the object name “Oreos” is sufficient in the second statement.

The computer vision community recently started to investigate the use of attributes for object

recognition [66]. Their work showed that it is possible to recognize new object types solely by

their appearance attributes [123], and that using attributes improves recognition of fine-grained

object classes such as bird species [59]. However, these approaches do not consider the task settings

typically observed in robotics, where a combination of appearance attributes and object names

might be used together to identify specific objects in a scene, rather than describing general object

categories only. Recent work in semantic natural language processing introduced a joint model for

language and visual attributes for the purpose of object identification [143]. Yet the main focus of
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(a) Command could be “Bring me my coffee mug; it’s

the blue one.”

(b) Command could be “Pick up the Oreos on the kitchen

counter.”

Figure 2.1: Object identification: Identify and visually recognize language attributes that refer to the desired

object (marked by red rectangle).

the work was on language learning.

In this chapter, we introduce an approach for identifying objects based on appearance and name

attributes (while people might use additional cues such as gestures and spatial attributes, this work

focuses on intrinsic attributes only). Specifically, we consider the following object identification

task: A robot perceives a set of segmented objects, is given a sentence describing attributes of one

of the objects and has to identify the particular object being referenced. Attributes are grouped

into different types: shape, color, material, and name. The attribute type name contains all words

people might use to name an object. For instance, a name could be an object type, such as box,

or a specific product, such as Mini Oreo. To learn rich RGB-D features needed for attribute

classification, we build on recently introduced sparse coding techniques [17]. Our approach first

learns codebooks from color and depth images captured by an RGB-D camera, and then it uses

group lasso regularization to select the most relevant codewords for each type of attribute. These

attribute-dependent codewords generalize much better than fully unsupervised learned codebooks,

especially when only limited training samples are available.

To evaluate our approach, we collected an RGB-D attribute dataset for a subset of objects taken

from the RGB-D object dataset developed by Lai et al. Attribute values are gathered via Amazon
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Mechanical Turk. This dataset provides a rich selection of attribute words and names people use

to describe objects. In addition to describing individual objects, we also collect a SCENE dataset,

which contains multi-object scenes. The dataset simulates the task where a person might command

a robot to pick up an object from multiple objects placed on a table. Experiments demonstrate that

our learned appearance and name attributes are extremely well suited to identify objects.

This chapter is organized as follows. We present in Section 2.2 attribute types and our object

attribute dataset. Then, in Section 2.3, we introduce our approach to attribute-dependent feature

learning, followed by experimental results in Section 2.4. We conclude in Section 2.5.

2.2 Dataset

We developed a new RGB-D Object Attribute Dataset for training attribute classifiers. This dataset

consists of 110 objects in 12 categories from the RGB-D Object Dataset [122]: ball, coffee mug,

food bag, food box, food can, garlic, instant noodle, marker, sponge, stapler, tomato and water

bottle. Figure 2.2 shows the 110 objects from our dataset. We collected labels for the attributes of

objects using Amazon Mechanical Turk (AMT). In particular, we ask AMT workers to describe

the color, shape, material, and name attributes of objects using simple but precise words or phrases.

According to [44], those attributes are most frequently used in referral language.

We found that different workers tend to use the same words to describe the color, shape, and

material attributes for the same objects. For these attribute types, we select the dominant words used

to describe each attribute for each object instance. Overall, we collected eleven color attributes,

three shape attributes, and six material attributes (see Table 2.1).

The name attribute annotations are inconsistent because people use different names to refer to

the same object for different scenarios. For instance, some people say “bag of chips”, while and

others say “Sun Chips” for the object instance of “Sun Chips”. So we associate all object names

used by AMT workers with an object instance. As a result, the name attribute has 90 different

values (words or phrases) and, for example, the “Sun Chips” object has several possible names, like

“Sun Chips”, “bag of chips”, “bag” and so on. Table 2.1 shows some names used for objects in the

food bag and instant noodles categories. This data is mainly used for the experiments described in
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Figure 2.2: 110 objects in the RGB-D Object Attribute Dataset. Each image shown here belongs to a

different object.

Sections 2.4.3 and 2.4.6.
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Table 2.1: We collected attribute words used by people to refer to 110 objects in the RGB-D dataset. The

words used for color, shape, material, and example name attributes in the Object Attribute Dataset are lists, as

follows.

Attributes Words

Color
red, orange, yellow, green, blue, purple, pink,

brown, black, white, transparent

Shape rectangle, cylinder, ellipse

Material foam, paper, metal, plastic, food, ceramic

Name

(food bag)

bag, bag of chips, barbecue chips, food bag,

archer farms potato chips, cracker bag, package,

bag of cracker, chicken biscuit, bag of pretzels,

Oreo, snack, Snyder’s pretzels, bag of Sun chips

Name

(instant noodles)

instant noodles, ramen noodles, asian food,

bag, Ichiban instant noodles

2.3 Method

In our object identification framework, the inputs are values forK attribute types,A = {a1, . . . , aK},

and a set containing J segmented objects {I1, . . . , IJ}. The goal is to find the specific object j∗

referred to by the attributes. We identify j∗ by maximizing the likelihood of the attribute values A

given the object Ij∗:

j∗ = argmax
1≤j≤J

p(A|Ij) =
K∏
k=1

p(ak|Ij) (2.1)

where p(ak|Ij) is the likelihood function. Here, we have factorized p(A|Ij) by assuming that the

attributes are independent given the object Ij .

We model the probability of values of each attribute type using a multinomial logistic regression.

In particular, the probability of object I (we omit the subscript when possible) having attribute value
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t is defined as

p(t|I,W ) =
exp(f t(I,W ))∑T
t′=1 exp(f t′(I,W ))

(2.2)

where W are the model parameters for the attribute type k learned from training data, and T is

the number of attribute values belonging to the attribute type k (we used W and T instead of

W k and T k for simplicity). The functions f t(I,W ) are discriminative functions. It might be

useful to think of f t(I,W ) as a compatibility function that measures the compatibility of pairs

of the attribute value t and the segmented object I . This is also called a “soft-max function” in

the neural networks literature. The corresponding log likelihood is of the form log p(t|I,W ) =

f t(I,W )− log
∑T

t′=1 exp(f t
′
(I,W )). We will detail the discriminative functions in the next section.

Accuracy of attribute recognition strongly depends on rich features extracted from the RGB

and depth values of object segments. In our object identification framework, we first learn general

feature codebooks in an unsupervised way [16, 17], and then we sparsify these codebooks to learn

attribute-dependent features via group lasso optimization [150]. We first describe the general

codebook learning approach.

2.3.1 Unsupervised Feature Learning

Our attribute dependent feature learning is built on hierarchical sparse coding [16, 17]. The key

idea of sparse coding is to learn a codebook, which is a set of vectors, or codes, such that the

data can be represented by a sparse, linear combination of codebook entries. In our case, the

data are patches of pixel values sampled from RGB-D images. Our codebook learning algorithm

uses K-SVD [2] to learn codebooks D = [d1, · · · , dm, · · · , dM ] and the associated sparse codes

X = [x1, · · · , xn, · · · , xN ] from a matrix Y of observed data by minimizing the reconstruction

error

min
D,X

‖Y −DX‖2
F . (2.3)

s.t. ‖dm‖2 = 1, ∀m

‖xn‖0 ≤ Q, ∀n
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Here, the notation ‖A‖F denotes the Frobenius norm for matrix A, the zero-norm ‖ · ‖0 counts

the non-zero entries in the sparse codes xn, and Q is the sparsity level controlling the number of

non-zero entries.

With the learned codebooks, sparse codes can be computed for new images using orthogonal

matching pursuit or the more efficient batch tree orthogonal matching pursuit [16]. Spatial pyramid

max pooling is then applied to the resulting sparse codes to generate object level features. A spatial

pyramid partitions an image into multiple levels of spatial cells, and the features of each spatial cell

are computed via max pooling, which simply takes the component-wise maxima over all sparse

codes within a cell (see [17] for details).

2.3.2 Attribute Dependent Features via Codeword Selection

As we will show in the experiments, the features learned via hierarchical sparse coding give excellent

results for attribute classification and object identification when learned on raw RGB and Depth

image patches. However, a limitation of such rich features is that they might not generalize as well

as task dependent features. For instance, imagine one wants to train a classifier for the color “red”

by providing a small set of red example objects. In this case, overly general features might lead to

shape specific codewords being used to learn a good classifier for the examples (overfitting). To

avoid this, instead of learning only one, general codebook, we learn subsets of such a codebook

containing only codewords useful for specific attribute types. Our approach sparsifies codebooks via

group lasso [150]. We now describe this learning approach in the context of attribute classification.

We learn attribute classifiers using linear decision functions

f t(I,W ) =
S∑
s=1

β(Is, D)>ws,t + bt (2.4)

where β(Is, D) are pooled sparse code features over the spatial cell Is, S is the number of

spatial cells drawn from the object I , ws,t and bt are weight vectors and a bias term, W =

[w11, · · · , w1T , · · · , wS1, · · · , wST ], and T is the number of attribute values belonging to one

attribute type. Here, t ∈ {1, · · · , T} denotes a specific attribute value for one attribute type. For

instance, attribute values for the shape attribute are circular, cylindrical, ellipsoidal and rectangular.
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Note that previous work has shown that linear classifiers are sufficient to obtain good performance

for sparse code features [17].

We learn the model parameters from the training data collected from AMT. For each attribute

type, training data consists of G pairs of the segmented objects Ig and their corresponding attribute

values ag. Here, ag belongs to one of T attribute values (e.g., one of the 13 color words for color

attribute). We want to find the model parameters W by maximizing the log likelihood of training

data
G∑
g=1

log p(ag|Ig,W )− λ||W ||21 (2.5)

where ||W ||21 is a regularization term, and its intensity is controlled by the parameter λ. Let wi and

wj denote the i-th row and the j-column of the matrix W , respectively. The matrix norm (2, 1) is

defined as ‖W‖21 =
∑M

m=1 ‖wm‖2. In our case, we have

||W ||21 =
M∑
m=1

‖ w11
m , · · · , wS1

m , · · · , wSTm ‖2 (2.6)

where M is the size of the codebook. This regularization term is called group lasso; it accumulates

the weights of the spatial cells and the attribute values for each codeword using 2-norm and then

enforces 1-norm over them to drive the weight vectors of individual codewords toward zero. The

group lasso thereby sparsifies the codebook and thus leads to an attribute-dependent codebook that

is usually much smaller than the full codebook. If the group lasso drives an entire weight vector wm

to 0, the corresponding codeword no longer affects the decision boundary and has effectively been

removed by the optimization. The (2, 1)-norm regularized log likelihood is a concave function of

W , so the optimal parameter settings can be found without local minima. We use the accelerated

gradient descent algorithm to solve the above optimization problem; it has been proven to have a

fast convergence rate [35, 132].

The intuition behind our codebook sparsification is that the full codebook learned by K-SVD

consists of many types of codewords, while only a small number of codewords is relevant to a given

attribute type. To demonstrate this intuition, we visualize the codebooks selected by our algorithm

for color and shape attributes in Figure 2.3. As can be seen, the color attribute codebook contains
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Figure 2.3: Sparsified codebooks for color (left) and shape (right) attributes. Our approach learned that

solid color codewords are most relevant to classify colors, while depth codewords (grayscale) are most often

selected for shape classification.

only color codewords, while the shape codebook is dominated by depth codewords (black and

white) along with some color gradient codewords.

2.4 Experiments

2.4.1 Dataset

All datasets used in our experiments are available at

http://www.cs.washington.edu/rgbd-object-attributes

Training dataset–Object Attribute Dataset

We use the Object Attribute Dataset described in Section 2.2 to train the attribute classifier. Following

the experimental setting in [17], we take video sequences captured from the 30◦ and 60◦ elevation

angles as the training set and ones captured from the 45◦ angle as the test set (leave-sequence-out

on the RGB-D dataset [122]). For training efficiency, only 1/4 of all images/views are used for

training, i.e., around 2, 500 images for each classifier. All images used in the evaluation dataset,

http://www.cs.washington.edu/rgbd-object-attributes
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(a) “Pick up the

True Delight.”

(b) “Pick up the

brown Ichiban Noo-

dle bags.”

(c) “Pick up the bag

of Mini Oreo.”

(d) “Pick up the

round plastic yellow

marker with a black

cap.”

(e) “Pick up the bas-

ket ball.”

(f) “Pick up the gar-

lic with stem.”

(g) “Pick up the

rectangular one.”

(h) “Pick up the

chunky white box.”

(i) “Pick up the

Oreo box.”

(j) “Pick up the tall

yellow can.”

Figure 2.4: Scenes and sentences collected from Amazon Mechanical Turk. Our system correctly identifies

all objects except the ones in (f), (h), and (j). The attributes “stem”, “chunky”, and “tall” are relative or

parts-based attributes not contained in the training data.

SCENE, and Section 2.4.3 are from sequences of the 45◦ angle.

Testing dataset–SCENE

To evaluate attribute-based object identification, we collect an additional dataset called SCENE,

which contains 2, 400 scenes. Each scene has four different objects in it, one of which is the

target object (that people refer to as the one marked by a red bounding box). We present each

scene to AMT and ask workers to write a sentence, based on which robot can identify the target

object. Figure 2.4 gives some example scenes along with the sentences collected via AMT.
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Table 2.2: Statistics for the SCENE dataset.

Overall SCENE-D SCENE-S

Raw Data 2,400 2,000 400

V ersion1 2,027 1,767 260

V ersion2 1,767 1,577 190

SCENE has two parts, SCENE-D and SCENE-S. The first part consists of 2, 000 scenes, each of

which contains four images of four different objects randomly selected from all 110 objects. We

call this set SCENE-D since the objects are typically from different categories. Panels (b), (c) and (i)

in Figure 2.4 are examples of this part. The second part, SCENE-S, consists of 400 scenes containing

4 objects randomly picked from the same category. The remaining panels in Figure 2.4 are taken

from SCENE-S.

To automatically extract attributes and names from the AMT sentences, we rely on WordNet [69]

and the Stanford Part of Speech (POS) tagger [193]. First, we use POS to tag every word in a referral

sentence. All adjectives are considered as appearance attributes, and noun phrases are treated as

names of objects. However, the scene descriptions might contain attribute words that were not used

in the training set. For each unknown adjective, we use WordNet to determine if it is a synonym or

hyponym of a known attribute. Since not all new words can be mapped to any known words, the

test scenes might contain information that our classifiers cannot use.

To evaluate how well sentences can be parsed automatically by our approach, we analyzed

all 2, 400 sentences provided via AMT and checked which of them were sufficient to identify the

referred object. This gave us a subset of clean data, called V ersion− 1. As can be seen in Table 2.2,

2, 027 (or 84.5%) of the AMT sentences in the SCENE dataset are sufficient to uniquely identify

the target object in the scene. Broken down into SCENE-D and SCENE-S, we get 1, 767 (88.4%)

and 260 (65.0%) sufficient sentences, respectively. The lower percentage of correct sentences in

SCENE-S is because it contains more complex scenes, and Mechanical Turkers tend to make more
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Figure 2.5: Frequency of different subsets of attribute types used by people to identify objects. N stands for

name, C stands for color, S stands for shape and M is stands material. Other means other attribute types,

such as relative or parts-based. Only the most frequently used attributes or attribute combinations are shown.

mistakes on these. We further checked among the sentences in V ersion− 1 to determine how many

of them our system could parse successfully to known attributes (we call this set V ersion − 2).

The numbers in Table 2.2 show that our language pipeline correctly parsed 89.2% (1, 577 out of

1, 767) and 73.1% (190 out of 260) of the valid sentences in SCENE-D and SCENE-S, respectively.

A careful analysis of the failure cases showed that for more difficult scenes, people use other types

of attributes, such as relative attributes (darker, smaller) and localized attributes (having a white

cap), which cannot yet be handled by our system.

We then evaluated which attribute types AMT workers used for object identification in the textsc-

Scene dataset. Figure 2.5 shows percentages for the most frequently used combinations of attribute

types among all tasks. For the textscScene-D set, Name is the most commonly used attribute. The

second and third most frequent attributes are Name with Color (N/C), followed by Color only. The

use of different attributes are not very surprising since Name and Color are very distinctive attributes,

especially when the objects belong to different categories (it is interesting to note on Figure 2.6
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Figure 2.6: Object identification results using four types of attributes and their combination.

that Name and Color are also the two most discriminative attributes for our system). For SCENE-S,

Name is not used as often as it is for textscScene-D. People tend to use Color and other attributes

more often to identify specific objects.

2.4.2 Learning Setup

We learn general codebooks of size 1, 000 with sparsity level 5 on 1, 000, 000 sampled 8× 8 raw

patches for both RGB and depth images. We remove the zero frequency component from raw

patches by subtracting their means. With these learned codebooks, we compute sparse codes of

each pixel (8× 8 patch around it) using batch orthogonal matching pursuit with sparsity level 5, and

we generate object level features by spatial pyramid max pooling over the whole images with 4× 4,

2× 2, and 1× 1 partitions. The final feature vectors are the concatenation of the features over depth

and color channels, resulting in a feature size of 42, 000 dimensions. The hyperparameters of sparse

coding and multinomial logistic regression are optimized on the RGB-D object attribute training

set (no test data was used for hyperparameter optimization). Average classification accuracy for

individual attribute types i 97.9% (name), 89.1% (color), 94.7% (shape) and 97.0% (material).
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2.4.3 Attribute Recognition for Object Identification

In this section, we evaluate the utility of attributes for object identification. The test data for

object identification consists of 1, 000 scenes, each of which is generated by randomly picking

4− 10 different segmented object instances from the 45◦ angle test sequences. We consider three

experimental settings.

In the first setting, we aim to identify the target object from a set of 4, 10, or all objects using

all 4 attribute types provided by a Turker for the target object (i.e., Turkers mention name, color,

shape and material of the target object). We report the results of the different attribute types and

their combination in Figure 2.6. First, we see that all four types of attributes are helpful for object

identification, and that their combination outperforms each attribute by a large margin. For instance,

for 10-object scenes, the combination of all four attributes achieves more than 10% higher accuracy

than object Name and more than 20% higher than the appearance attributes (Shape, Color, and

Material). Not surprisingly, the accuracy of object identification decreases with an increasing

number of objects in the set. But the performance of the combination of all four types of attributes

drops much less than the individual attribute. Figure 2.6 also shows the results of object instance

recognition, in which each object gets a unique Object ID; (note that this is not the realistic setting

for a natural language interface since not all objects in an environment can be named uniquely). It is

very satisfying to see that our attribute-based identification slightly outperforms even this setting for

4 and 10 objects, indicating that learning multiple attribute classifiers provides higher performance

than a single classifier even when trained on artificially provided IDs.

Note that the rightmost results represent an extreme case, assuming all 110 objects are placed in

the same scene. Results show that we can achieve an accuracy of 50% using language attributes.

The accuracy is significantly worse than that for object ID. The comparison suggests the potential

benefit of introducing additional attribute types such as relative (darker, smaller) and spatial (the

box on the left) attributes for more cluttered scenes.

The Gricean Maxims [44] suggest that people avoid redundancy in referral expressions and use

only a subset of attributes for reference. In this second setting, we aim to identify the specific object
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Table 2.3: Object identification accuracy (%) using different sets of attribute types.

# of objects

4 6 8 10

All attributes 97.7 96.1 94.6 93.4

Minimal subset of attributes 91.0 88.8 87.3 86.1

from a set using a minimal subset of attributes, that is, only using attributes required to distinguish

the target object. To get the minimal subsets, we try all the combinations of one, two, three, and four

attribute types in turn and stop when the attribute combination is sufficient to distinguish the target

object from the others (using ground truth attribute labels). We found that 87.6% scenes containing

10 objects can be identified based on only one attribute, 12.6% of them can be identified based on

two attributes, and only 0.01% require three or more attributes. We report the results in Table 2.3.

The results show that our approach obtains very high accuracy even in the minimal subset setting,

suggesting the robustness of attribute-based object identification. Note that it is not surprising that

the minimal subset of attributes works slightly worse than the combination of all four types of

attributes since redundant attributes increase the robustness of object identification.

2.4.4 Scene-Based Object Identification

We now describe our evaluation of the SCENE dataset. We report the results on the raw data and the

two validated subsets (V ersion1 and V ersion2) in Table 2.4. As can be seen, the attribute-based

object identification framework achieves high accuracy even for the raw data. The accuracy on the

verified data is even higher: 90.2% and 94.4% on the first type of test (objects are of different types).

The accuracy decreases for SCENE-S, because the task is much harder than the first one. However,

even in this most difficult setting, we still achieve 67.6% and 77.3% accuracy on the validated data

and 64.3% on the raw AMT sentences (chance would be 25%). The overall performance on both

types of tasks is 88.7% and 93.2% on the validated data and 83.7% on the raw data.
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Table 2.4: Object identification results (Accuracy %) for SCENE, SCENE-D and SCENE-S.

SCENE SCENE-D SCENE-S

Raw Data 83.7 85.6 64.3

V ersion1 88.7 90.2 67.6

V ersion2 93.2 94.4 77.3

2.4.5 Reproduce Human Behavior

From previous cognitive research [44], we know that people efficiently pick a subset of attributes to

describe the target objects. They use minimum attributes when they are confident that a listener can

differentiate the target object from other objects based on the selected attributes. We follow those

rules and try to reproduce human behavior in accomplishing the identification task. Specifically,

we want to choose the smallest attribute subset based on people’s estimation about distinctiveness.

The expected result of the experiment is to see the same frequency distribution over different

attributes (like the frequency of Turkers’ answers shown in Figure 2.5). This test would support our

understanding of the identification task.

To reproduce human behavior, we first need to model the distinctiveness of attributes. Specifi-

cally, we want to know how much people believe an object o has a certain attribute value a. This

could be computed using the attribute classifiers, which give P (a|o). Based on this we compute the

likelihood of our target object given attribute set A = {a1, ..., aK} using the Bayes’ rule, i.e.,

P (o|A) =
P (A|o)P (o)

P (A)

=
P (A|o)∑
oi
P (A, oi)

=
P (A|o)∑

oi
P (A|oi)P (oi)

. (2.7)

Using the naı̈ve Bayes assumption that given object attributes are independent conditioned on
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objects, and that each object is uniformly picked, Equation (2.7) will be rewritten as

P (o|A) =
ΠK
k P (ak|o)∑

oi
ΠK
k P (ak|oi)

. (2.8)

The likelihood of the target object represents people’s confidence about using K attributes to make

the target object distinguishable.

Second, we model how to create the smallest subset of attributes. We adopt a greedy algorithm,

which is similar to the approach in [44]. Note that Dale and Reiter use an empirical estimation of the

distinctiveness for each type of attributes and our work uses the distinctiveness given by the visual

recognition system. Our distinctiveness measure could change according to different scenarios. For

example, color is a very distinctive attribute according to Dale and Reiter. However, it should not

be much less distinctive when the lighting condition of an image is quite poor. By comparing the

performance of our method and the previous method, we could tell whether people also estimate

distinctiveness of attributes based on the visual cue.

The greedy algorithm for generating a set of attributes works as follows: the algorithm first

computes the confidence of success identification of the target object for the individual attribute.

If any attribute generates confidence (Equation (2.8)) higher than a given threshold (set to 90%

in our reproducing experiment), the algorithm will stop and use the most confident attribute for

identification. Otherwise, two attributes will be used. The algorithm will keep adding attributes

until the confidence level of correct identification is higher than the given threshold.

Following the greedy algorithm, we generate a subset of attributes that we believe people will

use for each scene of the SCENE dataset. We compute the frequency of each attribute subset over

the whole SCENE dataset, and we show the frequency of subsets frequently used by real people on

the SCENE dataset (i.e., N, N/C, C, other, N/C/S and C/S) in Figure 2.7.

Figure 2.7 shows that name and color are still frequently used. But they are not as frequent as

when they are used by people in the real identification tasks. One possible explanation is that our

strategy for selecting attributes assumes that people treat all attributes as being equally important

without any preference. However, in reality people do have preferences for attributes. For example,

people prefer to use names instead of materials even when they both are equally distinctive. This
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Figure 2.7: Frequency of different subsets of attribute types used by reproducing human behavior of

identifying objects. N is short for name, C is short for color, S is short for shape and M is short for material.

other means other attribute types such as relative or parts-based. Only the most frequently used attributes or

attribute combinations are shown.

suggests that we should consider priors when generating attributes. Another possible reason is

that our way of estimating distinctiveness using visual classification score is not very accurate. As

we know the same vision task may be very simple for humans but very hard for computer vision

classifiers. We will consider these two points when we build a better identification model in our

future work.

2.4.6 Sparsified Codebooks for Transfer Learning

We perform the following experiments to investigate whether our attribute-dependent codebooks

are more suitable for learning new attribute values compared to using the full codebooks. For each

type of attribute, we leave two attribute values out as new (or target) attribute values and learn a

sparsified codebook using the remaining attribute values. We then train models for the leave-out

attribute values and test them on the test set for these attribute values. For example, in one setup we
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Figure 2.8: Error rates for learning new attribute values from different numbers of training examples (# of

training samples are in log scale).

omit the colors blue and yellow, learn a sparsified color-dependent codebook using the other colors,

and then use that codebook to learn classifiers for blue and yellow (see also Figure 2.3 for examples

of sparsified codebooks for color and shape).

We compare the results obtained by the sparsified codebook and the full codebook in Figure 2.8.

As can be seen, the sparsified codebooks significantly outperform the full codebooks on small

numbers of training samples for color, shape, and material attributes. Unlike the full codebook,

which contains a lot of redundant information for learning particular attribute types, the sparsified

codebooks select codewords related to the particular attribute type; therefore, we can learn new

attribute values especially with limited training samples. The sparsified codebooks result in much

less chance to overfit to the training sets than the full codebooks and thus achieve better accuracy

in this scenario. We also tried the sparsified and full codebooks for the object name attribute and

found that these two approaches have comparable accuracy on the test set. The similar performance

of the two codebooks is expected since the object name attribute is a highly mixed concept, and

virtually all codewords are relevant to it.

2.5 Discussion

In this chapter, we present an attribute-based approach for object identification. We consider

four types of attributes: shape, color, material, and name. We classify each type of attribute via
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multinomial logistic regression. Our model learns perceptual features used for attribute classification

from raw color and depth data. It incorporates sparse coding techniques for codebook learning and

then uses group lasso regularization to select the most relevant codewords for each type of attribute.

To investigate the object identification task on realistic objects, we generate a large attribute

data set by collecting descriptions for objects in an existing RGB-D object dataset [122]. Our

experiments demonstrate that: 1) all types of attributes are helpful for object identification, and their

combination works much better than the individual attribute, and 2) attribute-dependent sparsified

codebooks significantly improve the accuracy over non-specific codebooks for learning new attribute

values when only limited training samples are available. We believe that the capability of learning

from smaller sets of examples will be particularly important in the context of teaching robots about

objects and attributes and creates natural human-robot interfaces.

The work of this chapter has several limitations that deserve further study. Although treating

different attribute types independently achieves excellent performance, considering them jointly

might further improve performance. More complex combinations of attributes and gestures are

also an important direction for future work. Attributes describing an object’s spatial and physical

relationship to other objects in a scene are also important. Those localized attributes are useful

especially for fine-grained object identification. Last but not least, we only use a flat model for

object names, while a more complex, hierarchical model could further improve results. We will

present an improved object identification system - one that uses the hierarchy of names to recognize

new objects based on new names - in the next chapter.
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Chapter 3

LEARNING TO IDENTIFY NEW NAMES

3.1 Introduction

Identifying objects specified by a person is a crucial capability of household robots. When a person

is referring to objects, he/she naturally refers to them using natural language to describe their

attributes. For example, a person may say, “Here is a red Chex box”; “red” is a visual attribute

(color), and “Chex box” is a name attribute. We discussed identifying objects based on attributes

in the previous chapter; technique proposed in there assumes that all attribute values are known

beforehand. However, due to the complexity of indoor environments and the many different names

that can refer to objects, a robot will inevitably encounter unknown objects and names. This chapter

studies techniques that enable robots to identify and learn objects in this challenging setting where

objects are referred to by names.

One way of understanding new object names is to associate them with semantically related

names learned by the robot. A natural approach to measuring the similarity between two words

is to measure their distance defined by a taxonomy/hierarchy [124, 161, 210]. Figure 3.1 shows

one example taxonomy/hierarchy. And according to the hierarchy, “Chex Box” is more similar to

“Cereal Box” than “Apple”, as the path between “Chex Box” and “Cereal Box” is shorter than the

path between “Chex Box” and “Apple”. The hierarchical organization of object names can then

be applied to identify novel objects. For example, assume the robot has the name hierarchy shown

in Figure 3.1 and a scene shown in Figure 3.2. It receives a new word “Chex Box” when a person

says “Pick up the Chex box.” It might have seen some other types of cereal boxes but not the Chex

box. In this situation, it can still identify the correct object because “Chex” should be recognizable

as a “Cereal Box.” Hierarchies are useful for robot to recognize new objects and names.

However, names encountered by a robot may not have been included in an existing hierarchy.
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Figure 3.1: Part of an object name hierarchy.

Figure 3.2: Using the name hierarchy in Figure 3.1, the correct object in “Pick up the Chex Box” can be

identified through the “Cereal Box” classifier even without ever having observed a Chex box before.

For example, the most widely used semantic hierarchy, WordNet [69], covers many category names

like “cereal box”. But it does not usually include instances (e.g., “Chex”) that are frequently used

by people [183] to refer to objects. Moreover, people may use different words to refer to the same

concept, e.g., people might call a “mug” a “cup”. It is thus necessary for an autonomous robot

to automatically fulfill the following two tasks: 1) extend an existing hierarchy by inserting new

instance names into the right places, and 2) associate synonyms with existing words in the hierarchy.

To insert an unknown name into an established hierarchy, we need to find a path of words in

the hierarchy such that all words are hypernyms of and semantically similar to the target word.
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We could use existing work [134, 196] to represent each word using a vector and computing the

distance between vectors to measure the similarity between words. The vector representation of

words has been proven to have good correlation with the human judgment of words’ similarity [81]

and is used widely in practice. However, few methods considered the hierarchical structure of words

in learning the words’ representation when this work was first published.

In this chapter, we propose a new method to learn a vector space representation of words that

captures hierarchy information. In the hierarchy-embedded space, the distance between words is

coherent with the distance within the name hierarchy. This let the robot use the similarity in the new

space to find a path of words containing hypernyms of the new word from the existing hierarchy

more accurately. We also propose a method to let users help the system find the exact meaning of a

name and, therefore, extend the name hierarchy.

This chapter is organized as follows. After discussing related work in Section 3.2, we introduce

the identification system in Section 3.3. We then propose a name learning method in Section 3.4.

Section 3.5 discusses how users can interact with the system to find the exact meaning of names.

We show the effectiveness and efficiency of the proposed system in Section 3.6 and we conclude

our discussion in Section 3.7.

3.2 Related Work

Many efforts have been made for helping computers to learn the meaning of new words. One way is

by using domain experts’ knowledge. One famous example is the WordNet database [69], which

organizes words in a hierarchy based on their semantic meaning. It relates words by their synonymy

and hypernymy relationships. This relationship is useful for understanding words since if a word is

included in the WordNet hierarchy, its meaning can be inferred from its ancestors and descendants.

Although WordNet covers a large number of words, most of them are category names.

Another direction is to learn the meaning of words from documents. A word can be represented

as a vector [62] generated from a large corpus of documents. The vector is computed based on the

word frequency within the context of the target word, where context could be documents, paragraphs

or other small windows within documents. The context-based vector representation has been
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successfully applied to many natural language applications such as search query expansion [104],

information retrieval [155], and automatic annotation of text [163]. Although the recent success of

deep learning methods has improved the quality of vector representations [136, 157], most methods

still do not consider structured semantic meaning, such as synonym or hypernym relationships. In

this chapter, we will discuss a method to learn a vector representation that embeds the hierarchy

information to make the representation more coherent with the experts’ knowledge, e.g., WordNet.

Our research did not uncover much work on embedding hierarchy information into the vector

representation of words when we began. Recently, we have become aware of related work [199],

which further demonstrates the importance of the work in this direction.

3.3 Indentification System

In this chapter, our goal is to build an identification system for RGB-D scenes such that a human

can interact with the system by natural language. We train our system based on the attribute-based

identification system described in Chapter 2. To be more specific, we keep the same appearance

attributes as the previous system and elaborate the name attributes component. We use the same

notations as the previous chapter: o for object, a for attribute, and I for object segmentations. In

this section, we treat ‘name’ as a special attribute and use w to denote it.

In the previous chapter, names were treated independently. However, this treatment ignores

the semantic relation between them. Here, our system considers the semantic relation between

names and organizes them as a semantic hierarchyH. Each node n in the hierarchy is a category

like “Fruit”, “Container”, “Cereal Box”, and others. Each node is associated with all synonyms

corresponding to that category. For example, the node “Cereal Box” may be related to “Food Boxes”

and “Cereal Box”. Note that this organization of names is similar to WordNet synsets. Hence, we

can adopt WordNet to initialize the hierarchyH.

We then build name classifiers using the hierarchy. For every non-leaf node with more than one

child, we train a multinomial logistic regression over all the objects belonging to different child

nodes of this node. Here, we extract Hierarchical Matching Pursuit features over object segments.

Note that each classifier actually predicts a conditional probability P (ni|o, nj), where nj is the
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parent of ni. To get the probability of P (w|o), where w is a name contained in a node nw of the

tree H, we need to consider all the predictions given by node classifiers along the path from the

root to nw denoted as pw = [nw1 → · · ·nw(L−1) → nwL ] with nwL = nw. Using the product rule and

conditional independence encoded by the tree-structure, we have the following

P (w|o) =
L−1∏
l=1

P (nwl+1|o, nwl ). (3.1)

If a person uses a name that is new to the system, it is more challenging to find the correct path.

We will handle this case in the next section.

3.4 Method

To handle new names, our identification system will associate them with existing ones in the

hierarchy so as to find a path for name prediction. Here, we propose a method based on learning

vector representation of names.

Our system starts with a set of names organized in a tree-structured name hierarchy H. Each

node in H contains at least one name word wi . Given a new name w, the goal of our method is

to find a path of names starting from the root node and ending at the node to which the new word

belongs. The new word belongs to a node such that: 1) if the new word is a synonym of an existing

word, the new word will be added to the node of its synonym, and 2) if the new word is a hyponym

(specialization) of a leaf node, a new leaf node will first be added as a child of the current leaf node,

and the new name will then be associated with the new leaf node. In this chapter, we assume that the

system has already knowns all object categories; therefore, we do not consider adding new category

nodes. We will discuss how to relax this constraint in the next chapter.

3.4.1 New Name Inference

For a name that is new to H, we will find the node into which the new name should be inserted.

The target node should contain words with similar semantic meaning similar to the new name. One

naı̈ve solution is to measure the similarity between the new name and all the nodes inH, then select
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the node with the highest similarity to the new name. However, this approach could cause semantic

drift. To avoid semantic drift, we use the path as a regularization: the new name should be similar

not only to one node, but also to all its ascendant nodes.

Next, we will describe how to measure similarity between nodes. Motivated by the success of

previous work by Socher et al., we represent every word w as a d-dimensional vector vw ∈ Rd using

a vector space model and measure the similarity between words using Euclidean distance in the space.

vw is given by the co-occurence with other words within a large document corpus [175]. To measure

the distance between the new name w and a node n associated with M names {vn1
w , · · · ,vnM

w },

we use the average of M words distances. This is the same as representing a node in the same

d-dimension space as

vn =
1

M

M∑
m=1

vn
m
w .

As can be seen, a node can be represented in the same vector space for names. So we will treat a

node the same as a name in the following section.

3.4.2 Hierarchy Embedded Vector Representation

The original vector representation does not explicitly consider the hierarchy relation between words.

Therefore, the distance between words might not reflect the distance embedded by the hierarchy. In

this section, we will learn a new vector representation, that can embed hierarchy knowledge.

Given a new word w, a hierarchy H, and the ground truth path p = [n1 → · · ·nl · · · → nL]

that leads to a node nL associated with w, we want the ground truth path to have the best score.

Specifically, we define a decision function ψ : (w,H,p)→ R to measure the match score between

a path p and a word w given the hierarchyH, such that

pw = arg max
p

ψ(w,H,p), (3.2)

where pw is the ground truth path. In the following, we replace a word with its vector representation

vw and omit w for simplicity. For vnl , we use vl when there is no confusion.
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For a path p with L words, we compute the decision score of the path as the sum of scores of all

nodes in it

ψ(v,H,p) =
L∑
l=1

φ(v,vl)

L
, (3.3)

where φ(v,vl) measures the match score between words v and vl. The intuition behind Equa-

tion (3.3) is that if p is the real path, v is semantically close to all vl within the path, resulting in a

high score for each φ(v,vl). The resulting total score ψ(v,H,p) for the path will then be high, as

well. The length of the path L is used to normalize the score so as to remove the bias toward long

paths.

A natural choice of φ(v,vl) is the negative distance between v and vl as

φ(v,vl) = −(v − vl)
T (v − vl).

However, the original vector space does not explicitly consider the structural semantic information

embedded in the name hierarchy. The correct path might thus not maximize the score function

defined in Equation (3.3).

To embed hierarchy information into the score function, we parametrize the score function as

ψA(v,H,p) =
L∑
l=1

φA(v,vl)

L
, (3.4)

where

φA(v,vl) = −(v − vl)
TATA(v − vl). (3.5)

HereA ∈ Rd×d is a linear transformation mapping v into a new space. ATv is the new representation

of word w. φA(v,vl) measures the negative distance between words in the new vector space. Let

W = ATA, and we can rewrite Equation (3.5) as

φW (v,vl) = −(v − vl)
TW (v − vl), (3.6)

where W uniquely defines the new space and is usually called a metric.
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Learning the parameterized score function can be formulated as a structure prediction prob-

lem [187]. To be consistent with the hierarchy information, the parameterized score function has to

satisfy the constraints

ψW (v,H,pw) ≥ ψW (v,H,p),∀v,p

where pw is the ground truth path for v provided for the training data. Thus, the correct path should

have a higher score than any other path p. We define a shorthand δWψ(v,p) ≡ ψW (v,H,pw)−

ψW (v,H,p), giving us the set of constraints as

δWψ(v,p) ≥ 0,∀v,p. (3.7)

If the set of constraints in Equation (3.7) is feasible, there typically will be more than one

solution W . To make the solution unique and avoid overfitting [187], we generalize the idea of max

margin and select a W of low rank by minimizing its trace

min
W

tr(W )

s.t. δWψ(v,p) ≥ 1,∀v,p

W � 0.

The condition W � 0 enforces W to be Positive Semi-Definite (PSD) so as to be a valid metric and

decomposable as ATA.

Different predictions, or paths p for pw, should be penalized with different loss: if two paths

diverge at the higher level of the tree, the loss should be high since two concepts are too far away

from each other. We use tree loss ∆(pw,p) to measure the loss of mis-predicting the real path pw

as p, which is the deepest level in a tree such that p and pw are the same. Then the constraint set

becomes

δWψ(v,p) ≥ ∆(pw,p),∀v,p

So the final optimization problem is the following convex optimization
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min
W

tr(W ) + C

N∑
i=1

ξi, (3.8)

s.t. δWψ(vi,p) ≥ ∆(pi,p)− ξi, ∀i,p

W � 0, ξi ≥ 0

where we also introduce the slack variables ξi, and i indexes all training examples.

Note that the training examples for this learning problem can be gathered from the known

hierarchyH, which could be a part of the WordNet hierarchy. For each non-root word inH, we can

find a unique path from the root. The pair of a node and its path are one training example. In total,

we can collect N = |H| − 1 training pairs from the hierarchy.

3.4.3 Optimization

The optimization problem in Equation (3.8) is convex and, therefore, has a global solution. However,

the number of constraints in Equation (3.8) grows quadratically as |H| increases. Efficiency will

thus be an important issue to solving the problem. Fortunately, only part of the constraints define

the feasible set of solutions for the constraint optimization problem, so we can use the cutting-plane

method [102], which efficiently solves constraint problems because it uses only active constraints.

We adapt the 1-Slack cutting plane algorithm used by McFee and Lanckriet to our problem.

In the original optimization problem (Equation (3.8)), there are N -Slack variables. The 1-Slack

method combines a batch of active constraints specified as (p1
b , · · · ,pNb ) into one single constraint.

All new constraints share the same slack variable ξ. It thereby reduces the number of constraints

and slack variables and makes very large optimization problems solvable.

The algorithm is summarized in Algorithm 1, which alternates between updatingW and updating

the active constraint setW . Line 5 of Algorithm 1 updates W with constraints specified byW by

gradient descent. The gradient of the object function in Equation (3.8) over W is computed as

∂f

∂W
= I − C

N

N∑
i=1

δWψ(vi,pi∗),
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where ∗ indicates the single batch of constraints (p1
b , · · · ,pNb ) with the largest gap between

1
N

∑N
i=1 ψ(vi,pib) and 1

N

∑N
i=1 ∆(pi,pib). After the gradient descent update of W , the algorithm

projects W back onto the set of PSD matrices by spectral decomposition.

After updating W , the algorithm finds the pib maximizing the gap between ∆(pi,pi) and

δWψ(vi,pi) for the i-th word (line 8). (p1
b , · · · ,pNb ) are put together as the b-th new batch, which

will be added into the active constraint setW .

The cutting-plane method converges when the gap between 1
N

∑N
i=1 ψ(vi,pib) and 1

N

∑N
i=1 ∆(pi,pib)

is smaller than a given threshold ε (line 4). Theoretical results guarantee that it converges

quickly [102]. In practice (see Section 3.6), we also found that it converges after only few it-

erations. Algorithm 1 returns the metric W parameterizing the path score function given as input.

3.5 Interaction with Humans

When using of the system, the path p = [n1 → · · ·nL] determined for a new word w might not

be entirely correct. Inserting w into the hierarchy solely based on the most likely path p would

introduce substantial noise and semantic drift. To avoid this, our system interacts with a human by

asking questions to find the correct place for w. The “best place” here means either w is a synonym

of nL, or w is a hyponym of nL and nL is a leaf node inH. The second case indicates w is a new

instance name.

3.5.1 Interaction with Humans

Our system interacts with people by asking questions. After finding the most likely path p = [n1 →

· · ·nL], the system asks a question for the last node nL to determine its relationship with the new

word. There are three possible relationships between w and nL: w is a synonym, hyponym or

neither. If w is a synonym of nL, it will be associated with nL. If w is a hyponym of a leaf node nL,

w will be inserted into the hierarchy as a new child node of nL. If nL is neither case of w, nL should

not be part of the correct path pw. The system then finds the next best path and repeats the same

procedure. The correct path will eventually be found since we assume a name is either a synonym
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Algorithm 1 Algorithm for learning hierarchy-embedded vector space.
1: Input:

Words representation {v1, · · · ,vN};

rankings {p1, · · · ,pN };

Slack trade-off C;

Convergence tolerance ε

2: Output:

Metric W

3: W ← ∅, ξ ← 0

4: while ε + 1
N

∑N
i=1 δWψ(vi,pib) ≥

1
N

∑N
i=1 ∆(pi,pib) − ξ

do

5: update metric

W = arg min
W

tr(W ) + Cξ

s.t.
1

N

N∑
i=1

δWψ(vi,pib) ≥
1

N

N∑
i=1

∆(pi,pib)− ξ (3.9)

∀ (p1
b , · · · ,pNb ) ∈ W

6: for 1→ N do

7: pib = arg maxp∆(pi,p)− δWψ(vi,p)

8: W ←W ∪ {(p1
b , · · · ,pNb )}

of an existing word or a new instance name.

3.5.2 Incorporating Perception

In the attribute-based identification setting, a user uses an object name together with several

appearance attributes to specify the target object. An intuitive way of deciding which node to ask

about could thus be based on information gain, using the posterior uncertainty over the objects in
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the scene

n∗ = arg min
n
H[P (o|n, a1, · · · , ak)], (3.10)

where H[·] is the entropy. Unfortunately, Equation (3.10) cannot be estimated robustly. So our

system estimates the likelihood P (n, a1, · · · , ak|o) instead of the posterior. Since a person attempts

to uniquely specify an object in the scene, we know that only the target object has a high overall

score of

P (w|o)ΠK
k=1P (ak|o), (3.11)

while the rest of the objects have far lower scores. Base on this fact, we can infer the relationship

between nL and w: we replace w in Equation (3.11) with nL to compute the score of Equation (3.11)

for each object in the scene. If no object has a high score, the system infers that w is neither a

synonym nor a hyponym for nL and rejects the hypothesis nL without asking any question. If there

are several objects with high scores, it infers that nL cannot make the target object unique, which

implies that w might be a hyponym of nL, where several objects of the type corresponding to nL are

in the scene. We use a threshold on the score to distinguish these cases.

3.6 Experiments

We evaluated the name learning and object identification system with three sets of experiments

on the object attribute dataset [183]. Our results suggest that: 1) name learning significantly

outperforms baselines in terms of accuracy of associating new names with the existing name

hierarchy (Section 3.6.2), 2) name learning significantly boosts the object identification system’s

accuracy, particularly when new names are being used (Section 3.6.3), and 3) name learning

significantly reduces the human effort required to correctly insert new names into the existing

hierarchy (Section 3.6.4).

3.6.1 Data Set

We use all 300 objects from the RGB-D object dataset [122] in our experiments. 150 objects were

used to train attribute and name classifiers. All 300 objects are used for testing, i.e., 150 new



44

(a) A scene given to student 1. The student says

“Pick up the yellow clipper.”

(b) A scene given to student 2. The student says

“Pick up the Pepsi.”

Figure 3.3: Two example scenes used in the experiments.

objects in the testing stage. Name and appearance annotations for these objects were collected using

Amazon Mechanical Turk. These attribute labels are available online at our project website1.

We initialize hierarchy H using the WordNet hierarchy, shown in Figure 3.4. In the figure,

all leaf nodes are in blue, with the number of object instances in each leaf node in parentheses.

We extracted features for object images using Multi-Path Hierarchical Matching Pursuit, a feature

learning approach proposed in [18]. Our system then builds attribute classifiers for color, shape, and

material, and an object name classifier for each internal node in the hierarchy using a multinomial

logistic regression implemented in LibSVM [33].

We generated 600 “scenes”, each of which contains 6 randomly picked objects arranged in

image panels. On average, half of the objects have never appeared in the training set. For each

scene, we marked the target object with a red rectangle. Figure 3.3 shows two example scenes.

The yellow “pliers” is the target object in Figure 3.3 (a), and the “Pepsi” can is the target object in

Figure 3.3 (b). We asked two students at the University of Washington to identify the target object

using one sentence for each scene. Each student took charge of 300 scenes.

1
http://www.cs.washington.edu/rgbd-object-attributes-dataset/
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Figure 3.4: Hierarchy used in this chapter. The numbers in parentheses represent the number of different

object instances within each leaf node.
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Figure 3.5: Convergence rate of the cutting-plane method.

3.6.2 Name Learning

We first examined the convergence rate of the cutting-plane method for learning the tree-based word

representation. For a name hierarchy with 72 words (Figure 3.4), there are O(722) constraints in

total. Figure 3.5 shows that the proposed cutting-plane algorithm converges to the given tolerance

ε (set to be 1e−5 in our experiment) after only 8 iterations. This indicates that the cutting-plane

method is efficient and can be scaled to even larger data sets.

We next illustrate that the proposed name learning method captures name hierarchy information.
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Artifact Words Natural Object Words Artifact Natural Object 

(a) Word vector representation without name learning.

Artifact Words Natural Object Words Artifact Natural Object 

(b) Word vector representation after name learning.

Figure 3.6: 2-D projection of all 72 word vectors.

Recall that each word is originally represented by a vector v extracted using a large corpus of web

documents. Figure 3.6 (a) shows the 2-D projection (via PCA) of the original 72 word vectors. All

words belonging to the class of natural objects are marked as red squares, and words belonging to

the class of artifacts as blue diamonds. The words “Artifact” and “Natural Object” are highlighted

using a purple cross and a green triangle so that one can see how other words are related to their

ancestors using the original feature representation.

After the metric learning, each v is transformed to a new vector Av, where A is found via

Cholesky factorization (W = ATA). The learned feature vectors are visualized in Figure 3.6 (b).

In Figure 3.6, we see that Artifact words and Natural Object Words are not well separated, and

the word “Natural Object” is far away from other Natural Object words. This implies that using

the original representation will result in various mistakes when reasoning about novel words, even

at the highest level of the hierarchy. On the other hand, our method can separate the two different

subcategories, as shown in Figure 3.6 (b). In the new vector space, the name of the category is

located at the center of all words of the same category. This demonstrates that our method does

learn a metric embedding the hierarchy information. This would enable our approach to identify

nodes for new words more accurately.
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3.6.3 Object Identification

Since our system can associate an unknown name with an existing name in the hierarchy, it can

identify objects based on new object names. We test whether the ability to understand a new name

can boost identification accuracy.

In this task, we test on identifying objects from scenes. Each scene has 6 objects, one of which

is the target object. We also collect one command for each scene such that the target object can be

identified based on the command. One example scene is given in Figure 3.3 (a). To identify an

object based on the natural language command, we first extract name and appearance attributes

using the Stanford parser [110] from the command. We then use the learned vector representation to

determine a name path p = (wp1 , · · · , wpL). Next, we compute the likelihood of both appearance

attributes and the name path given each object in the scene and decide the target object according

to Equation (3.11).

We compare the identification accuracies under three different settings of handling new names.

1) Ignoring an unknown name. In this case, only appearance attributes will be used for identification

(IGNORE). 2) Mapping a new name to a name path (VEC ORI) using the original vector represen-

tation. 3) Mapping a new name to a path using our hierarchy-adapted word vectors (VEC HIE).

Table 3.1 summarizes the results. As can be seen from the table, using the original vectors to

map new names does not achieve higher identification accuracy than ignoring unknown names.

On the other hand, adapting the word vectors to the name hierarchy improves the identification

accuracy by an average margin of 7%. We also evaluate only on identification tasks in which a new

object name is used, and the improvement is about 11%. Overall, the whole identification system

achieves 74% accuracy using the proposed name learning method. This is remarkable since 50% of

the objects in each scene are not in the training set, including many cases in which even the object

of interest and the name used by the person are novel.

As a side note, the improvements for Student2’s tasks are more significant than for Student1’s. An

inspection of the annotations revealed that Student2 used more names than appearance attributes to

refer to objects, thereby providing more opportunities for our hierarchy to help with the identification
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Table 3.1: Identification accuracy on 600 scenes with 6 objects.

Methods IGNORE VEC ORI VEC HIE

Accuracy(%)

Student 1 70.67 68.00 73.67

Student 2 63.67 66.70 75.00

AVE 67.17 67.35 74.34

task.

3.6.4 Locating New Names via Questions

Our name learning method can map a new name into an existing node in the name hierarchy more

accurately than the baseline method. However, it still generates some false predictions. To correct

these mistake, our system interacts with humans and asks clarification questions to figure out the

correct node for the name.

In this experiment, we will test on inserting all the new names used by the two students into the

WordNet hierarchy. We count the number of questions asked to find the correct path for the new

names as the evaluation criterion. Three methods are compared: Method1 uses the original word

vector representation, while Method2 used the hierarchy-embedded vector representation output by

our metric learning method (both methods are described in Section 3.5.1). Method3 was the same

as Method2 but with extra perception information, as described in Section 3.5.2.

The comparison between Method1 and Method2 is shown as the scatter plot in Figure 3.7 (a).

For most names, the identification system with the learned representation asks fewer questions than

the one without name learning. The result suggests that our name learning captures the hierarchy

semantic of names and could be helpful to better understand the new names.

We also checked whether the perception information helps to reduce the number of questions

further. Figure 3.7 (b) shows the scatter plot comparing Method2 and Method3 for hard name tasks,

which require more than 1 question by Method2. As can be seen, using perceptual information
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Figure 3.7: Scatter plot of number of questions asked until the correct location of an unknown name is

determined.

dramatically decreases the number of necessary questions.

To further shed light on the difference between the three methods, we intensively examined

which questions each method asked for two hard names. In Example 1, Student1 was given the

scene in Figure 3.3 (a). She said “Give me the yellow clipper.” The new name “clipper” was a

synonym for “pliers” in this identification context. 10 questions were asked by Method1 in total

while 9 questions were asked by Method2. “Food can” was asked by Method2 because clippers can

be used to open food cans and appear in a similar document context frequently, resulting in similar

word frequency vectors. Using perception information, Method3 can detect that there is no food

can, lightbulb, electric lamp or scissors in the given scene. So, only 2 questions were asked before

finding out that “clipper” is a synonym for “pliers”.

The second example scene is shown in Figure 3.3 (b). The student given the task said, “Pick

up the Pepsi.” The new name “Pepsi” is a new instance name of “soda can”. Example 2 shows the

behavior of the different methods. The identification system asked 14 questions to find out the right

path for “Pepsi” using Method1. Method1 asked about many unrelated names, such as “Kleenex”
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Method1 Method2 Method3

1 food cup food can grocery

2 grocery grocery pliers

3 artifact artifact

4 vessel home product

5 kitchen supply lightbulb

6 flashlight electric lamp

7 electric lamp tool

8 tool scissors

9 scissors pliers

10 pliers

Example 1: Questions asked for the new name clipper.

Method1 Method2 Method3

1 potato onion grocery

2 vegetable vegetable instant noodles

3 natural object natural object

4 kleenex food can

5 home product grocery

6 artifact instant noodles

7 coffee mug soda can

8 kitchen supply

9 instant noodles

10 grocery

11 cereal box

12 food cup

13 food box

14 soda can

Example 2: Questions asked for the new name pepsi.
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and “home product”, while Method2 quickly found out that “Pepsi” is more related to “grocery”

by using the hierarchy information. Only 7 questions were asked in this case. Using attribute and

object classifiers, the system filtered out “onion”, “vegetable”, “natural object” and “food can”,

which did not exist in the scene. It also found that “Pepsi” is not a synonym for “soda can” because

there is still uncertainty in the scene when using only “soda can” to refer to the target. Our system

(Method 3) found that “Pepsi” is a new instance of “soda can” after asking 2 questions.

3.7 Conclusion

A robot operating in an indoor environment and interacting with people will frequently face new

objects and new names used by people to refer to new objects. Therefore, it must be able to learn

new objects and names as they occur during task execution. Toward this goal, we propose a new

object recognition system for identifying objects based on natural language referrals with new

names. The system organizes names into a semantic hierarchy of concepts. Each node of the

hierarchy contains several names of similar meaning. When the system encounters a new name, it

infers the node to which it should associate the new name. The target node is either a synonym or

hypernym of the new name. Our system could use the classifier of the existing node to recognize

the target objects. The system needs to find out the target node in the hierarchy such that the new

name is semantically similar to the node and all its ancestor nodes. We propose a metric learning

method to measure the similarities between words. The method can capture the semantic hierarchy

information.

We perform extensive experiments to validate the system. The experimental results show that

using the hierarchy-embedded word vector representation achieves significantly better reasoning

about unknown names than using the purely text-based word vectors. The experiments also

demonstrate that the overall system achieves 74% identification accuracy for scenes containing six

objects, half of which are unknown. Our experiments also show that the proposed approach can

determine the correct location of the new name in the hierarchy by asking the user only a small

number of questions. Further, combining perceptual information with name reasoning significantly

reduces the number of necessary questions.
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One limitation of the current system is that it allows the adding of the leaf nodes only into an

existing hierarchy, assuming that the hierarchy could be initialized with an existing hierarchy (such

as WordNet). However, robots may need to insert an internal node into the WordNet hierarchy, or

even build a hierarchy from scratch. How to create hierarchies from scratch will be the topic of the

next chapter.
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Chapter 4

BUILDING SEMANTIC HIERARCHIES VIA CROWDSOURCING

4.1 Introduction

Hierarchies of concepts and objects are useful across many real-world applications and scientific

domains. Online shopping portals, e.g., Amazon [4] and BestBuy [9], use product catalogs to

organize their products into a hierarchy, aiming to simplify the task of search and navigation for their

customers. Sharing the goal of organizing objects and information, hierarchies are prevalent in many

other domains, such as in libraries to organize books [57] or web portals to organize documents by

topics. Concept hierarchies also serve as a natural semantic prior over concepts, helpful in a wide

range of Artificial Intelligence (AI) domains, such as natural language processing [13], computer

vision [50, 121] and robotics [184].

Task-dependent hierarchies are expensive and time-consuming to construct. They are usually

built in a centralized manner by a group of domain experts. This process makes it infeasible to

create separate hierarchies for each specific domain. On the other hand, in the absence of such

specific hierarchies, many applications use a general-purpose, pre-built hierarchy (for example,

WordNet [69]) that may be too abstract or inappropriate for specific needs. An important question in

this context is thus, How can we cost-efficiently build task-dependent hierarchies without requiring

domain experts?

Attempts to build hierarchies using fully automated methods [11] have failed to capture the

relationships between concepts as perceived by people. The resulting hierarchies perform poorly

when deployed in real-world systems. With the recent popularity of crowdsourcing platforms, such

as AMT, efforts have been made to employ non-expert workers (the crowd) at scale and low cost

to build hierarchies guided by human knowledge. Chilton et al. propose the CASCADE workflow,

which converts the process of building a hierarchy into the task of multi-label annotation for objects.



54

However, acquiring multi-label annotations for objects is expensive and could prove uninformative

for creating hierarchies. This leads to the second question, How can we actively select simple and

useful questions that are most informative to the system while minimizing the cost?

Most existing methods (including CASCADE) as well as methods employing domain experts

usually generate only a single hierarchy that aims to best explain the data or the relationships among

the concepts. This ignores the natural ambiguity and uncertainty that may exist in the semantic

relationships among the concepts, leading to the third question, How can we develop probabilistic

methods that can account for this uncertainty in the process of building the hierarchy?

In this chapter, we propose a novel system for building task-dependent hierarchies. The proposed

system aims to tackle the three questions posed above. It gathers knowledge from crowdsourcing

workers to build hierarchies. However, differs significantly from existing crowdsourcing-based

methods regarding the type of questions asked. It directly asks questions regarding the structure of

the hierarchy. To maintain the uncertainty over hierarchies as well as capture the noise introduced by

non-expert workers’ answers, it maintains a distribution over hierarchies instead of keeping the one

best hierarchy. We deploy a compact model to parameterize the distribution and provide efficient

methods to do inference. We also develop an efficient algorithm to update the model parameters

based on the answers given by the crowdsourcing workers and prove convergence guarantees for

the method. Further, we show several extensions of the model, such as asking informative questions

using an active query method, inserting new nodes into the hierarchy, and identifying synonyms.

Finally, we provide extensive empirical evaluations of the approach on synthetic problems, as

well as on real-world domains with data collected from AMT workers, to demonstrate the broad

applicability of our system.

The rest of this chapter is organized as follows. We discuss related work in Section 4.2. In

Section 4.3, we describe how to model distributions over hierarchies and how to do inference

efficiently. We present a method for updating the model and prove convergence guarantees for the

method in Section 4.4. In Section 4.5, we discuss several implementation details and extensions of

the algorithm. We present extensive evaluations in Section 4.6. Finally, we discuss conclusions and

directions for future work in Section 4.7. We include our proofs and more experimental results in
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the Appendix A.

4.2 Related Work

Hierarchies for Artificial Intelligence

Semantic hierarchies of concepts have been widely deployed for solving many AI tasks, e.g.,

supporting various Natural Language Processing (NLP) tasks, such as disambiguating word sense

in text retrieval [202, 164], information extraction [13], machine translation [111], and others.

Meanwhile, hierarchies of object classes [221, 140, 209, 152] are also used as prior knowledge

in the Computer Vision (CV) community for transferring knowledge between categories. The

applications of object class hierarchies in CV include improving object categorization [165], scaling

image classification [50, 52, 121], improving efficiency of image annotation [55], etc. Most of

this work uses established hierarchies in their methods and does not consider building hierarchies

suitable for their tasks. However, the quality of the hierarchies can influence the performance of

these methods significantly.

Building Semantic Hierarchies

Building hierarchies of good quality is, therefore, an important research topic. The traditional

way to create hierarchy is to hire a small group of experts to build the hierarchy in a centralized

manner [69], which is expensive and time-consuming. Therefore, researchers have developed

autonomous or semi-autonomous methods to do this task. Many of these methods tackle the

problem by creating hierarchical clusterings of concepts. For instance, Sivic et al. and Bart et al.

use visual feature similarities to perform clustering. However, visually similar concepts are not

necessarily similar in semantics. Hence, the hierarchies built purely based on vision information do

not match the semantics in many cases. There are also text-based methods [11, 12], which define the

similar between pairs of words based on their co-occurrence in a large corpus of text. However, the

existing techniques produce low-quality hierarchies since they lack the common sense and ability to

understand language.
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Ontology Learning System

Hierarchy creation is also related to ontology learning from the web [30, 208, 31]. The goal of

ontology learning is to extract entities and relationships, that explain the world. Extracting hierarchy

relationships (taxonomy) is a task in ontology learning [69, 180]. Some methods [180] focus on

extending or refining established hierarchies using other resources, e.g. Wikipedia. However,

their output is not varied enough as it is limited by the coverage of the resources. Several other

methods [86, 174, 90] use lexical patterns/templates to mine hypernym-hyponym relations from text

corpora. However, these methods rely on accurate extraction of lexical patterns and therefore do not

generalize well to new domains. Other popular type of methods [29, 73, 128, 114] use general text

corpus to define the hypernym-hyponym relation to build hierarchies. These methods usually do not

perform well because they lack common sense [208].

It is worth noting that these ontology learning techniques focus mostly on coverage rather than

accuracy. The knowledge, including hierarchies, extracted by these approaches are typically not

very accurate. Many famous systems, e.g., the Never-Ending Language Learner [31], still require

humans to clean up the systems regularly to keep the semantic drifts in the systems under control.

Moreover, the knowledge of categories or relations in the web is usually long-tail. For some rare or

emerging categories, it is difficult to gather enough statistics to extract useful knowledge.

Knowing that humans are good at using common sense and learning new concepts, the involve-

ment of humans in ontology learning remains highly necessary and desirable [208]. The new trend

of ontology learning of rare categories is to involve humans in the early stage [156] of building the

systems, rather than relying on them to perform post processing on the knowledge bases.

Crowdsourcing Structure Knowledge

The popularity of crowdsourcing platforms has made cheap human resources available for building

hierarchies. For example, CASCADE [37] uses multi-label annotations for items and deploys label

co-occurrence to generate a hierarchy. DELUGE [23] improves the multi-label annotation step

in CASCADE using decision theory and machine learning to reduce the labeling effort. However, for
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both pipelines, co-occurrence of labels does not necessarily imply a connection in the hierarchy.

Furthermore, both methods can build only a single hierarchy and do not consider the uncertainty

naturally existing in hierarchies.

Mortensen et al. use crowdsourcing to verify an existing ontology. Their empirical results

demonstrate that non-expert workers can verify structures within a hierarchy built by domain

experts. Inspired by their insights, it is possible to gather information about the hierarchy structure

by asking simple true-or-false questions about the “ascendant-descendant” relationship between

two concepts. In our work, we propose a novel method of hierarchy creation based on asking such

questions and fusing information from the answers together.

4.3 Modeling Distribution over Hierarchies

The goal of our approach is to learn a hierarchy over a domain of concepts, using input from

non-expert crowdsourcing workers. Estimating hierarchies through crowdsourcing is challenging

since answers given by workers are inherently noisy. Further, even if every worker gives her/his best

possible answer, concept relationships might be ambiguous, and there may be no single hierarchy

that consistently explains all the workers’ answers. We deal with these problems by using a

Bayesian framework to estimate probability distributions over hierarchies rather than determining

a single, best guess. This allows our approach to represent uncertainty due to noisy, missing, and

possibly inconsistent information. Our system interacts with crowdsourcing workers iteratively

while estimating the distribution over hierarchies. At each iteration, the system picks a question

related to the relationship between two concepts in the hierarchy, presents it to multiple workers

on a crowdsourcing platform, and then uses the answers to update the distribution. The system

keeps asking questions until a stopping criterion is reached. In this work, we set a threshold for the

number of questions asked.
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4.3.1 Modelling Distributions over Hierarchies

The key challenge for estimating distributions over hierarchies is the huge number of possible

hierarchies, or trees, making it intractable to directly represent the distribution as a multinomial.

Consider the number of possible hierarchies of N concepts is (N + 1)N−1 (we add a fixed root node

to the concept set), which results in 1,296 trees for 5 concepts, but already 2.3579e+ 09 trees for

only 10 concepts.

We will now describe how to represent and estimate distributions over such a large number

of trees. Assume that there are N concept nodes indexed from 1 to N , a fixed root node indexed

by 0, and a set of possible directed edges E = {e0,1, . . . , ei,j, . . . , eN,N} indexed by (i, j), where

i 6= j. A hierarchy T ⊂ E is a set of N edges, which form a valid tree rooted at the 0-th node

(we use the terms hierarchy and tree interchangeably). All valid hierarchies form the sample space

T = {T1, . . . , TM}. The prior distribution π0 over T is set to be the uniform distribution.

Due to the intractable number of trees, we use a compact model to represent distributions over

trees

P (T |W ) =

∏
ei,j∈T Wi,j

Z(W )
, (4.1)

where Wi,j is a non-negative weight for the edge ei,j , and Z(W ) =
∑

T ′∈T
∏

ei,j∈T ′Wi,j is the

partition function.

4.3.2 Inference

Using the compact model defined in (4.1), inference is very efficient. We list the three most useful

results in this section.

Computation of Partition Function

First, the partition function Z(W ) can be analytically computed utilizing the Matrix-Tree Theo-

rem [197]. We define the Laplacian matrix L(W ) ∈ RN×N of W , for h,m = 1 . . . N
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Lh,m(W ) =


∑N

h′=1Wh′,m, if h = m

−Wh,m, otherwise,
(4.2)

and another matrix

L̂(W ) = L(W ) + diag(W0,·), (4.3)

where diag(v) is the diagonal matrix with the vector v on its diagonal. Using the Matrix-Tree

Theorem [197] and its preposition [113], the partition function Z(W ) is given by Z(W ) = |L̂(W )|.

Computation of Marginals

Second, we can also analytically compute the marginal probabilities over the edges, i.e., P (ei,j). It

is true that the log partition-function and the marginals have the following relation

P (ei,j) =
1

Wi,j

∂ logZ(W )

∂Wi,j

.

Using the fact that Z(W ) = |L̂(W )|, it can be shown that

P (e0,m) = W0,m

[
L̂−1(W )

]
m,m

,

and, for h > 0, the marginals are given by

P (eh,m) = Wh,m

[
L̂−1(W )

]
m,m
− (1− δh,m)Wh,m

[
L̂−1(W )

]
m,h

,

where δh,m is the Kronecker delta.
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Finding the MAP Tree

Third, finding the tree with the maximum probability equals

T ∗ = arg max
T∈T

∏
ei,j∈T

Wi,j = arg min
∑
ei,j∈T

− log(Wi,j).

This is the same problem as finding the minimum spanning tree in a directed graph, which can be

implemented efficiently using Edmond’s Algorithm [38, 60].

4.4 Approach: Updating Distributions over Hierarchies

Our system maintains a posterior distribution over hierarchies. Given a sequence of questions re-

garding the structure of the target hierarchy q1, . . . , q(t), . . . , along with the answers a1, . . . , a(t), . . .,

the posterior P (T |W (t)) at time t is obtained by Bayesian inference

P (T |W (t)) ∝ P (T |W (t−1))f(a(t)|T ). (4.4)

Hereby, f(a(t)|T ) is the likelihood of obtaining answer a(t) given a tree T , specified below to

simplify the notation.

So far, we have not made any assumptions about the form of questions asked. Since our system

works with non-expert workers, the questions should be as simple as possible. As discussed above,

we resort to questions that only specify the relationship between pairs of concepts. We will discuss

different options in the following sections.

4.4.1 Edge Questions

Since a hierarchy is specified by a set of edges, one way to ask questions would be to ask workers

about immediate parent-child relationships between concepts, which we call edge questions. An-

swers to edge questions are highly informative since they provide direct information about whether

there is an edge between two concepts in the target hierarchy.
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Let ei,j denote the question of whether there is an edge between node i and j, and ai,j ∈ {0, 1}

denote the answer for ei,j . ai,j = 1 indicates that a worker believes there is an edge from node i to

j; otherwise, there is no edge. The likelihood function for edge questions is defined as follows

f(ai,j|T ) =

(1− γ)ai,jγ1−ai,j , if ei,j ∈ T

γai,j(1− γ)1−ai,j , otherwise
, (4.5)

where γ is the noise rate for wrong answers. Substituting (4.5) into (4.4) leads to an analytic form

to update edge weights

W
(t)
i′,j′ =

W
(t−1)
i′,j′ (1−γ

γ
)(2ai,j−1), if i′ = i ∧ j′ = j

W
(t−1)
i′,j′ , otherwise

. (4.6)

An edge question only affects weights for that edge. Unfortunately, correctly answering such

questions is difficult and requires global knowledge of the complete set (and granularity) of concepts.

For instance, while the statement “Is orange a direct child of fruit in a food item hierarchy?” might

be true for some concept sets, it is not correct in a hierarchy that also contains the more specific

concept citrus fruit since it separates orange from fruit (see also Figure 4.4).

4.4.2 Path Questions

To avoid the shortcomings of edge questions, our system resorts to asking less informative questions

relating to general, ascendant-descendant relationships between concepts. These path questions

provide information only about the existence of directed paths between two concepts and are thus,

crucially, independent of the set of available concepts. For instance, the path question “Is orange

a type of fruit?” is true independent of the existence of the concept citrus fruit. While such path

questions are easier to answer, they are more challenging to use when estimating the distribution

over hierarchies.

Let pi,j denote a path question and ai,j ∈ {0, 1} be the answer for pi,j . ai,j = 1 indicates that a
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worker believes there is a path from node i to j. The likelihood function is

f(ai,j|T ) =

(1− γ)ai,jγ1−ai,j , if pi,j ∈ T

γai,j(1− γ)1−ai,j , otherwise
, (4.7)

where pi,j ∈ T simply checks whether the path pi,j is contained in the tree T .

Unfortunately, the likelihood function for path questions is not conjugate of the prior. Therefore,

there is no analytic form to update weights. Instead, we update the weight matrix by performing

approximate inference. To be more specific, we find a W ∗ by minimizing the KL-divergence [117]

between P (T |W ∗) and the true posterior

W ∗ = arg min
W

KL(P (T |W (t))‖P (T |W )) (4.8)

It can be shown that minimizing the KL-divergence can be achieved by minimizing the following

loss function

L(W ) = −
∑
T∈T

P (T |W (t)) logP (T |W ). (4.9)

Directly computing (4.9) involves enumerating all trees in T and is therefore intractable. Instead,

we use a Monte Carlo method to estimate (4.9) and minimize the estimated loss to update W . To be

more specific, we will generate i.i.d. samples T̃ = (T1, . . . , Tm) from P (T |W (t)), which defines an

empirical distribution π̃(t) of the samples, with estimated loss

Lπ̃(W ) = −
∑
T∈T̃

π̃(T ) logP (T |W ), (4.10)

the negative log-likelihood of P (T |W ) under the samples.

Sampling Hierarchies from the Posterior

Given a weight matrixW , sampling hierarchies from the distribution defined in (4.1) can be achieved

efficiently, for example, using a loop-avoiding random walk on a graph with W as the adjacency

matrix [207]. Therefore, we can sample hierarchies from the prior P (T |W (t−1)). Noticing that

the posterior defined in (4.4) is a weighted version of P (T |W (t−1)), we can generate samples for

the empirical distribution π̃ via importance sampling, that is, by reweighing the samples from

P (T |W (t−1)) with the likelihood function f(a(t)|T ) as importance weights.
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Regularization

Since we get samples only from P (T |W (t)), the estimate of (4.10) can be inaccurate. To avoid

overfitting to the sample, we add an `1-regularization term to the objective function. We also

optimize Λ = logW rather than W so to simplify notation. The final objective is

Lβπ̃ (Λ(t))=−
∑
T∈T

π̃(t)(T ) logP (T |Λ(t)) +
∑
i,j

β|λi,j|. (4.11)

Optimization Algorithm

We iteratively adjust Λ to minimize (4.11). At each iteration, the algorithm adds ∆ to the original Λ,

resulting in Λ′ = Λ + ∆. We optimize ∆ to minimize an upper bound on the change in Lβπ̃, given by

Lβπ̃ (Λ′)−Lβπ̃ (Λ)≤
∑
i,j

[−δi,jP̃ (ei,j) +
1

N
P (ei,j|Λ)(eNδi,j − 1)

+ β(|λ′i,j| − |λi,j|)] + C, (4.12)

where P̃ (ei,j) =
∑

T∈T :ei,j∈T π̃(T ) is the empirical marginal probability of ei,j , and C is a constant

w.r.t. δi,j . The derivation is presented in Appendix A.

Minimizing the upper bound in (4.12) can be done by analysing the sign of λi,j + δi,j . By some

calculus, it can be seen that the δi,j minimizing (4.12) must occur when δi,j = −λi,j , or when δi,j is

either

1

N
log

(P (ei,j)− β)

P (ei,j|Λ)
, if λi,j + δi,j ≥ 0, or

1

N
log

(P (ei,j) + β)

P (ei,j|Λ)
, if λi,j + δi,j ≤ 0.

This leaves three choices for each δi,j – we try out each and pick the one leading to the best bound.

This can be done independently per δi,j since the objective in (4.12) is separable. The full algorithm

to optimize Λ based on a query answer is given in Algorithm 2.
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Algorithm 2 Weight Updating Algorithm

1: Input: W (t−1), an answer a(t), thr for stopping criterion

2: Non-negative regularization parameters β

3: Output: W (t) that minimizes (4.11)

4: Generate samples T ′1, . . . , T
′
m from P (T |W (t−1))

5: Use importance sampling to get empirical distribution π̃

6: Initialize Λ0 = 0, l = 1.

7: repeat

8: For each (i, j), set δi,j = arg min (4.12);

9: Update Λ(l) = Λ(l−1) + ∆;

10: l = l + 1;

11: until |∆| ≤ thr

12: return W (t) = exp(Λ(l))

Theoretical Guarantee

Even though we minimize only a sequence of upper bounds, we prove (see Appendix) that Algo-

rithm 2 in fact converges to the true maximum likelihood solution

Theorem 1. Assume β is strictly positive. Then Algorithm 2 produces a sequence Λ(1),Λ(2), . . .

such that

lim
`→∞

Lβπ̃(Λ(`)) = min
Λ
Lβπ̃(Λ).

Let Λ̂ be the solution to Algorithm 2. We next show that if we generate enough samples m, the

loss of the estimate Λ̂ under the true posterior will not be much higher than that obtained by any

distribution of the form (4.1).

Theorem 2. Suppose m samples π̃ are obtained from any tree distribution π. Let Λ̂ minimize the

regularized log loss Lβπ̃(Λ) with β =
√

log(N/δ)/(m). Then, for every Λ it holds with probability

at least 1− δ that

Lπ(Λ̂) ≤ Lπ(Λ) + 2‖Λ‖1

√
log(N/δ)/m
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Theorem 2 shows that the difference in performance between the density estimate computed by

minimizing w.r.t. Lβπ̃ and w.r.t. the best approximation to the true posterior becomes small rapidly as

the number of samples m increases.

4.5 Implementation

4.5.1 Active Query Selection

At each interaction with workers, the system needs to pick a question to ask. The naive approach

would be to pick questions randomly. However random questions are usually not very informative

since they get mostly No answers, while Yes answers are more informative about the structure. In-

stead of randomly picking question, we propose to select the question p∗ that maximizes information

gain over the current hierarchy distribution π(t)

p∗ = arg max
pi,j

min(H(π̃
(t+1)
pi,j ,1

), H(π̃
(t+1)
pi,j ,0

)) (4.13)

where H(·) is the entropy and π̃(t+1)
pi,j ,ai,j is the posterior distribution over trees after knowing the

answer for pi,j as ai,j . Note that this criterion chooses the question with the highest information

gain using the less informative answer, which we found to be more robust than using the expectation

over answers. Since we cannot compute the entropy exactly due to the size of the sampling space,

we reuse the trees from the empirical distribution π̃ to estimate information gain.

Another intuition is that we do not want to ask the same question too many times if there is

only a little uncertainty over the workers’ answers. One way of achieving this goal is to set up a

maximum number of selections such that no question could be selected more than the maximum

number of times. However, the maximum number must be question-dependent. To better model the

question-dependent uncertainty, we model the distribution of the probability of getting a positive

answer from a worker using a Beta distribution for each path question. Its parameters are initialized

as (1, 1) and updated as more answers to the path questions are collected from workers. We compute

the entropy of the Beta distribution and combine it with (4.13) to evaluate the information main in a

path question.
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4.5.2 Adding New Nodes to the Hierarchy

New concepts will sometimes be introduced to a domain. In this case, how should the new concept

be inserted into an existing hierarchy? A wasteful way would be to re-build the whole hierarchy

distribution from scratch using the pipeline described in the previous sections. Alternatively, one

might consider adding a row and column to the current weight matrix and initializing all new entries

with the same value. Unfortunately, uniform weights do not result in uniform edge probabilities and

thus do not correctly represent the uninformed prior over the new node’s location.

We instead propose a method to estimate the weight matrix W that correctly reflects uncertainty

over the current tree and the location of the new node. After building a hierarchy of N + 1 nodes,

the learned weight matrix is denoted as WN . Now we want to insert a new node into the hierarchy.

Using basic rules of probability, it is true that

P (T ′|WN) =
∑
T

P (T ′|T )P (T |WN), (4.14)

where T ′ is a hierarchy of N + 1 nodes, and T has N nodes. P (T ′|T ) is the transition probability

from T to T ′. Since there is no prior information about the position of the new node, P (T ′|T )

is set to a uniform prior over all possible hierarchies of N + 1 nodes by inserting one node into

any possible location in T . Equation (4.14) represents a sample distribution that preserves the

information of the previous distribution while not assuming anything about the new node. The new

weight matrix with N + 1, denoted as WN+1, can be initialized as W (0)
N+1 such that it represents

a distribution that is close to that defined in (4.14). This can be implemented by minimizing the

KL-divergence between the two distributions

W
(0)
N+1 = arg min

WN+1

KL(P (T ′|WN)‖P (T ′|WN+1)), (4.15)

which indeed can be optimized using the same technique described in Section 4.4.2.
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4.5.3 Identifying Synonyms

In some cases, two distinct names might represent the same concepts. This usually suggests that

one node is a synonym for another. For example, “drink” is a synonym for “beverage”. Because

they have the same semantic meaning, there will be a loop between “drink” and “beverage” in the

dependence relation. The loop breaks the assumption in our model that the target structure over

nodes is a tree. We want to identify possible candidate synonym pairs, ask humans to verify whether

the candidates are synonyms, then merge the real synonym nodes into a single node.

It is worth noting that there are many ways to detecting synonyms in the natural language

processing literature, e.g., [195, 214]. These methods rely on some similarity measure between

a pair of words to detect synonym candidates. We are not trying to compete with these methods;

rather, we are simply suggesting a way to identify synonyms to make our framework self-contained.

We propose a new way of measuring the similarity score for a pair of nodes i and j based on the

answers to the path questions given by the crowdsourcing workers. We design the score based on

the observation of inter-changeability of synonyms. If node j is a synonym for i, ai,j′ = 1 indicates

aj,j′ = 1. We use these notations

P (ai,j̄) = [P (ai,1), . . . , P (ai,j′), . . . , P (ai,N))] , if j′ 6= i, j′ 6= j,

and

P (aj̄,i) = [P (a1,i), . . . , P (aj′,i), . . . , P (aN,i))] , if j′ 6= i, j′ 6= j.

Here P (ai,j) is the probability of getting 1 for the path question qi,j based on workers’ answers.

P (ai,j̄) and P (aj,̄i) will have strong linear correlation with each other and vice versa. It is also

expected that both P (ai,j) and P (aj,i) are high. Therefore, we define a simple score function to

measure the similarity of node i and j as

score(i, j) = cos(P (ai,j̄), P (aj,̄i))× cos(P (aj̄,i), P (aī,j))× P (ai,j)× P (aj,i), (4.16)

where cos(·, ·) measures the cosine similarity between two vectors. We can use the maximum

likelihood estimation for P (ai,j).
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We use (4.16) to rank all pairs of nodes in the hierarchy and ask workers to confirm whether two

nodes are synonyms. We will merge true synonyms into a new node and update the weight matrix

W accordingly.

For example, we want to merge node i and j into one node i′. To update W properly, we will

need to know P (ei′,k) for the new node i′. There is an edge from i′ to k if and only if there exists an

edge from i or j to k. Because the two events are exclusive, we can derive that

P (ei′,k) = P (ei,k) + P (ej,k).

To estimate P (ek,i′), the exclusive property does not exist. Fortunately, we can still use the Inclusion-

Exclusion Principle to compute it as

P (ek,i′) = P (ek,i) + P (ek,j)− P (ek,i, ek,j).

We prove the following proposition of the Matrix-Tree Theorem that P (ek,i, ek,j) can be computed

analytically.

Proposition 1. Given that ei,j and ei,k are two edges, the marginal likelihood P (ei,j, ei,k) is given

as follows

P (ei,j, ei,k) = P (ei,j)P (ei,k)−

Wi,jWi,k

[L̂−1]i,i[L̂
−1]j,l, if i = 0

−
(

[L̂−1]i,i

)2

+ [L̂−1]i,i[L̂
−1]k,i − [L̂−1]i,i[L̂

−1]j,i + [L̂−1]i,i[L̂
−1]k,j, o.w.

where P (ei,j) is the marginal likelihood of edge ei,j , and L̂ is defined in equation(4.3).

Given the new marginal likelihood of edges, we can update the model parameter W using the

same method we described in Section 4.4.2.

4.6 Experiments

We empirically evaluate our approach according to four criteria: (1) the performance of the proposed

algorithms using simulation data, (2) a comparison with related methods using real-word data, (3)
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(a) High concentration. (b) Medium concentration. (c) Low concentration.

Figure 4.1: Weight estimation performance for hierarchies with 20 nodes. X-axis is the number of samples

given to the algorithm, and β is the regularization coefficient.

the ability to build hierarchies for diverse application domains;, and (4) the ability to build better

task-dependent hierarchies.

4.6.1 Simulation

We start with experiments using simulation data to analyze the empirical performance and robustness

of the proposed methods. The simulations allow us to know the ground truth trees, usually hard to

learn for real-world experiments. Additionally, we can control the parameters and hence get insights

into the algorithm. Moreover, the simulations also let us control the noise rate. Therefore, we can

observe how robust our method is against different levels of noise.

Sample-Based Weight Estimation

Our first experiment evaluates the ability of Algorithm 2 to estimate a weight matrix based on

samples generated from a distribution over trees. We first sample a “ground truth” weight matrix

W ; we next sample trees according to that weight matrix; we then estimate the weight matrix

W ∗ using Algorithm 2; finally, we evaluate the quality of the estimated matrix. To evaluate, we

sample an additional test set of trees from P (T |W ) and compute the average log-likelihood of these
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trees given W ∗, where P (T |W ∗) is defined in (4.1). For calibration, we also compute the average

log-likelihood of these trees under the ground truth specified by P (T |W ).

To sample W for trees with N nodes, we independently sample each column of W from an

N -order Dirichlet distribution. Note that the “concentration” of W decides the complexity of the

problem. High concentration indicates greatest probability mass on a small set of trees, while low

concentration means the opposite. So, we vary the concentration to test the performance of the

algorithm under different problem complexities. This is achieved by varying parameters A, where

the parameters of the Dirichlet distribution is A × 1T , and 1 ∈ RN . We test out three values of

A = (1, 10, 100). To give an intuition for the complexity of the investigated distributions, when

sampling 1 million trees with 20 nodes according to one of the weight samples from a Dirichlet

distribution with A = 100, we typically get about 900, 000 distinct trees. When we sample 1 million

trees according to the W sample from a Dirichlet distribution with A = 1, there are only about

8, 000 unique trees.

Figure 4.1 shows the performance forN = 20 nodes using different values for the regularization

coefficient β and sample size m. Each data point in the plots is an average over 100 runs on different

weights sampled from a Dirichlet distribution. The red line on top is the ground truth log-likelihood.

As can be seen, the algorithm always converges to the ground truth as the number of samples

increases. With an appropriate setting for β, the proposed method requires about 10, 000 samples to

achieve a log-likelihood that is close to the ground truth. We also tested different tree sizes N and

got similar performance results (see Appendix A). Overall, we found that β = 0.001 works robustly

across different N values and used that number in all the following experiments.

Sequential Update to Recover the Hierarchy

We next study the overall pipeline for recovering the correct hierarchy. Our pipeline works as

follows. It selects a path question at each iteration to ask a crowdsourcing worker. It then updates

the weight matrix W according to the answer using the equation (4.10). It repeatedly asks questions

and updates W until the distribution converges.

To evaluate the ability of our technique to recover the correct hierarchy, we artificially generate
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(a) Iteration 100 (b) Iteration 500 (c) Iteration 1000

Figure 4.2: The proposed approach is robust with respect to noise rate γ.

ground truth hierarchies of different sizes. To simulate a worker’s response to a query, we first check

whether the query path is part of the ground truth tree and then flip the answer randomly using a

pre-set noise rate γ.

To evaluate how well our approach estimates the ground truth tree, we use the marginal likelihood

of the tree edges to compute the Area Under the Curve (AUC) using different thresholds on the

likelihood to predict the existence or absence of an edge in the ground truth tree. The marginal

likelihood of an edge, P (ei,j|W ) =
∑

T∈T ,ei,j∈T P (T |W ), can be computed in closed form based

on the conclusion of the Matrix Theorem [197]. We also tested different evaluation measures, such

as the similarity between the MAP tree and the ground truth tree, and found them all to behave

similarly.

Robustness to a Mismatched γ. Our model requires the noise rate γ, which is not known. In

this experiment, we vary γ values used by the algorithm against three ground truth noise rates: 0%,

10%, and 20%. Figure 4.2 shows the performance of the proposed method on simulated trees with

N = 20 nodes. The performance shows that using γ in the range 5% to 20% performs as good as

knowing the true noise rate.

In general a larger γ gives a better convergence rate. Thus, we decided to set γ = 10% in all the

following experiments.



72

(a) N = 10 (b) N = 15 (c) N = 20

Figure 4.3: Experimental results comparing active query (solid lines) and random query (dashed lines)

strategies for tree sizes ranging from 5 nodes (left), 10 nodes (center), and 15 (right), using three different

noise rates (0, 10, 20) for answers to questions.

Active vs. Random Queries. We deploy an active query approach to select the most informative

questions. We compare the performance of our active query strategy with two baseline methods:

Random (picking uniformly random questions) and RoundRobin (round-robin over random orders).

Differently sized trees of nodes {10, 15, 20} are tested to see how the method performs as the

problem gets larger. We also test different noise rates, - including 0%, 10%, and 20% - to verify the

robustness of the method. The number of samples for updating the weight matrix is fixed to 20, 000

across all experiments. For each setting, 20 different random ground truth trees are generated. The

average results are reported in Figure 4.3. The X-axis is the number of questions asked, and the

Y-axis is the AUC. AUC = 1 means that all edges of the ground truth tree have higher probabilities

than any other edges according to the estimated distribution over trees.

As can be seen in the figures, active queries always recover the hierarchy more efficiently

than their random counterparts (i.e., queries are generated by randomly choosing a pair of nodes)

when the noise rate is within a reasonable rage. If there is no noise in the answers, our approach

always recovers the ground truth hierarchy despite the sample-based weight update. Note that, in

the noise-free setting, the exact hierarchy can be perfectly recovered by querying all N2 pairs of

concepts. While the random strategy typically requires about twice that number to recover the
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(a) Body parts (b) Amazon kitchen products (c) Food item

Figure 4.4: MAP hierarchies representing body parts, Amazon kitchen products, and food items (left to

right). Red nodes indicate items for which the parent edge has high uncertainty (marginal probability below

0.75).

hierarchy, our proposed active query strategy always recovers the ground truth tree using less than

N2 samples.

As N gets larger, the difference between active and random queries becomes more significant.

While our active strategy always recovers the ground truth tree, the random query strategy does

not converge for trees of size 15 if the answers are noisy. This is due to insufficient samples when

updating the weights and the fact that random queries are frequently answered with No, which

provides little information. The active approach, on the other hand, uses the current tree distribution

to determine the most informative query and generates more peaked distributions over trees, which

can be estimated more robustly with our sampling technique. As an indication of this, for trees

of size 15 and noise-free answers, 141 out of the 200 first active queries are answered with “yes”,

while this is the case for only 54 random queries.
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4.6.2 Real-World Experiments

Applications to Various Domains

These experiments provide examples demonstrating that our method can be applied to different tasks

using AMT. The following pipeline is followed for all three application domains: collect the set of

concepts; design the path question to ask; collect multiple answers for all possible path questions;

estimate hierarchies using our approach. Collecting answers for all possible questions enabled us to

test different settings and methods without collecting new data for each experiment. AMT is used

to gather answers for path questions. The process for different domains is almost identical: We

ask workers to answer “true-or-false” questions regarding a path in a hierarchy. Our method can

consider the noise rate of workers. We estimate this by gathering answers from 8 workers for each

question, then we take the majority vote as the answer and use all answers to determine the noise

ratio for that question. Note that noise ratios not only capture the inherent noise in using AMT, but

also the uncertainty of people about the relationship between concepts. Five different path questions

are put into one Human Intelligence Task (HIT). Each HIT costs $0.04; average time for a worker

to finish one HIT is about 4 seconds.

The process of building the hierarchies is divided into two consecutive phases. In the first phase,

a distribution is built using a subset of the concepts. In the second phase, we use the process of

inserting new concepts into the hierarchy until all concepts are represented. For the body part

dataset, we randomly chose 10 concepts belonging to the first phase. For online Amazon shopping

and RGBD object data, the initial set is decided by thresholding the frequency of the words used by

workers to tag images (15 nodes for Amazon objects and 23 nodes for RGBD objects). The learned

MAP hierarchies are shown in Figure 4.4.

Representing Body Parts. Here, we want to build a hierarchy to visualize the “is a part of”

relationship between body parts. The set of body part words are collected using Google search. An

example path question would be “Is ear a part of the upper body?”. After asking 2,000 questions, its

MAP tree is shown in the left panel of Figure 4.4. As can be seen, its overall structure agrees very
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well with people’s common sense of the human body structure. Some of the nodes in the tree are

shown in red, indicating edges whose marginal probability is below 0.75. These edges also reflect

people’s uncertainty in the concept hierarchy. For example, it is not obvious whether ear should

be part of head or face, the second most likely placement. Similarly, it is not clear whether ankle

should be part of foot or leg, and whether wrist should be part of arm or hand.

An obvious mistake made by the system is that ring finger and thumb are connected to the upper

body rather than the hand. This is caused by questions such as, “Is the ring finger part of the arm?”,

which only 1 out of 8 workers answered with yes. Hence, the concept of ring finger or thumb is not

placed into a position below arm.

Online Shopping Catalogue. The second task is to arrange kitchen products taken from the

Amazon website. There are some existing kitchen hierarchies, for example, the Amazon hierar-

chy [4]. However, the words used by Amazon (e.g., “Tools-and-Gadgets”) might prove confusing for

customers. Therefore, we collected the set of words used by workers when searching for products.

We give AMT workers images of products and ask them to write down words they would like to

see in navigating kitchen products. Some basic preprocessing is done to merge plural and singular

forms of the same words, remove obviously wrong words, and remove tags used less than 5 times

by workers because they might be a particular person’s nickname. We also remove the word “set”

because it is used by workers to refer to a “collection of things” (e.g., pots set, knives set) but may

not be related to the type of products shown in the pictures. The path questions have the form,

“Would you try to find pots under the category of kitchenware?” The learned MAP tree is shown in

the middle panel of Figure 4.4.

Food Item Names. This experiment investigates learning a hierarchy of food items used in a

robotics setting [122]; the goal is to learn names people use in a natural setting to refer to objects.

Here, AMT workers were shown images from the RGBD object dataset [122] and asked to provide

names they would use to refer to these objects. Some basic pre-processing was done to remove

noisy tags and highly infrequent words. The path questions for this domain are of the form, “Is it
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correct to say all apples are fruits?”.

The MAP tree is shown in the right panel of Figure 4.4. Again, while the tree most often captures

the correct hierarchy, high uncertainty items provide interesting insights. For instance, tomato

is classified as fruit in the MAP tree but also has a significant probability of being a vegetable,

indicating people’s uncertainty, or disagreement, about this concept. Meanwhile, the crowd of

workers could uncover very non-obvious relationships, such as allium is a kind of bulb.

Comparison to Existing Work

We now compare our method to the most relevant systems – DELUGE [23] and CASCADE [37] –

which also use crowdsourcing to build hierarchies. CASCADE builds hierarchies based on multi-

label categorization, and DELUGE improves the multi-label classification performance of CASCADE.

We will thus compare to DELUGE.

We apply both methods to the evaluation dataset used by DELUGE [23]. This dataset has 33

labels that are part of the fine-grained entity tags [130]. The goal is to build hierarchies over the

33 labels with an extra root node. We use the WordNet hierarchy as the ground truth hierarchy to

evaluate the performance of different methods. The evaluation metric is AUC, described in the

previous section.

DELUGE builds hierarchies using the following process. It uses each label as a keyword to query

many items from an established knowledge base, e.g., Freebase [19]. Next, it randomly selects a

subset of 100 items and labels them with multiple labels using crowdsourcing. It builds a hierarchy

using hierarchical clustering with the label co-occurrence as the measurement of label similarity.

To classify items into multi-labels, both CASCADE and DELUGE ask crowdsourcing workers

to vote for questions, which are binary judgments about whether an item belongs to a category

(label). CASCADE selects questions in a round-robin manner, while DELUGE makes active query

selections based on an information gain criterion. DELUGE also considers the label correlation

when aggregating the votes and, therefore manages to do multi-label annotation more efficiently

than CASCADE. We use the code and parameter settings provided by the authors of DELUGE in this

experiment.
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Figure 4.5: Our method performs significantly better than DELUGE on the same benchmark dataset.

We compare the performance of our method to DELUGE when different amounts of votes are

asked (see Figure 4.5). For our method, we plot the AUC score for every ten iterations. For DELUGE,

we plot two critical points: 1) using 1,600 votes, and 2) using 49,500 votes. For the first critical

point, we pick 1,600 votes as suggested by the authors because DELUGE’s performance saturates

after that many votes. For the second critical point, we compute the results of using all the votes

collected in the DELUGE data set to see the best performance of DELUGE. We set an upper bound

vote for our approach. It will stop after asking for 8,000 votes because its performance becomes flat

after that.

Using 1,600 votes, our method achieves a value of 0.82, which is slightly better than DELUGE,

with an AUC of 0.79. However, DELUGE does not improve significantly beyond that point, reaching

an AUC of 0.82 after 49,500 votes. Our approach, on the other hand, keeps on improving its

accuracy and reaches an AUC of 0.97 after only 6,000 queries. This indicates that, using our

approach, non-expert workers can achieve performance levels very close to those achieved by

experts (AUC = 1).

We also visualize different hierarchies. Figure 4.6 (a) shows the ground truth hierarchy from

WordNet; Figure 4.6 (b) shows the MAP hierarchy built by our method; and Figure 4.6 (c) shows the

hierarchy built by DELUGE. The hierarchy output using our method is more similar to the WordNet
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(a) WordNet hierarchy. (b) Hierarchy generated by our method (c) Hierarchy generated by DELUGE

Figure 4.6: Different hierarchies over the same set of words. For the hierarchy created by our method, we

use the red dots to highlight the nodes with high uncertainty.

hierarchy than it is to the hierarchy created by DELUGE. This difference is largely due to DELUGE’s

use of co-occurrence of labels to define the hypernym-hyponym relation between words. However,

the co-occurrence does not directly imply the connect hierarchy. In comparison, our method directly

asks questions regarding the hierarchical structure about whether there is a path between a pair of

nodes.

To summarize, our method and DELUGE significantly differ with respect to 3 aspects:

1. DELUGE relies on a knowledge base to get the seeding instances of concepts. For new

concepts or rare concepts in knowledge bases, DELUGE would not apply. Our method does

not depend on any prior knowledge and, therefore can be used readily for any concepts.

2. DELUGE builds hierarchies based on co-occurrence of labels. However, co-occurrence does

not imply an “is a type of” relation directly. The results heavily depend on the seeding
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instances from the knowledge bases. For example, the most famous islands in existing

knowledge bases are countries. Therefore, DELUGE will produce a direct edge from “county”

to “island” in the hierarchy, which does not make common sense. On the other hand, our

method directly asks questions regarding the structure of the hierarchy. Our active query

policy also targets at building hierarchies quickly.

3. DELUGE produces one single hierarchy for a set of words and, therefore ignores the uncer-

tainty in building semantics hierarchies. Our method considers the uncertainty and captures

even more common sense knowledge.

4.7 Conclusion

This chapter introduces an approach for learning hierarchies over concepts using crowdsourcing.

Our approach fuses simple questions that can be answered by non-experts without global knowledge

of the concept domain to build a globally coherent hierarchy. To deal with the inherent noise in

crowdsourced information and with people’s possible disagreements over hierarchical relationships,

we develop a Bayesian framework for estimating posterior distributions over hierarchies. When

new answers become available, these distributions are updated efficiently using a sampling-based

approximation for the intractably large set of possible hierarchies. The Bayesian treatment also

allows us to generate active queries that are most informative given the current uncertainty. New

concepts can be added to the hierarchy at any time, automatically triggering queries that enable the

correct placement of these concepts. Our approach can also detect synonyms with high accuracy.

It is also worth noting that our approach lends itself naturally to manual correction of errors in an

estimated hierarchy: by setting the weights to be inconsistent with a manual annotation to zero, the

posterior over trees automatically adjusts to respect this constraint.

We investigated several aspects of our framework and demonstrated that it can recover quite

robust hierarchies for real-world concepts using AMT. Importantly, by reasoning about uncertainty

over hierarchies, our approach can unveil confusion of non-experts over concepts, such as whether a

tomato is a fruit or a vegetable. We believe that these abilities are extremely useful for applications
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where hierarchies should reflect the knowledge or expectations of regular users rather than domain

experts. Example applications could be search engines for products or restaurants, or robots that

interact with people who use various terms to relate to similar objects in the world. Investigating

one such use case will be discussed in detail in the next chapter.
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Chapter 5

EVALUATING TASK-DEPENDENT TAXONOMIES FOR NAVIGATION

5.1 Introduction

Taxonomies are useful across many real-world applications and scientific domains. Online shopping

portals such as Amazon use catalogs to organize their products in order to simplify the task of

navigation and product search for their users. In scientific domains, many machine learning algo-

rithms and intelligent agents, including robots, also use taxonomies to improve their performance

on fundamental tasks such as object recognition [221, 140, 209, 152], natural language understand-

ing [202, 164, 13, 111], and others. Task-dependent taxonomies, i.e., taxonomies adapted to specific

application/task or to a specific cohort of users, are crucial for these applications and tasks to

perform efficiently [55]. Task-dependent taxonomies are usually created by hiring domain experts,

an expensive process that is infeasible for every task. Alternatively, there are methods for creating

taxonomies autonomously [11, 12]. However, these methods lack the semantics/common sense of

humans and often produce taxonomies that are inefficient in terms of their end-use. Hence, many

applications [121, 50, 221] are limited to using generic taxonomies such as WordNet [69].

Crowdsourcing based techniques. Recently, several crowdsourcing-based techniques [37, 23,

185] (with well-designed algorithms and prepared questions) have demonstrated that non-experts

also have the potential to build task-dependent taxonomies. Chilton et al. and Bragg et al. introduce

techniques for creating taxonomies based on the co-occurrence of multi-label object annotation. Sun

et al. take a Bayesian approach and propose an active learning algorithm for building taxonomies.

Their approach can capture uncertainty by producing a distribution over these taxonomies instead

of producing one single taxonomy as output. Most of the work [23, 185] evaluates the quality of

output taxonomies using accuracy with respect to some gold-standard knowledge base such as

WordNet [69]. However, no quantitative evaluation of the end-to-end deployment of taxonomies
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compares the effectiveness of different taxonomies for tasks for which they are eventually used.

Research questions. The primary goal of our work is to understand whether crowdsourcing

provides an effective solution to create taxonomies of knowledge. To this end, we seek to answer the

following 3 research questions: 1) do task-dependent taxonomies built by crowdsourcing techniques

improve end-to-end performance compared to using generic taxonomies built by experts?, and

2) does the uncertainty captured by probabilistic approaches further improve the efficiency of

performing the navigation tasks? Answering these questions will in turn shed light on the third,

more general research question: 3) Can crowdsourcing-based techniques provide practical solutions

to complex structural learning tasks such as building taxonomies?

Our approach. In this chapter, we present the first quantitative study to measure the effective-

ness of different taxonomies in context of an end-to-end application. Specifically, we compare

the task-dependent taxonomies built by crowdsourcing techniques to a generic taxonomy built by

experts. To start, we use a crowdsourcing based technique [185] to create a taxonomy using the

AMT. Then, to perform the user study for quantitative evaluation, we design randomized behavioral

experiments on AMT for a navigation task resembling many real-world applications, such as con-

ducting a product search in online shopping portals. Participants in the user study differ from AMT

workers who helped build the taxonomy we are evaluating. As part of our user study, we record

various quantitative metrics such as the time of navigation, the number of clicks performed, and the

search path taken by a participant to locate the target.

Our results. Our findings from the user study show that: 1) task-dependent taxonomies

built by crowdsourcing techniques can reduce the navigation time by up to 20%, and 2) the

uncertainty/distribution over the taxonomies can be exploited to help users perform navigation

tasks more efficiently. These results affirmatively answer our research questions and confirm that

crowdsourcing provides an effective solution to building task-dependent taxonomies. This, in turn,

demonstrates that crowdsourcing can provide a practical solution for learning complex structure

using responses to simple questions from non-experts. Furthermore, our design of behavioral

experiments serves as an example for other researchers who want to use crowdsourcing to conduct

user studies for evaluating the performance of complex systems.
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Figure 5.1: Illustration of the workflow of building task-dependent taxonomies via crowdsourcing. Collecting

tags and inferring tags are done via crowdsourcing. Assembling edges to get the final taxonomy is performed

by the algorithm.

The rest of this chapter is organized as follows: We first introduce the background of building

taxonomies via crowdsourcing in Section 5.2. Next, we will present the data collection step and the

experimental setup (Sections 5.3, 5.4). Then, we will discuss the results from the user study 5.6.

Finally, we will discuss related work before conclude the chapter.

5.2 Building Taxonomies via Crowdsourcing

We begin by reviewing background information on crowdsourcing-based techniques to build tax-

onomies. The next section will use one of these techniques to build the taxonomy on our dataset for

evaluation via a user study.

5.2.1 Different Components to Specify a Taxonomy

A task/domain is specified by a set of objects. A taxonomy represents a knowledge base by

organizing the objects into a hierarchical tree structure. Two main components are necessary to

specify a taxonomy completely: the set of nodes in the tree, and the set of edges connecting these

nodes. Figure 5.1 illustrates the workflow involved in building a taxonomy on a toy example, as

discussed further below.

Generating nodes. A natural approach of node generation is to represent the objects related

to the task/domain for which the taxonomy is being built by a set of concepts or tags. These tags

correspond to the nodes in the taxonomy tree. Each node is associated with a set of objects that is
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tagged by the node or any of its descendant nodes. Most crowdsourcing-based methods [37, 185]

begin by collecting a set of tags for these objects in hand (the first step in Figure 5.1). For example,

CASCADE [37] shows a set of objects via their text descriptions to the crowdsourcing workers and

asks them to provide tags they will use to refer to these objects. Sun et al. take a similar approach.

However, instead of showing the text descriptions, the authors show visual images of the objects

and ask the workers to annotate them with tags.

Inferring edges. The next step is to specify the directed edges that connect these nodes (the

second step in Figure 5.1). In the hierarchical tree of the taxonomy, each node is more general

than any of its descendant nodes. Inferring edges in the tree is a challenging problem as it requires

having global knowledge of the complete set of nodes. In the crowdsourcing setting, non-expert

workers would not possess such a global knowledge and are better at answering questions that can

be answered with local/partial knowledge. So the key to designing crowdsourcing based algorithms

for building taxonomies is to break down the problem requiring global knowledge into simpler

problems/questions requiring only local knowledge to answer. The algorithms then fuse answers

to these simple questions to generate the final global structure of the taxonomies (the last step

in Figure 5.1).

5.2.2 Decomposing the Structure Learning Problem

We now categorize existing crowdsourcing techniques building taxonomies into two main categories

based on how they decompose the global structure learning problem into simpler problems and

questions.

Indirect questions to infer edges. CASCADE[37] and DELUGE[23] are representative tech-

niques of this category, which use local questions without direct connection to the structure of

the taxonomies. Chilton et al. introduce CASCADE, a workflow for creating taxonomies based

on the co-occurrence of multi-label annotation of items. CASCADE takes a set of objects and

the corresponding set of tags to generate simple questions/microtasks as follows: each microtask

consists of one object and one tag. CASCADE then asks a worker to vote on whether the object fits

the tag. In the fusion step, it creates nested categories representing the parent-child relationship of
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these tags. DELUGE improves the efficiency of this annotation process to reduce the number of

questions required to learn a taxonomy with the same accuracy.

Direct questions to infer edges. Sun et al. take a Bayesian approach and propose an active

learning algorithm for building hierarchies/taxonomies. Their approach directly asks questions

related to the structure of the taxonomy. Specifically, they ask path questions, e.g., “Should there be

a path from ‘apple’ to ‘food’ in the target taxonomy?”, stated informally as “Is ‘apple’ a type of

’food’?”. These questions can be answered by the crowdsourcing workers using only local/partial

knowledge. Sun et al. provide a probabilistic model to efficiently maintain the distribution over

all possible tree structures to represent the fused knowledge from the answers obtained from

workers. At each iteration, the model updates the distribution based on the answer to a path question.

Intuitively, if a worker gives a positive answer to a path, his/her method will increase the probability

of the taxonomy trees with that path; otherwise, the probabilities of the corresponding trees will be

reduced.

5.2.3 Technique Used for Evaluation

In this chapter, we use Sun et al.’s method for building task-dependent taxonomies and then compare

them to the generic taxonomy of WordNet. The key reasons for using this technique are two-fold.

First of all, the experimental study performed by Sun et al. shows that this Bayesian approach is

empirically more cost-efficient compared to CASCADEand DELUGE, for which the cost quantifies

the number of questions asked to the participants in order to produce a taxonomy of desired accuracy.

Second, this approach outputs a distribution over taxonomies that in turn enables various operations:

1) using MAP (maximum a posteriori probability) inference to compute the most representative

taxonomy, and 2) estimating the marginal likelihood of edges efficiently. These marginal likelihoods

in turn capture the uncertainty that naturally exists in semantic taxonomies, e.g., the answer to the

question “Is ‘candy’ a type of ‘dessert’?” or “Is ‘candy’ a type of ‘sugar’?” is inconsistent depending

on the participants’ beliefs. Our second research question concerns the use of these uncertainties,

and whether it can improve the efficiency of performing navigation tasks relative to the use of a

single representative taxonomy.
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Figure 5.2: This figure shows the interface provided to the AMT workers to perform the navigation tasks: (i)

the target object is shown in the top-left panel; (ii) the top-right panel shows the taxonomy – a navigation

system; and (iii) the bottom panel shows a subset of the images associated with the current node clicked by

the user.

5.3 Application Domain and Navigation Tasks

In this section, we discuss the application domain, the process of data collection for this domain,

and the navigation tasks we use for evaluation.
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5.3.1 Application Domain

In this chapter, we consider the application domain of kitchen. This domain involves objects used

in the kitchen in everyday life such as food items, kitchen appliances, cooking utensils, etc. We

chose this domain for 2 reasons: 1) the navigation tasks in this domain represent simple everyday

scenarios, ensuring that AMT workers are familiar with the domain to perform the navigation tasks

for evaluation, and 2) it is a rich domain that captures the intricacies of real-world applications, such

as online shopping portals.

Collecting objects for our domain. We begin by collecting the most frequently used keywords

in the kitchen domain. We extract the words/phrases representing the most commonly used kitchen

concepts from the WikiHow [206] articles using the Stanford parser [110]. We then do a two-step

filtering process as follows: first, we keep the top 100 frequently occurring keywords as candidates;

then, we filter out the candidates that are not in WordNet1. This filtering process yields a set of

about 70 seeding keywords — these are the concepts that represent the kitchen domain. We then

use these keywords to search for images via Google’s image search engine to get exemplary images.

For each keyword, we collected about 50 images, giving us a total of 3500 images. These images

represent the objects for the kitchen domain, c.f., “Objects” in Figure 5.1. In the next section, we

describe the different taxonomies that we build to organize these objects.

5.3.2 Navigation Task

Figure 5.2 illustrates a navigation task for the kitchen domain using one of the taxonomies we

evaluate. This is the same interface provided to AMT workers during our user studies. The goal of a

navigation task is to localize a target object from the set of objects in the domain — the target object

is shown in the top-left panel of Figure 5.2 and randomly picked from all candidate objects. All

candidate objects are organized using a taxonomy represented by nodes and edges as discussed in

section 5.2. The user has access to this taxonomy as the navigation system, shown in the top-right

1This second filtering step is to have a reasonable WordNet taxonomy that can be used as a baseline taxonomy for
the comparison.
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panel in Figure 5.2. Recall that each node in the taxonomy is associated with a set of objects that is

tagged by this node or any of its descendant nodes. When a user clicks on a node, a random subset

of the images belonging to that node (or any of its children) appears (the bottom panel of Figure 5.2).

The user can search through these images to find the target. Or the user can use these images as an

indicator of the kind of objects expected to appear under the current node, then click finer-grained

nodes beneath the current node to look for the target. During the navigation task, the user can

also backtrack the search path by clicking on a non-descendant node. The task finishes when the

user finds the target object in the bottom panel and clicks on it. This navigation task resembles

many real-world applications. For example, many online shopping portals, such as Amazon [4] and

BestBuy [9], organize their products in a taxonomy to help their customers navigate and search

efficiently.

Metrics. Our primary goal is to quantitatively measure the efficiency of the taxonomies as a

navigation system. The natural metric is the time a user spends per task, i.e., time to localize the

target object using a given taxonomy. A shorter time suggests that the system is more efficient at

guiding users to find the target object. Another metric of interest is the number of clicks performed

before a user localizes the target object. Intuitively, this number captures whether a taxonomy

matches the common sense. The number of backtracking steps done by a user while navigating the

taxonomy tree is another metric we measure. A large number of backtracking steps indicates that

the taxonomy might confuse its users.

5.4 Taxonomies Used for Evaluation

In this section, we present the specific taxonomies that are used for evaluation in our work. We

compare three different taxonomies: 1) the WordNet taxonomy [69], 2) MAP (the most represen-

tative) taxonomy created by [185], and 3) the multifaceted taxonomy created by [185] to capture

uncertainty.
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5.4.1 WordNet taxonomy

WordNet, a large taxonomy containing over 150,000 words, groups words that are roughly syn-

onymous into synsets. These synsets are then connected to each other based on semantic relations,

represented as a Directed Acyclic Graph (DAG). To generate a WordNet-based taxonomy for our

domain, we extract a taxonomy from WordNet covering the 70 seeding keywords representing the

concepts for kitchen domain as described below.

First, we locate the nodes in WordNet’s DAG corresponding to the 70 keywords. Although all

70 keywords are in WordNet (note that we filtered the keywords to keep only the ones that are in

WordNet), it is still a non-trivial task to locate the nodes in the DAG that are relevant to the kitchen

domain because the same word may have different meanings i.e., it could correpond to different

synsets/nodes in WordNet. Therefore, whenever a keyword is mapped to multiple nodes in WordNet,

we use the following heuristic to decide which synset/node in the WordNet has the semantics

related to the kitchen domain. The heuristic will pick a synset if it has ‘food’, ‘instrumentality’

or ‘appliance’ as its ancestor synsets; otherwise, it picks the synset based on priority ordering

defined by the match of the target keyword in the lemmas (semantic sense) of the sysets. It is worth

noting that the crowdsourcing-based technique we use [185] faces a similar problem of polysemy in

collecting tags in the first step, c.f., Figure 5.1. For example, ‘apple’ could represent the fruit or the

corporation. However, crowdsourcing based techniques resolve this naturally as the tag collection

process involves showing images of the objects to the workers.

Then, after locating the nodes in the DAG for the 70 seeding keywords, we greedily find the

minimum spanning tree in this DAG to cover these 70 nodes. To find this tree, the algorithm

initializes a forest with 70 nodes. At each iteration, it picks a pair of nodes, adds their lowest

common ancestor into the forest, and connects these two nodes with the new ancestor node. The

algorithm then repeats this process until the forest becomes a single-rooted tree. After executing this

algorithm, we have a total of 96 nodes. Figure 5.5 (a) shows this WordNet taxonomy corresponding

to the 96 nodes; the 70 nodes corresponding to the seeding keywords of kitchen domain are marked

in blue.
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5.4.2 Crowdsourcing-Based Taxonomies

Next, we use the method of Sun et al. for building crowdsourcing-based taxonomies. Following the

workflow in Figure 5.1, we first collect tags for the object images corresponding to the 70 seeding

keywords representing the kitchen domain.2 We show the 70 representative object images to the

AMT workers and ask them to provide 3 distinct tags for each image they see. Furthermore, each

image is shown to 3 distinct workers. At the end, we aggregate all the tags, and we keep only the

tags that are used by more than 5 workers to refer to these objects. We combine the newly collected

tags with the original 70 keywords to get the final set of 104 tags/nodes. We then run the sequential

version of the method proposed in [185] to learn the taxonomy over the set of these 104 nodes. As

discussed in the previous section, the output of the method is a distribution over all taxonomy trees

with 104 nodes.

MAP taxonomy. This is the taxonomy obtained by doing MAP (maximum a posteriori proba-

bility) inference and is the most representative taxonomy [185]. Figure 5.5 (b) shows this MAP

taxonomy corresponding to the 104 nodes; the 70 nodes corresponding to the seeding keywords of

kitchen domain are marked in blue.

Multifaceted taxonomy. The MAP taxonomy ignores the uncertainty that naturally exists in

semantic taxonomies. One reason for this uncertainty is the multifaceted classification [159] problem

as there are different criteria that can be considered by humans to classify and categorize objects.

The most common example is the online shopping portals, where products can be categorized by

price, type, maker and so on. In order to incorporate this uncertainty, we create an augmented

taxonomy to utilize the uncertainty to create more options for users to localize the target object in the

taxonomy [171]. We begin by computing the marginal likelihood of the edges from the distribution

of the taxonomies obtained above — their Bayesian approach provides a computationally tractable

method to compute these likelihoods. We then keep only the edges that have a marginal likelihood

of more than 0.1. Next, we append the MAP taxonomy tree with these additional edges. As an

2Note that we have 50 images per seeding keyword. However, in order to make this tag collection process cost-
efficient, we randomly selected 5 images per keyword, then grouped these 5 images into one big image, and used this
as the representative object image to collect tags.
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example, c.f., Figure 5.5, we obtain the edges from ‘sugar’ to ‘candy’ and ‘dessert’ to ‘candy’ among

these high likelihood edges. The MAP taxonomy tree (Figure 5.5 (b)) already has an edge from

‘dessert’ to ’candy’. Hence, we append this tree with edge from ‘sugar’ to ‘candy’. It is important to

note that the resulting structure after augmenting these edges is not a tree but a DAG. For the user

studies, we consider showing it to users as a tree for easier interpretation and navigation. To convert

this DAG to a tree, we do the following: For each node x with n > 1 parent nodes represented by

the set πx, we replicate the sub-tree rooted at x for n times and add this sub-tree as a child node

to each of the parent nodes in πx. This treatment to the DAG gives us a taxonomy with replicated

nodes (as shown in Figure 5.5 (c)) and we call this taxonomy a Multifaceted taxonomy. In Figure 5.5

(c), the set of nodes that was replicated and added to the MAP taxonomy at different positions are

highlighted in red.

5.5 Structural Comparison of Taxonomies

In this section, we compare the three taxonomies based on the various structural and qualitative

aspects a discussed below.

Number of nodes. The MAP taxonomy (c.f., Figure 5.5 (b)) contains 104 nodes compared

to 96 nodes in the WordNet taxonomy (Figure 5.5 (a)). Note that both these taxonomies contain

the same set of 70 seeding keywords we begin with. A careful examination reveals that the MAP

taxonomy includes many instance names that specify some seeding keywords. For example, ‘fish’ is

a seeding keyword, and ‘salmon’ is a particular type of ‘fish’. The reason for seeing these instance

names is that we show images corresponding to the ‘fish’ object to collect the tags, and upon seeing

‘salmon’ food dish in the image, some workers may annotate the image with the tag ‘salmon’. These

specific instance names do not exist in the WordNet taxonomy since we generate the taxonomy by

adding only ancestor nodes of the seeding keywords in the DAG of the WordNet. Furthermore, if

we remove all nodes related to these specific instance names from the MAP taxonomy, we are left

with 91 nodes — a number slightly lower than the size of the WordNet taxonomy, i.e., 96 nodes.

This suggests that non-experts might use a more compact set of tags/concepts to refer to the same

collection of objects for a certain application domain.
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Depth/width of taxonomy. The MAP and the Multifaceted taxonomies both have a depth of 6

and a width of 16. On the other hand, the WordNet taxonomy has a depth of 8 and a width of 8.

These numbers suggest that non-experts tend to build shallower but wider trees, while experts might

prefer creating deeper but narrower trees.

Words in taxonomy. Taxonomies built via crowdsourcing have more familiar keywords/concepts

associated with the nodes. The WordNet taxonomy has more obscure/infrequently occurring key-

words such as ‘nutriment’, ‘instrumentality’, ‘concoction’, and others. These keywords in the

WordNet taxonomy might be unfamiliar to ordinary users, in particular non-native English speakers.

Uncertainty. The taxonomy in Figure 5.5 (c) captures some interesting information about

the uncertainty of the edges. One example is the ‘blender’ node. As per the MAP taxonomy

in Figure 5.5 (b), ‘blender’ is a type of ‘kitchen appliance’. However, in the Multifaceted taxonomy,

a ‘blender’ could also be a kind of ‘container’. This uncertainty captures the notion of multifaceted

classification: humans use different attributes to classify the same objects/ concepts. Some users

classify ‘blender’ according to its essential functionality as an appliance, while others believe

that‘blender’ can be used as a ‘container’. Keeping two ‘blender’ nodes in one taxonomy thus

potentially provides users with more choices in navigating the taxonomy to find the target objects.

A user who believes ‘blender’ is a ‘container’ will not find the target object directly in the MAP

taxonomy, leading more clicks and backtracking steps. But the user can quickly locate ‘blender’ in

the Multifaceted taxonomy. The taxonomy in Figure 5.5 (c) also illustrates other sorts of uncertain

edges. For example, some users are confused about the relation between ‘dough’ (flour mixed with

less water) and ‘batter’ (flour mixed with more water). In the Multifaceted taxonomy, we can see

the edges from ‘dough’ to ‘batter’ and from ‘batter’ to ‘dough’. These kind of cycles suggest that

these two nodes are synonyms.

5.6 User Study for Quantitative Evaluation

We performed our user study on AMT by recruiting workers to perform navigation tasks. Each

worker participating in the study is allowed to accomplish the navigation task only two times:

one task uses the WordNet taxonomy, and the other task uses either the MAP taxonomy or the
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(a) Time (in second) per task by tax-

onomy types. p• < 0.001. p? <

0.0001.

(b) Number of clicks per task by

taxonomy types. p• < 0.001.

p? < 0.01.

(c) Number of backtrackings per

task by taxonomy types. p• <

0.0001. p? = 0.0001.

Figure 5.3: Boxplots showing the evaluation metrics by type of taxonomy. “•” compares WordNet with the

MAP taxonomy; “?” compares WordNet with the Multifaceted taxonomy.

Multifaceted taxonomy. The order of these two tasks is chosen randomly. We do not allow workers

to perform tasks with both the MAP and the Multifaceted taxonomies as they might learn one

taxonomy from another, thereby affecting the validity of the study. We ran these online experiments

on AMT for 3 days restricted to US workers with more than 95% approval rate, and over 800 distinct

workers participated in the study. Considering only the tasks successfully accomplished by the

workers, we have the following number of completed tasks: 730 using the WordNet taxonomy, 343

using the MAP taxonomy, and 436 using the Multifaceted taxonomy.

5.6.1 Task-Dependent vs. Generic Taxonomies

We first compare the efficiency of using task-dependent taxonomies to the generic taxonomy to

answer the first research question (viz., Do task-dependent taxonomies built by crowdsourcing

techniques improve the end-to-end efficiency compared to generic taxonomies built by experts?)

Among the three taxonomies we use, both the MAP and the Multifaceted are task-dependent

taxonomies, and the WordNet taxonomy is generic.

Table 5.1 shows the summary statistics and the average performance of tasks for three metrics,
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Table 5.1: The means ± standard deviations (STD) of time, the number of clicks, and the backtracking steps

for finding one target.

Metrics
Taxonomies

WordNet MAP MF

time(s) 60.2± 76.3 49.8± 57.2 47.9± 63.2

# of clicks 6.0± 6.7 4.4± 5.2 4.0± 5.7

# of bts 2.3± 3.3 1.3± 2.7 1.1± 3.0

including: time, number of clicks, and number of backtrackings per task, where backtracking

indicates that a user navigated back up through the hierarchy after discovering a potential dead

end. Figure 5.3 shows the distribution of the different metrics for the different types of taxonomies.

Significance testing involves unpaired t-tests.

Results show that using the WordNet taxonomy performs significantly worse than using both

the MAP and the Multifaceted taxonomies regarding all three metrics (p < 0.05). Among the three

taxonomies, the Multifaceted taxonomy performs the best. It outperforms the WordNet taxonomy

by 20% with respect to time, by 33% with respect to the number of clicks, and by 49% with respect

to the number of backtrackings.

These above findings show that non-expert workers at AMT can build task-dependent tax-

onomies. The task-dependent taxonomies are designed for the kitchen application domain and

can therefore be deployed by navigation tasks to achieve efficient navigation performance. On the

other hand, the generic taxonomy does not consider any task information. Although it is created by

experts and is correct in its content, it does not help to achieve efficient navigation performance in

the desired target domain.

5.6.2 MAP vs. Multifaceted Taxonomies

We examined the tasks using MAP or Multifaceted taxonomies and tried to answer the second

question (viz., Does the uncertainty captured by probabilistic approaches help?). To determine
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Table 5.2: The means ± standard deviations (STD) of time, the number of clicks and the backtracking steps

for finding a target: the targets are from the nodes with uncertainty.

Metrics
Taxonomies

MAP MF

time(s) 49.1± 44.9 41.3± 44.6

# of clicks 4.3± 4.9 2.8± 2.5

# of bts 1.6± 2.5 0.8± 1.4

the effect of using uncertainty information, we segmented all the 70 nodes into two groups based

on whether there are replicated nodes in the Multifaceted taxonomy. We did this because: 1) the

MAP and Multifaceted taxonomies are different only on these nodes, and 2) these nodes have high

uncertainty, letting us evaluate the difference between using and not using uncertainty information

in the taxonomies.

First, we compare the performance of the taxonomies on the group of nodes with uncertainty.

The evaluation metrics of the two taxonomies are summarized in Table 5.2. The average time, the

number of clicks, and the number of backtrackings using the Multifaceted taxonomy are consistently

lower than using the MAP taxonomy. Among the three metrics, both the numbers of clicks and

backtracking results are significantly different between the two taxonomies, with both p values

< 0.01. The difference on the time metric is as significant as the other two metrics given the p value

of 0.218. We hypothesize that the time does not exactly reflect the time taken by users to navigate

through the taxonomy because it also includes time spent for searching for target images.

Next, we report the backtracking rates of each node with hierarchy uncertainty in Table 5.3. The

backtracking rates tell us how often a user has to backtrack at least once to localize the target object.

We rank the nodes by their entropy, given in the last column. To compute the entropy, we use the

approach in [185] to determine the marginal likelihoods of all possible edges (the probabilities of

all the edges ending at the same node are automatically normalized). The distribution of a node

tells us which nodes are likely to be the parent of that node. We then compute the entropy of the
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Table 5.3: The backtracking rates (%) of nodes with uncertainty when different taxonomies are used. “w/un”

means the group of nodes with uncertainty, and “wo/un” indicates the group of nodes without uncertainty.

Node BT-MAP(%) BT-MF(%) Entropy

sauce 44 17 0.70

flour 100 8 0.69

salad 0 18 0.69

pie 33 20 0.69

grill 67 100 0.69

stove 60 88 0.69

blender 75 89 0.69

microwave 100 90 0.69

pot 100 14 0.69

fork 0 0 0.69

honey 43 29 0.69

juice 20 33 0.69

candy 67 17 0.69

chicken 50 25 0.69

chocolate 50 0 0.69

batter 80 60 0.64

dough 33 20 0.64

w/un 54± 31 37± 34 0.69± 0.02

wo/un 37± 34 36± 27 0.00± 0.00

distribution to represent the uncertainty of the node.

The individual results show that using the MultiFaceted hierarchy MF clearly outperforms the

MAP hierarchy on searches relating to these nodes, as confirmed by a reduction of the average

backtracking rate from 54% to 37% (3̃0% marginal improvement). Although the paired t-test is

not significant (p = 0.06), using the Multifaceted taxonomy outperforms the MAP taxonomy for
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(a) The sub-tree for candy from the MAP

taxonomy.

(b) The sub-tree for candy from the Multifaceted tax-

onomy.

Figure 5.4: Illustration of the search paths taken by users to search for candy using different taxonomies.

We use the following short notations: fo for food, sw for sweet, su for sugar, de for dessert, and ca for candy.

The green edges indicate the path-taken by the users; the red edge indicates backtracking; the stars indicate

the targets.

most nodes. This is not surprising since MF provides alternative paths for uncertain nodes, thereby

avoiding the backtracking required by the MAP taxonomy. The last row in Table 5.3 also shows

that on nodes with high entropy, users backtrack more often than on nodes without uncertainty. This

suggests that the uncertainty over nodes in the taxonomy does capture the uncertainty users have

when they perform navigation tasks.

We examined the common patterns of user searching for target nodes with uncertainty using

the MAP and Multifaceted taxonomies. Figure 5.4 shows how users look for candy using different

taxonomies. We show the parts of the taxonomies relevant to the target node candy, and highlight

the path taken by the users to look for candy. When doing so, about half of the users first go

through sugar from sweet because they might believe that candy is a type of sugar. The other

users take the path from sweet to dessert. The MAP taxonomy does not consider the uncertainty

information and puts candy only as a child of dessert. Users going in the direction of sugar could
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not find the target in the MAP taxonomy and therefore have to backtrack and search the other

alternative path, from dessert to candy. On the other hand, the Multifaceted taxonomy realizes

that there is uncertainty over the location of candy. Therefore, it puts candy under both possible

locations. Hence, the users could find candy by taking either path in the Multifaceted taxonomy.

Using uncertainty reduces the backtracking rate for sugar from 67% to 17%.

5.7 Related Work

Crowdsourcing for user studies. Crowdsourcing platforms provide easy, on-demand and low-cost

access to a large pool of diverse participants, thereby opening up opportunities to conduct large-scale

online user studies [109, 142]. In the computer science community, crowdsourcing-based user

studies have been widely deployed to evaluate the performance of algorithms in various application

domains, such as graphical perception design [87, 146], web search [3, 32], recommendation

systems [141], computer vision [56], etc.

Evaluating ontologies. Taxonomy is usually a major component of an ontology; hence, the

methodologies for evaluating ontologies significantly overlap with the evaluation of taxonomies.

When a ground-truth ontology or knowledge base is available, precision-recall-based metrics

inspired from information retrieval evaluations have been used [138]. However, these methods are

inadequate otherwise. On the other hand, data-driven methods [158] evaluate target ontologies

to match the knowledge included in some existing corpus or test data set. However, they do not

quantify the quality/utility of a target ontology in terms their efficiency of performing the desired

task. One orthogonal direction for evaluating taxonomies is to study the cognitive feasibility of

the taxonomy by measuring participants’ reactions to the relations entailed by the structure of the

taxonomy [64]. Building on the ideas of Evermann and Fang, [149] proposed a crowdsourcing-based

user study to evaluate/verify target ontologies. However, [149, 64] rely on microtask methods of

ontology verification wherein participants answer simple binary questions, such as “Is every ‘heart’

an ‘organ’?”.

Task-driven evaluation of taxonomies. Task-driven evaluations [25] directly measure the

end-to-end performance of different taxonomies. These methods [25] define simple microtasks, e.g.,
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binary questions to evaluate the accuracy and coverage of the taxonomy content. The downside of

these methods is that only local knowledge of the target taxonomy usually suffices to answer these

questions. Our approach is a type of task-driven evaluation method. However, unlike the traditional

task-driven methods that focus on assessing the content via simple questions, our approach focuses

on evaluating the efficiency of using a taxonomy for doing inference: We rely on a more sophisticated

navigation task to assess the taxonomy as a whole, representing a knowledge base in a hierarchical

structure.

5.8 Conclusion

In this chapter, we evaluated crowdsourcing-based techniques for building task-dependent tax-

onomies. Ours experiments show that task-dependent taxonomies built by crowdsourcing techniques

significantly improve the efficiency of navigating and searching for target objects compared to using

a generic taxonomy created by experts. The results also show that using multifaceted taxonomies to

capture uncertainties over node positions reduces the number of clicks/backtracking steps performed

by users to find objects. These results demonstrate that crowdsourcing-based techniques can be

deployed for complex structural learning tasks such as building semantic taxonomies.
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(a) WordNet taxonomy for kitchen domain.

(b) MAP taxonomy built by crowdsourcing techniques [185] for kitchen domain.

(c) Multifaceted taxonomy capturing uncertainity built by crowdsourcing techniques [185] for kitchen

domain.

Figure 5.5: Three taxonomies for kitchen domain used for evaluation. In (a) the WordNet and (b) the MAP taxonomy,

the 70 nodes corresponding to the seeding keywords of kitchen domain are marked in Blue. In (c) the Multifaceted

taxonomy, a small set of nodes with high uncertainty are replicated and added to the MAP taxonomy at different

positions (highlighted in Red). The following abbreviations are used in these taxonomies: ‘kitc-appl’ for ‘kitchen

appliance’, ‘cook-uten’ for ‘cooking utensil’, ‘w-c’ for ‘whipped cream’, ‘home-appl’ for ‘home appliance’, and

‘kitc-uten’ for ‘kitchen utensil’.
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Chapter 6

NEVER-ENDING OBJECT LEARNING

6.1 Introduction

Humans are capable of learning continuously: we can learn to recognize new objects and to associate

new names with existing objects. To be useful over the long term, open-ended deployments, personal

robots must be able to do the same. The predominate approach to object recognition is to train

object classifiers on a predetermined set of objects with a predetermined set of names and then to

test their performance on new instances of the same set of objects and names [50, 122, 115]. This

train-once-then-test approach is inadequate for personal robots, since it is infeasible to assume that

all objects, and all possible names that people refer to them by, are known in advance. So for future

robots to be useful, they require the ability to learn not only new objects, but also new names for

existing objects over time [183].

To see the potential problem of not learning new object names, we asked workers on Amazon

Mechanical Turk (AMT) to name objects in a popular RGB-D dataset [122]. This dataset contains

objects that are organized according to WordNet categories (i.e., with a pre-specified set of names).

We found that only 75% of the names given by the workers are included in WordNet. Thus, even if

a robot correctly apply labels to 100% of the objects in their WordNet categories, it would correctly

name only 75% of the objects to their AMT workers’ simply because it lacks the ability to associate

new names to existing ones. People do not use only category names to refer to objects [106]. For

instance, a can of “Pepsi Cola” might be referred to as “Pepsi”, “pop”, “soda”, “can”, or “Pepsi

can”.

To deal with the challenge of learning novel objects and names, we introduce NEOL, a framework

for Never-Ending Object Learning. NEOL learns objects and their names continuously – adding and

improving classifiers after every object encounter – rather than learning via the train-once-then-test
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approach.

There are two major challenges to developing a framework for never-ending object learning.

First, how should objects and their corresponding names be organized? A naı̈ve approach would be

to train an independent classifier for every object name, using instances with that name as positive

examples and instances of all other object names as negative examples. However, this approach

ignores the important relationships between names. For instance, since apples are also fruits, every

object named “apple” should also be a positive training example for the name “fruit”. Many false

negative labelings will occur if the naı̈ve approach is deployed that could be especially harmful for a

never-ending learning paradigm, where training data are quite limited. We decide to organize names

and objects according to semantic hierarchies of concepts, which have been shown to be useful in

building classifiers for object recognition and improving recognition accuracy [50, 55, 121]. Most

prior work uses existing hierarchies, which may not be optimal for their tasks. To deal with this

challenge, NEOL automatically learns a hierarchy over object names using crowdsourcing, inserting

new names as they occur.

The second challenge of never-ending object learning is that the robot needs to cope with

inconsistent, sparse, and noisy annotations. This phenomenon is related to the fact that each object

can be referred to by different names, and it is difficult for a human teacher to label all possible

names of an object. As a result, a robot knows only that an object can be referred to as “fruit”

but is uncertain about the specific type of the fruit. Although there are methods [41, 27, 186]

for explicitly considering the problem of partial labelling, they cannot yet achieve human-level

annotation accuracy. Alternatively, crowdsourcing platforms provide affordable human labour to fill

in the missing annotations efficiently [23]. However, as a robot sees more objects and names, relying

only on human annotations becomes economically infeasible. Moreover, crowdsourcing workers

often provide noisy answers. As will be shown in an experiment in Section 6.3, noisy answers

could be harmful to a never-ending learning system. We will deploy the hierarchy maintained by

the system to efficiently annotate objects and reduce labelling noise.

Our contributions. We introduce NEOL, a framework for robots to learn new objects and new

object names over time. We extend our previous crowdsourcing-based method for building semantic
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hierarchies of names using existing knowledge bases. We propose an efficient and robust way to

fill in missing annotations of objects using the hierarchy and crowdsourcing. Moreover, we design

a robust method that uses both in-domain RGB-D images and out-domain images to accurately

recognize objects by names. Extensive evaluations show that NEOL can achieve robust results even

given challenging settings.

This chapter is structured as follows: Section 6.2 presents a summary of related work. Section 6.3

introduces the never-ending object learning method, NEOL. Experimental results are provided in

Section 6.4. Finally, we conclude in Section 6.5.

6.2 Related Work

Image annotation is often a multi-label problem [198, 204]. Many multi-label works [99, 217]

assume that each training image in the training set has a complete label assignment. However, this

assumption is typically not true [186]. When people teach a robot an object, they usually mention

only a subset of positive labels for the object. A robot can use the object as a negative example of the

labels that are not mentioned by the human. However, this naı̈ve approach introduces false negative

labels that could cause ambiguity when learning objects. One approach to tackle this problem

is to fill in the missing labels automatically, as was down in WELL [186] and MLR-GL [27] in

the multi-label literature. But these methods cannot to reach human-level annotation accuracy.

Another promising direction is to include humans in the loop by having crowdsourcing workers

give multi-label annotations to objects [23]. But, existing methods do not consider the structure

information of labels, i.e., hierarchies of the given labels. In this work, we combine hierarchy with

crowdsourcing to efficiently annotate objects with missing labels.

6.3 Never-Ending Object Learning

In our setting, a robot is initialized without any knowledge of the objects in its working environment.

Its goal is to recognize objects based on names and visual appearance. To be able to do so, it

gradually learns both objects and their names from humans. A person will show the robot one

object at a time and teach the robot several names that can be used to refer to the object. The robot
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Figure 6.1: Pipeline of NEOL to learn one new object. NEOL takes the object and name pair as an input, then

gives object classifiers, object annotations and a semantic hierarchy of names as output. 1© indicates updating

the hierarchy, 2© corresponds to update object annotations, and 3© leverages background image datasets to

re-train classifiers.

remembers the names, observes the object from several views, and then learns to recognize objects

of similar kinds.

Figure 6.1 summarizes the major technical components of NEOL. We make three design choices

in this pipeline:

How to organize objects and names. The robot is going to learn many names continuously. It

could take a naı̈ve approach by treating all names independently. However, this approach ignores

the correlation between names, which could be useful to speed up the learning process [166]. As

inspired by previous work [121, 50], we decide to organize names into a semantic hierarchy. All

objects that can be referred to by a certain name will be associated with that name node in the

hierarchy. As the robot learns new objects and names, it must update the hierarchy. NEOL deploys a

method using crowdsourcing and a background name hierarchy to efficiently do so. Details will be
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Algorithm 3 Pseudo-Code for NEOL
1: Input:

Y S : mapping between source-domain images and names

2: Output:

A hierarchy H(t) after seeing t object-name pairs

3: Initialize:

H(0) := ∅, t := 0

4: while the robot receives (ι(t+1), n(t+1)) do

5: t := t+ 1

6: (H(t), ñ) := updateHierarchy(H(t−1), n(t))

7: H(t) := updateAnnotation(H(t), ι(t), ñ)

8: for (ι, n(t)) ∈ Y S do

9: H(t) := updateAnnotation(H(t), ι, ñ)

10: for ñ′ ∈ H(t) do

11: ñ′.f := trainClassifier(ñ′.I+, ñ′.I−)

12: Return: H(t)

discussed in Section 6.3.1.

How to annotate objects. Usually, one object can be referred to by several names (multi-label).

However, a human teacher rarely enumerates all possible names related to the object. Therefore, the

robot knows only a few names for a target object. Naively, it could associate the object with just

those names mentioned by the teacher, but not the other names. NEOL deploys a method to fill in

all the annotations of a target object efficiently using the name hierarchy and crowdsourcing. The

details will be given in Section 6.3.2.

How to train object classifiers. In the never-ending learning setting, positive examples from the

teacher could be very sparse. Building image classifiers with sparse training examples could cause

overfitting, and not generalize well to recognize new instances of the same category. We propose

to improve the generalization ability of image classifiers in NEOL using annotated images from

external knowledge bases whenever possible. This will be discussed in Section 6.3.3.

We describe the meta algorithm of NEOL before going into details, using the following notations..
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N = {n1, . . . , nL} denotes a set of names, and I = {ι1, . . . , ιM} a set of object images. Each ιm is

associated with at least one name in N . All names in N are organized in a tree-structured hierarchy

H . Each node ñl in the hierarchy is a quadruple (n, I+, I−, f), where ñl.n = nl, I+ includes all

object images that can be referred to by the name n, and vice versa for I−. f denotes the classifier

that takes the image feature xm of an object image ιm and predicts f(xm), indicating whether ιm

can be annotated with the name n.

Since we use external image datasets in NEOL, it is necessary to distinguish them from the

images collected in the target domain. Following standard convention, we call the external databases

the source domain and use superscript S to indicate any concepts (names or objects) from it.

Concepts shown by the teacher are called the target domain. We use the superscript T to denote

target domain concepts. If no superscript is used for a concept, it is in the target domain by default.

Using these notations, we formalize NEOL in Algorithm 3. NEOL is initialized with source

domain images IS , name labels N S , and the mapping between images and names denoted as Y S .

It then takes a sequence of object images and names in the target domain as inputs. Each object

and name pair (ι, n) is added into NEOL’s knowledge base, which consists of a set of images IT ,

names N T , and the hierarchy H . NEOL organizes objects and names in a hierarchy H and runs the

process described in Figure 6.1 to update H after seeing a new object: It first updates the structure

of the hierarchy and then updates the images associated with each node in the hierarchy. Finally, it

updates the classifier in each node. We will describe each component in the following sections.

6.3.1 Name Hierarchy

As in Algorithm 3, NEOL maintains a hierarchy of names to organize images and names. For the

reasons stated above, existing name hierarchies (such as the WordNet ontology) do not contain

all possible names people might use to refer to objects. Furthermore, these hierarchies are built

by domain experts and do not necessarily conform to people’s ideas of how object names relate

to each other. Therefore, we decided to incorporate an online hierarchy learning approach into

NEOL. Specifically, we adopt and extend our previous method [185] to build name hierarchies. We

summarize the gist of the method and discuss our new extension on the following pages. More
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details can be found in [185].

Building a Name Hierarchy

We want to build a hierarchy H over L nodes (names) by asking crowdsourcing workers questions

about the hierarchy structure. Our goal is to find the hierarchy that best matches workers’ answers in

a spaceH = {H1, . . . , HM} over all possible hierarchies with L nodes. However, workers’ answers

are inherently noisy. Even if every worker gives the best possible answers, name relationships

might be ambiguous and there may be no single hierarchy that consistently explains all the workers’

answers. To capture the uncertainty over semantic hierarchies and worker noise, we use a Bayesian

framework to estimate probability distributions over hierarchies rather than using a single best

guess.

The key challenge here is the huge number of candidate hierarchies, which is (L + 1)L−1 for

L+ 1 nodes (we add one root node), resulting in 1,296 trees for 6 names, but already 2.3579e+ 09

trees for only 11 names. It is thus intractable to directly model the distribution as a multinomial. We

introduce a compact model to represent the family of distributions over hierarchies

P (H|W ) =

∏
ei,j∈HWi,j

Z(W )
, (6.1)

where Wi,j is a non-negative weight for the edge ei,j representing whether node nj is an immediate

descendent of node ni, and Z(W ) =
∑

H′∈H
∏

ei,j∈H′Wi,j is the partition function.

Our method updates the model parameter W by asking workers a sequence of questions

q(1), . . . , q(t), . . . and getting the corresponding answers a(1), . . . , a(t), . . .. Each question q(t) is

posed to determine whether a direct path pi,j exists in the hierarchy from ni to nj . An example

would be “Is an apple a type of fruit?”. The answer a(t) to the question is denoted as ai,j ∈ {0, 1},

where ai,j = 1 means a worker believes that there is a path from node ni to nj , and vice versa. The

method then updates the posterior P (H|W (t)) at the (t)-th iteration using Bayes’ rule

P (H|W (t)) ∝ P (H|W (t−1))f(a(t)|H), (6.2)
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where f(a(t)|H) is the likelihood of getting answer a(t) given the hierarchy H . It can be defined as

f(ai,j|H) =

(1− γ)ai,jγ1−ai,j , if pi,j ∈ H

γai,j(1− γ)1−ai,j , otherwise
.

Here pi,j ∈ H checks the existence of the path pi,j in H and γ is the noise rate of workers.

Unfortunately, the likelihood is not conjugate to the posterior. Hence, there is no analytical form

for updating the weights. Sun et al. propose to update the weight matrix by approximate inference.

The optimal solution W ∗ is found by minimizing the KL-divergence [117] between P (H|W ) and

P (H|W (t))f(a(t+1)|H)

W ∗ = arg min
W

KL(P (H|W (t))f(a(t+1)|H)‖P (H|W )), (6.3)

which can be solved efficiently using a sampling method and gradient descent.

To summarize, the algorithm takes a set of names as input and gives a hierarchy with the highest

probability as output. The algorithm first initializes the parameters W of the distribution (se the

following section). It then poses a sequence of queries to humans. Each answer allows the algorithm

to update the distribution parameter W .

Extending A Name Hierarchy

In many cases, NEOL needs only to update the hierarchy rather than build it from scratch. Assume

that the current hierarchy H has L nodes, and we want to insert a new node into the hierarchy such

that the new hierarchy H ′ has L + 1 nodes. One naı̈ve way to build the new hierarchy is to run

the hierarchy building algorithm from scratch. However, this way ignores all information carried

by the previous posterior distribution P (H|W ). We adopt a more informative way to initialize the

algorithm. Using basic rules of probability, it is true that

P (H ′|W ) =
∑
H

P (H ′|H)P (H|W ), (6.4)
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where P (H ′|H) is a uniform distribution over all the possible hierarchies by adding one node into

H , and P (H|W ) is the distribution over H so far, which is the output of the algorithm described in

the previous section.

Since there exist efficient algorithms to sample i.i.d. (independent identically distributed)

samples from P (H|W ) [185], it is then also efficient to get i.i.d. samples from P (H ′|W ) using

ancestral sampling [112]. Then, we initialize W ′ by optimizing the following problem

W
′∗ = arg min

W ′
KL(P (H ′|W )‖P (H ′|W ′)), (6.5)

which can be solved using the same technique for optimizing equation (6.3).

After initializing W ′, the algorithm iteratively updates W ′ by following the same algorithm of

building a hierarchy.

Implementation Details

Though using crowdsourcing to answer a single question is inexpensive, answering all relevant

questions via crowdsourcing is still very costly, especially for building large hierarchies. To save

questions, the approach from [185] selects the sequence of path questions based on information

gain, thereby reducing the number of questions needing to be asked.

Additionally, due to the noise in workers’ answers, the same question has to be answered by

multiple workers to improve confidence. Fortunately, we can avoid asking a lot of questions using

source domain semantic hierarchies, e.g., the WordNet. For example, if both nodes ni and nj are in

the WordNet hierarchy, we can use WordNet to answer the path question pi,j by checking whether

ni is a hypernym of nj in WordNet. Since WordNet is built by experts, the error rate γ for that

answer would be very small. On the RGB-D dataset [122], we found that using WordNet to answer

questions saves about 40% of the queries, also resulting in a learned hierarchy that is more consistent

with WordNet if there are overlapping nodes between them.

After collecting sufficient information from workers and WordNet, our approach produces

a very concentrated probability distribution over a few hierarchies. NEOL uses the maximum a
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Figure 6.2: Label propagation using a hierarchy. The object given to the robot is a lemon. The name given

by a person is citrus fruit, which is marked as a solid red ellipsis in the hierarchy. The lemon will be used

as a positive example of citrus fruit. It will also be used as a negative or positive example for other nodes

in the hierarchy. To decide whether it is a positive or negative example of a particular node, we define two

sub-routines, propagateLabel, indicated by the green region, and refineLabel, indicated by the blue

region. After applying both routines to the object, all its annotations will be filled in as shown in the table

bellow the hierarchy.

posteriori (MAP) hierarchy for label propagation. Finding the MAP tree of the distribution defined

in equation (6.1) can be accomplished efficiently using the minimum-spanning tree algorithm [38].

6.3.2 Consistent Image Annotation

As we will show in our experiments, organizing object names into a hierarchy significantly improves

the training of visual object classifiers. This is mostly because a hierarchy can help to label objects

more accurately and efficiently.

Specifically, a human teacher might teach a robot a few names for the object. However, the

teaching is often not complete. The incomplete annotation of names causes sparsity of training data

and even confusion for image annotations. For instance, imagine a lemon is presented to the robot

along with a name fruit. This lemon should obviously be treated as a positive training example
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of fruit. Unfortunately, it is not obvious how to use it for the remaining names in the hierarchy.

One possible method is not using it at all for training classifiers of the other nodes except for fruit.

However, this method could cause a great loss of negative examples. In fact, there will be no

negative examples unless a human explicitly says that an object cannot be referred to by certain

names. Another way of using the object is to use it as a negative example for all nodes except those

mentioned by the human teacher as positive labels. However, this naı̈ve way would introduce many

false negative labels and might result in inaccurate classifiers.

To resolve this problem, we propose a method described in Algorithm 4 to ensure that every

object is correctly labeled for learning every name in the hierarchy. The goal of Algorithm 4 is to

put every object image ι ∈ IT into either I+ or I− of every node ñl in the hierarchy H .

The algorithm has two tasks. First, if it sees a new name inserted into the hierarchy, it updates

labels of previously seen objects, so that it knows whether some previous objects are also positive

examples of the new name. Second, the algorithm needs to determine whether the newly provided

object is a positive example of previously seen names. Both tasks can be fulfilled via two sub-

routines, propagateLabel and refineLabel.

Propagate Label

By knowing the hierarchical organization of names, a robot could determine some labels of an

object without acquiring extra knowledge. Take fruit in Figure 6.2 as an illustrative example. If

an object is labelled as fruit, we can determine whether it is a positive or negative example for any

non-descendant nodes of fruit in the hierarchy. The green region in Figure 6.2 illustrates nodes

covered by this type of propagation.

For a new node ñ inserted into the hierarchy, we can initialize ñ.I+ and ñ.I− using the hierarchy

H (line 4 – 5). Using the example in Figure 6.2, any particular types of fruit, such as pear and citrus

fruit, are also fruits, so that ñ takes positive images belonging to its child nodes also as positive.

On the other hand, if an object is not a food, it could not be fruit. Therefore, ñ inherits negative

examples of its ancestor nodes as negative. Furthermore, fruit and vegetable are exclusive according

to the hierarchy, suggesting that images referred to by any siblings of ñ should also be put into ñ.I−.
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Algorithm 4 updateAnnotation
1: Input:

H: hierarchy

ι: new object image

ñ: node in H

2: Output:

H: updated hierarchy

3: Initialization:

4: if ñ is a new node then

5: initialize(ñ.I+, ñ.I−, H)

6: ñ.I+ := ñ.I+ ∪ {ι}

7: for ñ′ ∈ ancestors(ñ) do

8: ñ′.I+ := ñ′.I+ ∪ {ι}

9: for ñ′ /∈ (ancestors(ñ) ∪ descendants(ñ)) do

10: ñ′.I− := ñ′.I− ∪ {ι}

11: ñ′ := ñ

12: while ñ′ is not a leaf node do

13: ≺ := s.t. a ≺ b iff

ña.f(ι) > ñb.f(ι), ∀ ña, ñb ∈ children(ñ′)

14: ñ′ := refineLabel(H , ι, ñ′, ≺)

15: if ñ′ = nullptr then

16: break

17: ñ′.I+ := ñ′.I+ ∪ {ι}

18: if ñ is a new leaf node then

19: for ι′ ∈ (parent(ñ).I+ − ∪ñl∈sibling(ñ)ñl.I+) do

20: if isA(ι′,ñ.n) then

21: ñ.I+ := ñ.I+ ∪ {ι′}

22: else

23: ñ.I− := ñ.I− ∪ {ι′}

24: Return: H

Similarly, the new object ι is also a positive example of any ancestors of ñ (line 7 – 8 in

Algorithm 4), and a negative example for nodes that are not ancestors or descendants of ñ (line 9

– 10).
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Refine Label

Unfortunately, it is still unclear whether the fruit is a lemon, pear or some other fruit. We propose

to ask crowdsourcing workers questions to annotate the object with any descendant nodes of fruit.

The blue region in Figure 6.2 illustrates nodes handled by this type of annotation, referred to as

refineLabel.

The goal of refineLabel is to find more specific names of an object. Without hierarchy, this

can be implemented by asking workers to verify whether an object has a name for every possible

name. It should be noted that, without hierarchy, all annotations labelled via propagateLabel

need to be answered by asking workers, as well. Therefore, the total cost of annotating objects

could be very expensive.

A hierarchy captures the semantic relationship between names; that relationship can help to

prevent redundant questions. If the robot knows that the fruit is a citrus fruit, there is no need to ask

whether the fruit is a pear or an apple. Once there is a “yes” answer to one of the nodes, all nodes at

the same level and all their descendants will be marked as negative except for the “yes” node. Then

we can recursively refine the new “yes” node until it is a leaf node or there is no more “yes” node.

Line 12 – 17 of Algorithm 4 describe the idea of recursively refining object labels.

The robot can increase the efficiency of finding positive nodes during refineLabel by using

its already trained classifiers. Again, take fruit as an example. If the image is more like a pear than

an apple, the robot should ask whether the object is a pear first. To implement this idea, all ñl.f are

applied to the current image ι. The scores are used to rank the possible names of the object (line 13).

refineLabel searches positive labels according to this order and returns a positive node if finds

one. Otherwise, the search stops. ι will become a negative instance for any nodes that have not been

visited. As we will show, this strategy saves a significant number of questions.

We also need to refine labels of previously seen objects if a new node is inserted into the

hierarchy as a leaf node. Fortunately, we need to refine only labels of objects belonging to the parent

node, but not any siblings of the new node. Take citrus fruit as an example. Assume an orange is

labelled as citrus fruit in the previous iteration. It does not belong to any other citrus fruit according
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to our algorithm. After the new node orange is inserted into the hierarchy, it is necessary to refine

the label of the orange, to associate it with the orange node as a positive example. Specifically, our

algorithm checks all images, the most specific label of which is the parent node of the new node,

by asking crowdsourcing workers whether it can be referred to by the new name. Line 18 – 23 of

Algorithm 4 describe this refinement to the previously seen objects.

In summary, propagateLabel does not require human annotations and, can therefore be per-

formed for free. Yet, it cannot annotate all object labels of an object. refineLabel complements

propagateLabel by asking crowdsourcing workers a few questions to efficiently annotate the

remaining missing labels of an object. It is easy to verify that after applying both strategies, all

possible labels of all accumulated images are filled in.

6.3.3 Leveraging Background Image Datasets

A challenge in the never-ending learning setting is that a robot might be unable to acquire a large

number of training examples for each label. For instance, it might initially see only a single soda can,

which makes it extremely hard to generalize to other types of soda cans. To increase generalization

capabilities, NEOL uses additional training images from an existing background or source domain

dataset, such as ImageNet [50]. The source domain dataset has a large amount of RGB images for a

set of categories N S = {nS1 , . . . , nSN}. NEOL uses the same feature extraction method applied to

target domain RGB images to extract features xS1,RGB, . . . ,x
S
M,RGB from source domain images.

We will show how to incorporate images and labels from a background dataset to build classifiers

that generalize well in the robotics target domain.

The first issue that needs to be handled is that the external dataset might have different annotations

from the target domain annotations. For this reason, NEOL uses only the source domain names that

also exist in the target domain. Using Algorithm 4, it is straightforward to put objects from the

source domain into nodes in the hierarchy. Since refineLabel involves human annotators, it could

be costly to label all source domain images. Meanwhile, labelling source domain images is not as

useful as labelling target domain images. So, we skip refineLabel for source domain images, and

use only the existing labels and propagateLabel, corresponding to lines 7 – 8 and lines 9 – 10 in
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Algorithm 4.

Even if the source domain and the target domain images are from the same category, the images

can be very different, causing a significant performance drop when the classifiers built on the source

domain are applied directly to the target domain. To understand how different they are, we trained

object recognition classifiers on the ImageNet dataset [50] and tested them on the RGB-D object

dataset [122]. We found the average precision across all objects on the RGB-D object dataset to be

33% lower than the average precision across the same type of objects on the ImageNet test set. This

drop in performance is not due to the difficulty of the RGB-D dataset, but rather due to the fact that

ImageNet images have very different and diverse appearances. For example, cereal boxes can be

classified on the ImageNet test set with more than 90% precision. However, the same classifier has

less than 50% precision on the “easier” cereal box images in the RGB-D dataset.

To deal with such a domain-mismatch, we propose a method based on the observation that the

source domain dataset is often a combination of several distinct sub-groups, each of which has its

own characteristics [76, 92]. Some groups are more similar to the target domain, while others are

not. For example, the top row of Figure 6.3 (a) shows images of cereal boxes from ImageNet. Some

are more similar to the cereal boxes in the RGB-D dataset (bottom row), which are mostly single

cereal box images. Some are not, e.g., images with cereal boxes on a shelf. If we model the source

domain dataset using a single model, the discriminative information from the different groups will

be mixed together, diminishing the benefit of adding the source domain. To avoid this, we group

source domain images into different sub-groups and learn a specific classifier for each sub-group.

For grouping, we tried both sophisticated methods [76] and simple clustering methods, such as

K-means. The performance of the different methods was very similar in our context, so we decided

to use K-means to partition the full source-domain dataset into K groups.

Next, we build one classifier for each sub-group by combining all the target-domain RGB and

depth images with the source domain images from that sub-group. A classifier for the k-th sub-group
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(a) cereal box samples from Im-

ageNet (top) and RGB-D (bot-

tom).

(b) pear samples from ImageNet (top) and

RGB-D (bottom).

(c) Average precisions of Ima-

geNet classifiers tested on Ima-

geNet vs RGB-D.

Figure 6.3: ImageNet images have a very different appearance them RGB-D images. Recognition models

built using the ImageNet dataset perform poorly on the RGB-D dataset.

in the l-th category is learned by optimizing the objective
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where w = [w′RGB,w
′
depth]

′, h(·, ·) is the hinge loss, and MT
k are the target domain images in the

k-th cluster. C1 and C2 balance the importance of RGB and depth channels. This objective function

incorporates RGB images from both the source and the target domains, as well as depth information

that exists only for the target domain. When applying the models to predict new images from class

l, we average the prediction scores given by all K sub-group classifiers.
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Table 6.1: Comparison of category level classification accuracies for the RGB-D object dataset. LOIO: Leave

One Instance Out. 1I/C: 1 Instance per Category. 1V/O: 1 View per Object. Differences in accuracy relative

to baseline methods are marked by colors (red: performance improvement, blue: performance decrease). All

numbers are averages over 10 random data splits.

Category Accuracy(%)

method
LOIO 1I/C 1V/O

RGB/D RGB/D RGB/D

Baseline [169] 83.6/89.2 58.8/67.3 65.1/70.2

Baseline-S −58.7/−−− −33.9/−−− −40.2/−−−

Baseline-(T+S) −6.4/−5.3 −5.0/−3.9 −20.1/−17.9

GFK[76] −53.2/−−− −28.4/−−− −34.7/−−−

Fru[47] −1.1/−1.8 +1.4/−0.5 −6.4/−4.9

NEOL +1.3/+0.9 +5.5/+5.9 +4.6/+2.8

NEOL 84.9/90.1 64.3/73.2 69.7/73.0

6.4 Experiments

We evaluate the properties of NEOL via two sets of experiments. First, we evaluate the method used

by NEOL to leverage background image databases in Section 6.4.1. Next, we evaluate the full NEOL

system in Section 6.4.2. The hierarchy building method described in 6.3.1 has been demonstrated to

be effective in [185], and we refer readers to that paper for more detail.

6.4.1 Leveraging Background Image Databases

In this section, we test our approach to deploying background image datasets for building better

target domain classifiers. We use a popular RGB-D dataset [122] as the target domain dataset;

it consists of 300 objects falling into 51 object categories. We use ImageNet [50] as the source

domain by taking the images from the same 51 categories in ImageNet. As in [169], we evaluate

the recognition accuracy in multi-class classification.
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To evaluate the performance of our approach, we compare it to the following baseline approaches:

• Baseline: Uses only target domain images following [169].

• Baseline-S: Uses only source domain images to train classifiers.

• GFK: Uses a domain adaptation method using only source domain images [75]. It is a

state-of-the-art unsupervised domain adaptation method.

• Baseline-(T+S): Combines the source-domain and target-domain images into a larger-

size training set.

• Fru: Uses frustratingly-easy domain-adaptation, is a supervised domain adaptation method [47]

that achieves state-of-the-art performance in many domain-adaptation tasks.

All the methods take features extracted via a pre-trained CNN implemented in Caffe [101]. A

linear SVM is used as the classifier for all methods unless a method specifies a classifier. For NEOL,

the parameter K is set to 10 clusters in all experiments; (we tried larger Ks but did not observe a

significant difference).

Results are summarized in Table 6.1, where the first and last rows give absolute accuracies.

Other rows provide changes relative to Baseline.

Leave One Instance Out (LOIO)

For the first experiment, we conduct the Leave-One-Instance-Out test following the protocol in [122].

Each object in both training and test sets has 90 views uniformly and randomly sampled from the

full dataset.

The target-domain only baseline method using RGB-D information achieves 89.2% accuracy.

Surprisingly, adding source domain images decreases the performance except when using NEOL’s

adaptation technique. Methods using only source domain images do not consider the target domain;

They therefore perform the worst. Simply combining source-domain and target-domain data
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without adaptation also harms the performance (Baseline-(T+S)). Frustratingly-easy domain

adaptation (Fru) builds a single domain adaptation model using a feature replication method to

bridge the gap between domains. Although it improves the performance over the naı̈ve combination,

it still performs worse than the baseline method, which uses only target domain data. Our approach

outperforms the baseline method, with a 1.3% and a 0.9% improvement on RGB and RGB-D data,

respectively. This improvement over the baseline is statistically significant.

It is worth noting that the LOIO setting in this experiment has a large amount of target-domain

training instances and poses. However, in never-ending learning, the target domain training instances

may be sparse. We therefore test the competing methods under the small-training-set setting in the

following experiments.

One Instance per Category (1I/C)

To compare to LOIO, we adopt the same testing protocol and leave one instance out of each category

as our test set. The second column of Table 6.1 shows the results. The performance of the baseline

drops to 67.3% (RGB-D) as it overfits to the small training set. Baseline-(T+S) and Fru

both use extra source domain images, yet they do not manage to improve the performance over

the baseline due to the failure of handling domain mismatch. On the other hand, NEOL achieves a

5.9% improvement over the baseline, suggesting that NEOL can transfer object knowledge from the

source domain to the target domain.

One View per Object (1V/O)

For the third experiment, we evaluate how different methods handle variance of object poses. We

follow the leave-one-instance-out setting in the first experiment, but we give only 1 view for each

training instance (1V/O in Table 6.1). NEOL obtains a 2.8% improvement over the baseline methods,

which shows its advantage in handling the variance between object poses.

To summarize, the domain adaptation performed by NEOL is the only technique that can take

advantage of additional image data available in ImageNet. Furthermore, the improvements are not
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drastic with sufficient target domain objects and views since the CNN features already incorporate a

lot of stability with respect to feature invariances.

6.4.2 Never-Ending Object Learning

We now evaluate NEOL on the task of never-ending object learning. We assume a person is

continuously teaching a robot different objects. For each object, the person shows the robot a few

views of the object and one name that can be used to refer to it. We simulate this setting using

the RGB-D object dataset [122]. We do a 50 : 50 split, so 150 objects will be used for sequential

training, and the remaining 150 objects will be used for testing. At each iteration, one of the objects

is randomly picked from the training set and shown to the robot. The robot will be able to perceive

3 views of the object and get one name of the object from a worker at AMT. Here, workers act as

teachers for the robot. The iterative process repeats for 2, 000 iterations in each trial. We repeated

10 random trials and report the average performance.

At each iteration, the robot uses the NEOL (Algorithm 3) to improve the system: first, if a name

is new, it inserts the name into the hierarchy using BuildingHierarchy described in 6.3.1;

second, it updates the training example annotations using Algorithm 4 described in 6.3.2, which

includes propagateLabel and PropagateDown; finally, it updates the classifiers of existing

names using the domain adaptation method (Adaptation) per section 6.3.3.

For both BuildingHierarchy and refineLabel, we use AMT to get answers to the

questions asked by NEOL. To repeat the experiments with different configurations, we collected

answers to all possible questions beforehand using AMT. Later, we simulate the online responses

using the collected answers. Specifically, for each question related to building hierarchies, we

follow the original paper [185] and simulate 8 workers to answer it and use the maximum likelihood

estimate of the noise rate from the real AMT answers to generate worker noise. For the questions

asked by refineLabel, we simulate 3 independent workers to answer the same question. Each

worker has a noise rate (< 0.5) such that he/she flips the ground truth answers with the probability

of the noise rate. The majority vote of the 3 workers is used as the final answer of a question. We

tried different noise rates in our experiments.
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Figure 6.4: The growth of the tree depth and number of unique names as objects are presented.

We use mean average precision (mAP) as our evaluation metric. Given a testing image, an

approach being evaluated outputs a prediction score for each name known to the system. Then we

compute the average precision (AP) for each name by ranking the test images by the classification

scores. The average AP for all names gives the mAP. The performance of the robot is evaluated at

each iteration on both previously seen and unseen objects.

Building Hierarchies

NEOL maintains a hierarchy of names during the sequential learning. Figure 6.4 plots some

important statistics of the hierarchies built by NEOL. The red curve shows the number of unique

names (number of nodes in the hierarchy) used by workers to refer to objects. It increases almost

linearly for the first 200 iterations because almost all the objects are new to the robot, and new

objects yield new names. The number of names still grows between 200 and 1, 500 iterations

because the fact that different people use different names to refer to the same objects. After 1, 500

iterations, the number remains flat as new names are rare. The curve showing the depth of the

generated MAP hierarchy has a similar trend. The hierarchy has about 4 levels after about 50

iterations, and eventually it grows to 7 levels. Across different trails, the hierarchies built by the

system are consistent, showing that the hierarchy building algorithm is robust. Figure 6.5 shows the

3 largest sub-trees in the hierarchy at 2, 000 iterations.

We also compare the NEOL hierarchy to the corresponding hierarchy in WordNet, which is the
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(a) Container sub-tree. (b) Device sub-tree. (c) Food sub-tree.

Figure 6.5: Three largest sub-trees in the hierarchy built by NEOL at 2, 000 iterations.

minimum sub-tree in WordNet covering as many names used by people as possible. As discussed

before, not all names used by people can be found in WordNet. In this experiment, we find that

among 207 names, only 142 are also in WordNet. To find the minimum sub-tree covering the 142

names, we first find the lowest common ancestors of all pairs of names; we then recover the tree

according to WordNet over the union of the 142 names and their ancestors. The final sub-tree

includes 193 nodes and has 11 levels in depth. The numbers shows that the WordNet hierarchy is

usually more complex than the hierarchy crowdsourced by humans.

Filling Annotations via Crowdsourcing

NEOL asks workers questions to build hierarchies and annotate objects. We evaluate the efficiency

of NEOL using the number of accumulated questions over 2, 000 iterations as the evaluation metric.

Figure 6.6 shows the accumulated questions asked by different methods.

We compare the following methods:

• refineLabel: As described in Algorithm 4. It uses the hierarchy and the learned image
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Figure 6.6: Number of accumulated questions asked by different approaches. Y-axis is in log-scale.

classifiers to determine the order in which questions about names in the tree are asked.

• Tree: A variation of refineLabel that uses only the hierarchy and ignores the image

classifiers as guidance.

• Independent: Treats all names independently and asks workers about all possible object-

name pairs.

• NEOL: The total number of questions asked by NEOL, which is the total number of questions

asked to build the hierarchy and to propagate labels through the hierarchy (refineLabel +

refineLabel).

According to the plots in Figure 6.6, NEOL performs much better than Independent. The

number of questions asked by Independent grows linearly in the product of number of objects

and number of names, and it quickly explodes as more names and objects are added into the

system. It has asked 574, 000 questions in total for the first 1, 000 iterations. At the end of 2, 000

iterations, the number of accumulated questions asked by Independent reaches 1, 232, 000.

Independent ignores both relationships between names and the object knowledge learned by

the system. As a result, it must ask a huge amount of redundant questions.

On the other hand, NEOL asks far fewer questions. Comparing refineLabel to Tree

shows that using the learned image classifiers as guidance helps NEOL to more quickly locate
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(a) mAP scores of different methods. (b) mAP scores of baseline method

under different levels of noise.

(c) mAP scores of NEOL under differ-

ent levels of noise.

Figure 6.7: mAP scores of different methods under different experimental settings.

the correct labels of objects. refineLabel therefore manages to save about 50% of the total

questions when compared to Tree, an approach that does not use image classifiers to propagate

labels. Building the hierarchy costs some questions, especially in early iterations. The number of

questions needed to build and update the hierarchy quickly converges as far fewer new names are

shown to the system as time passes. The total number of questions asked by NEOL, which is the

summation of BuildingHierarchy and refineLabel, is 8, 484 and 13, 300 after 1, 000 and

2, 000 iterations, respectively. When compared to the 574, 000 and 1, 232, 000 questions required

by Independent, building and using the hierarchy maintained by NEOL saves more than 98% of

the questions for consistent image labeling.

Recognition Performance

We evaluate the recognition performance of NEOL and other baseline approaches at each iteration.

The test set consists of all 300 objects in the RGB-D dataset. We remove all views of training objects

seen in the training stage from the test set such that the test set contains either new objects or new

views of previously seen objects. We report the average mAP scores for the first 2, 000 iterations in

Figure 6.7.

Figure 6.7 (a) shows the performance of different methods. We compare several methods besides

NEOL and Baseline, where Baseline uses only the label names provided with each new image
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to generate positive training examples for each name classifier. All non-positive examples are treated

as negative examples. NEOL, on the other hand, uses the hierarchy to generate consistent labels for

each image and each name.

• Adaptation: Adds the adaptation technique deployed by NEOL to the baseline method.

• propagateLabel: Deploys the hierarchy to propagate labels up and trains the baseline

with the updated object annotations.

• propagateLabel + Adaptation: Adds both Adaptation and propagateLabel

to Baseline.

We first compare the performance of different methods that do not query humans for object anno-

tations (but possibly do for building the hierarchy). After the first iteration, propagateLabel +

Adaptation attains an mAP of 0.6, while the baseline gets only 0.5. Since there is only one name,

using the hierarchy does not yet yield useful information. Adaptation and propagateLabel

+ Adaptation thus perform almost identically, suggesting that, at the early stage, the gain of

NEOL is mainly due to domain adaptation. Using hierarchy becomes effective after about 50 iter-

ations. As the hierarchy gets deeper, it can capture more meaningful semantic relations between

names. As can be seen in Figure 6.7 (a), propagateLabel surpasses Adaptation at around

200 iterations.

After 1, 000 iterations, the marginal improvement of propagateLabel + Adaptation

over the baseline is still over 10%. Eventually, the performance of both methods converges as

more and more training examples are shown to the robot. Nevertheless, propagateLabel +

Adaptation retains more than 5% advantage until 2, 000 iterations, showing that it can learn new

objects and names more efficiently than the baseline method.

The full NEOL adds refineLabel on top of propagateLabel + Adaptation to fur-

ther improve consistency of object annotations. By adding these annotations into the training,

NEOL manages about a 15% marginal improvement over refineLabel + Adaptation, a

very significant amount.
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Table 6.2: Overall annotation error rates under different levels of per-worker noise.

method
Per-Worker Noise Rate (%)

1 5 10 20 30

Independent 0.028 0.717 2.76 10.3 21.3

NEOL 0.002 0.046 0.175 0.64 1.36

We also test the recognition performance of Independent. This approach is not only ex-

tremely inefficient (Figure 6.6), but it is also not very robust to annotation noise, which harms the per-

formance of the whole system. To verify, we vary the per-worker noise (to0%, 1%, 5%, 10%, 20%)

and apply Independent and NEOL to train and test on exactly the same setting. With no noise

(0%), Independent achieves comparable performance to NEOL. However, as per-worker noise

increases, the performance of Independent drops significantly. When the per-worker noise

rate is around 10%, Independent performs even worse than the baseline method that asks no

extra queries at all (Baseline in Figure 6.7 (a)). On the other hand, NEOL, using Algorithm 4 to

annotate objects, is very robust to noise. Its performance does not drop too much even with 10%

per-worker noise, and it drops less than 10% when the per-worker noise rate reaches 20%.

A detailed examination indicates that NEOL is not sensitive to noise, since it asks far fewer

questions by making more judgements based on hierarchy information. But the baseline method

depends totally on the workers’ answers; therefore, it is more sensitive to the noise of individual

workers. Table 6.2 shows the overall error rate of training object annotations achieved using NEOL

and Independent under different levels of per-worker noise. The overall error rate of the training

target data set grows quickly as the per-worker noise rate increases when the baseline method is

applied. NEOL is robust to the noise and has less than a 1% overall error rate of annotations even

when per-worker noise rate reaches 20%. All numbers are achieved by asking 3 workers each

question.

To summarize, different components of NEOL contribute variously at different learning stages.

When just a few examples are shown to the robot, Adaptation helps more significantly. As the



127

hierarchy of names becomes more informative, most gains are from the hierarchy. Labelling missing

names of objects further improves the performance of NEOL with a large margin. Since NEOL uses

both hierarchy and existing classifiers to guide object annotations, the annotation process is very

efficient and robust to noisy answers given by crowdsourcing workers.

6.5 Discussion

6.5.1 NEOL

This chapter presents the never-ending learning framework NEOL that helps robots to learn new

objects and names over their lifetimes. NEOL uses crowdsourcing to organize the stream of

object images and names into a semantic hierarchy. It uses the hierarchy and accumulated image

information to ensure that object annotations are consistent and complete. It also includes a domain

adaptation method that combines images from existing image databases with images the robot

perceives in order to better generalize to unseen objects.

Our experiments on the RGB-D dataset using ImageNet and WordNet as additional background

information demonstrate that NEOL can learn objects efficiently and effectively, under the setting of

never-ending object learning. The experiments also show that building and using a name hierarchy

for consistent image annotation significantly improves NEOL’s capabilities. Using ImageNet as

additional background knowledge further improves performance, while improvements due to domain

adaptation are most significant when only small sets of objects are perceived in the environment.

6.5.2 Future Work

In this work, NEOL organizes names in a semantic hierarchy, which covers most common relations

between names. However, there are still other types of relations between names that are not covered

by the hierarchy, for example, co-occurrence [55] relationships. We plan to extend the hierarchy

building algorithm in NEOL to discover other types of relations between names that could potentially

help robots learn objects more efficiently and effectively.

In this work, NEOL uses the MAP hierarchy over names to propagate annotations. However,
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there may not always be a unique, correct hierarchy. For example, some people think “tomato” is a

type of “fruit”, while others consider it to be a “vegetable”. Our hierarchy-building algorithm [185]

can capture such uncertainty over hierarchies, but it would be interesting to consider uncertainty in

building a recognition system that is robust to “miscommunication” between humans and robots.

Videos illustrating NEOL are available at

http://rse-lab.cs.washington.edu/projects/neol.

http://rse-lab.cs.washington.edu/projects/neol
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Contributions

This thesis has contributed to robotic object learning research and implementation in three key

ways. First, it studied object recognition based on natural language description. In particular, we

studied how a robot can recognize objects based on attributes (Chapter 2) and identify objects based

on new names (Chapter 3). Second, it defined a method for building hierarchies of concepts via

crowdsourcing. Specifically, we studied three problems in the construction of semantic hierarchies

of concepts: learning a distribution over hierarchies (Chapter 4), evaluating the quality of hierarchies

via crowdsourcing experiments (Chapter 5), and learning user-dependent hierarchies (Appendix B).

Third, it offered a framework of never ending object learning for robots (Chapter 6).

7.1.1 Language-Based Object Identification

Language-based object identification enables a robot to recognize target objects based on a human

user’s language description. In this thesis, we propose an object identification system that uses

appearance attributes and names described by natural language to identify objects (Chapter 2 and

Chapter 3). To handle the case when a robot may encounter new names, we design a metric learning

algorithm (Chapter 3) to associate new names to existing names, so the system can identify objects

based on new names without even seeing any training instances of the new names. The overall

system enables a robot and a human to interact using natural language, and it lets the robot recognize

both seen and unseen objects based on language description.
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7.1.2 Building a Hierarchy via Crowdsourcing

We propose a principle algorithm (Chapter 4) to build hierarchies of concepts via crowdsourcing.

The proposed method can be applied as a general tool to create task-dependent hierarchies for

various applications. Experiments demonstrate that our algorithm is efficient and able to build

expert-level hierarchies. We further extend the algorithm to infer the hierarchies used by each person

(Appendix B) and therefore enable a robot to provide personalized services based on user-specific

hierarchies. Finally, we study the evaluation criteria used to assess the quality of hierarchies.

Specifically, we design a crowdsourcing experiment to assess the quality of hierarchies with respect

to how well they facilitate human users accomplishment of an image navigation task.

7.1.3 Never-Ending Object Learning for Robots

Finally, we combine the techniques proposed in the first few chapters of this thesis to build a

framework of never-ending object learning for robots (Chapter 6). The proposed framework- NEOL-

enables a robot to learn new objects continuously by interacting with human users via natural

language. The robot organizes learned concepts in semantic hierarchies and uses the hierarchy to

improve efficiency and accuracy of object annotations. The robot can also combine external image

resources to learn to recognize objects with just a few training instances. The never-ending object

learning framework could run 24/7 on a real robot and help the robot learn an increasing number of

objects more efficiently and more accurately over its lifetime.

7.2 Future Work

Enabling a personal robot to learn various kinds of knowledge over its lifetime will be crucial to

making it continuously useful. In this thesis, we focused on enabling a robot to learn various kinds

of object knowledge. Based on our findings, we find the following directions appear particularly

promising for future work.
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7.2.1 Crowdsourcing for Robots

Although we have witnessed vast improvements in robotics research, performing complicated

tasks remains quite challenging for a household robot. As a very practical example, we give a

robot a recipe for making an Omelet, ask it to read the recipe, and then to make the Omelet for

us. Unfortunately, current robots cannot perform this simple, practical task. There are multiple

challenges in doing so: 1) reading the recipe to extract micro-tasks (units of action that should be

conducted together, e.g., cracking an egg, beating an egg), 2) generating a precise execution graph

of these micro-tasks based on the recipe, 3) performing micro-tasks if the robot has never performed

them previously. Our experience from the findings of this thesis suggest that we can involve humans

in the loop of robotic learning, specifically, by hiring crowdsourcing workers to teach robots various

abilities.

A promising direction is to include crowdsourcing teachers to help a robot understand the

semi-structured natural language in certain application domains, e.g., cooking recipes. The re-

search questions would include how to initialize the understanding of recipes using NLP and CV

techniques, how to design crowdsourcing tasks to improve the initial understanding, and how to

transfer the learned knowledge to the understanding of new recipes. Another direction is to involve

crowdsourcing teachers in teaching robots some simple operations, e.g., cracking and beating eggs.

Based on the findings of this thesis, we believe that crowdsourcing could be an accurate and

cost-effective resource to help autonomous robots learn various kinds of knowledge and skills.

7.2.2 Systems

A never-ending learning robot will gather an overwhelming amount of language, visual and semantic

data. In this case, how to store, manipulate and analyze the data pose challenges on both the

algorithmic and system domains. On the algorithm side, a challenge is how to scale up learning

algorithms, and crowdsourcing algorithms and how to make the algorithms distributed. From

the system side, one challenge is how to store and share the knowledge with other robots around

the world. Another system-side challenge is related to crowdsourcing. Researchers design most



132

crowdsourcing systems in a one-by-one manner, meaning they design every system from scratch.

This design method is inefficient if we have to design multiple related crowdsourcing systems. One

interesting direction is to develop new graphical programming models that help robotics researchers

design crowdsourcing tasks more efficiently. The third challenge relates to the crowdsourcing

workers. Currently, the user-interface for crowdsourcing workers to teach robots is very limited in its

expressiveness and quite inefficient in use. These limitations call for a new graphical programming

model that helps crowdsourcing user accomplish needed tasks.
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[105] M. Kääriäinen. Active learning in the non-realizable case. In Proceedings of the 16th

Conference on Algorithmic Learning Theory (ALT’06), pages 63–77. Springer, 2006.

[106] S. Kazemzadeh, V. Ordonez, M. Matten, and T.L. Berg. Referitgame: referring to objects in

photographs of natural scenes. In Proceedings of the Conference on Empirical Methods on

Natural Language Processing and Computational Natural Language Learning (EMNLP’14),

2014.

[107] R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In Proceed-

ings of the 31st International Conference on Machine Learning (ICML’14), pages 595–603,

2014.

[108] R. Kiros, R. Salakhutdinov, and R.S. Zemel. Unifying visual-semantic embeddings with

multimodal neural language models. arXiv preprint arXiv:1411.2539, 2014.

[109] A. Kittur, E.H. Chi, and B. Suh. Crowdsourcing user studies with mechanical turk. In

Proceedings of the 26th SIGCHI Conference on Human Factors in Computing Systems

(CHI’08), pages 453–456. ACM, 2008.

[110] D. Klein and C. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st

Association of Computational Linguistic (ACL’03), 2003.

[111] K. Knight. Building a large ontology for machine translation. In the Workshop on Human

Language Technology, pages 185–190. Association for Computational Linguistics, 1993.

[112] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT

Press, 2009.



145

[113] T. Koo, A. Globerson, P.X. Carreras, and M. Collins. Structured prediction models via the

matrix-tree theorem. In Proceedings of the Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL’07),

pages 141–150, 2007.

[114] L. Kotlerman, I. Dagan, I. Szpektor, and M. Zhitomirsky-Geffet. Directional distributional

similarity for lexical inference. Natural Language Engineering, 16(04):359–389, 2010.

[115] A. Krizhevsky, S. Ilya, and G.E. Hinton. Imagenet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems 25 (NIPS’12).

Curran Associates, Inc., 2012.

[116] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A.C. Berg, and T. Berg.

Babytalk: understanding and generating simple image descriptions. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(12):2891–2903, 2013.

[117] S. Kullback and R.A. Leibler. On information and sufficiency. The Annals of Mathematical

Statistics, 22(1):79–86, 1951.

[118] A. Kumar, A. Saha, and H. Daume. Co-regularization based semi-supervised domain

adaptation. In Advances in Neural Information Processing Systems 23 (NIPS’10), pages

478–486, 2010.

[119] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers for face

verification. In Proceedings of the 11th IEEE International Conference on Computer Vision

(ICCV’09), 2009.

[120] L.I. Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy. Machine Learning, 51(2):181–207, May 2003.

[121] K. Lai, L. Bo, X. Ren, and D. Fox. A scalable tree-based approach for joint object and pose

recognition. In Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11),

2011.



146

[122] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object

dataset. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA’11), 2011.

[123] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by

between-class attribute transfer. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR’09), 2009.

[124] C. Leacock and M. Chodorow. Combining local context and wordnet similarity for word

sense identification. WordNet: An Electronic Lexical Database, 49(2):265–283, 1998.

[125] B. Lee, C.S. Parr, D. Campbell, and B.B. Bederson. How users interact with biodiversity

information using taxontree. In Proceedings of the Working Conference on Advanced Visual

Interfaces, pages 320–327. ACM, 2004.

[126] B. Lee, G.G. Robertson, M. Czerwinski, and C.S. Parr. Candidtree: visualizing structural

uncertainty in similar hierarchies. Information Visualization, 6(3):233–246, 2007.

[127] M. Lee, J. Forlizzi, S. Kiesler, P. Rybski, J. Antanitis, and S. Savetsila. Personalization in

hri: a longitudinal field experiment. In Proceedings of the 7th ACM/IEEE International

Conference on Human Robot Interaction (HRI’12), pages 319–326. IEEE, 2012.

[128] A. Lenci and G. Benotto. Identifying hypernyms in distributional semantic spaces. In

Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume

1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings

of the Sixth International Workshop on Semantic Evaluation, pages 75–79. Association for

Computational Linguistics, 2012.

[129] D. Leyzberg, S. Spaulding, and B. Scassellati. Personalizing robot tutors to individuals’

learning differences. In Proceedings of the 9th ACM/IEEE International Conference on

Human Robot Interaction (HRI’14), pages 423–430. ACM, 2014.



147

[130] X. Ling and D.S. Weild. Fine-grained entity resolution. In Proceedings of the 26 AAAI

Conference on Artificial Intelligence (AAAI’12), 2012.

[131] C.J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M.J. Raddick,

R.C. Nichol, A. Szalay, D. Andreescu, et al. Galaxy zoo: morphologies derived from visual

inspection of galaxies from the sloan digital sky survey. Monthly Notices of the Royal

Astronomical Society, 389(3):1179–1189, 2008.

[132] J. Liu, S. Ji, and J. Ye. SLEP: sparse learning with efficient projections. Arizona State Uni-

versity, 2009. URL http://www.public.asu.edu/˜jye02/Software/SLEP.

[133] D. Lowe. Distinctive image features from scale-invariant key points. International Journal

of Computer Vision, 60:91–110, 2004.

[134] W. Lowe. Towards a theory of semantic space. In the Annual Conference of the Cognitive

Science Society (CogSci’01), 2001.

[135] Y. Lu, W. Zhang, K. Zhang, and X. Xue. Semantic context learning with large-scale weakly-

labeled image set. In Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (CIKM’12), pages 1859–1863. ACM, 2012.

[136] T. Luong, R. Socher, and C.D. Manning. Better word representations with recursive neural

networks for morphology. In CoNLL, pages 104–113. Citeseer, 2013.

[137] Mingsheng M. Long and J. Wang. Learning transferable features with deep adaptation

networks. arXiv preprint arXiv:1502.02791, 2015.

[138] A. Maedche and S. Staab. Measuring similarity between ontologies. In Knowledge Engi-

neering and Knowledge Management: Ontologies and the Semantic Web, pages 251–263.

Springer, 2002.

[139] J. Mao, W. Xu, Y. Yang, J. Wang, and A.L. Yuille. Explain images with multimodal recurrent

neural networks. arXiv preprint arXiv:1410.1090, 2014.

http://www.public.asu.edu/~jye02/Software/SLEP


148

[140] M. Marszałek and C. Schmid. Semantic hierarchies for visual object recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07),

pages 1–7. IEEE, 2007.

[141] M.H. Maryam and A. Popescu-Belis. Using crowdsourcing to compare document recom-

mendation strategies for conversations. In RecSys, Recommendation Utility Evaluation (RUE

2012), 2012.

[142] W. Mason and S. Suri. Conducting behavioral research on amazon’s mechanical turk.

Behavior Research Methods, 44(1):1–23, 2012.

[143] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A joint model of language

and perception for grounded attribute learning. In Proceedings of the 29th International

Conference on Machine Learning (ICML’12), 2012.

[144] B. McFee and G. Lanckriet. Metric learning to rank. In Proceedings of the 27th International

Conference on Machine Learning (ICML’10), 2010.

[145] G. McLachlan and T. Krishnan. The EM algorithm and extensions, volume 382. John Wiley

& Sons, 2007.

[146] L. Micallef, P. Dragicevic, and J.D. Fekete. Assessing the effect of visualizations on bayesian

reasoning through crowdsourcing. IEEE Transactions on Visualization and Computer Graph-

ics, 18(12):2536–2545, 2012.

[147] T. Minka and J. Lafferty. Expectation-propagation for the generative aspect model. In

Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI’02), pages

352–359. Morgan Kaufmann Publishers Inc., 2002.

[148] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gard-

ner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platan-

ios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,



149

M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the 29th AAAI

Conference on Artificial Intelligence (AAAI’15), 2015.

[149] J.M. Mortensen, M.A. Musen, and N.F. Noy. Developing crowdsourced ontology engineering

tasks: an iterative process. In Proceedings of the 1st International Conference on Crowd-

sourcing the Semantic Web-Volume 1030 (CEUR-WS’13), pages 79–88. CEUR-WS. org,

2013.

[150] G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection and joint subspace selection

for multiple classification problems. Statistics and Computing, 20(2):231–252, 2010.

[151] V. Ordonez, G. Kulkarni, and T.L. Berg. Im2text: describing images using 1 million captioned

photographs. In Advances in Neural Information Processing Systems 24 (NIPS’11), pages

1143–1151, 2011.

[152] V. Ordonez, J. Deng, Y. Choi, A. Berg, and T. Berg. From large scale image categorization

to entry-level categories. In Proceedings of the 15th IEEE International Conference on

Computer Vision (ICCV’13), pages 2768–2775, 2013.

[153] D. Parikh and K. Grauman. Relative attributes. In Proceedings of the 13th IEEE International

Conference on Computer Vision (ICCV’11), 2011.

[154] D. Parikh and C.L. Zitnick. Finding the weakest link in person detectors. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’11), pages 1425–1432. IEEE, 2011.

[155] M. Pasca, D. Lin, J. Bigham A. Lifchits, and A. Jain. Names and similarities on the web:

fact extraction in the fast lane. In Proceedings of the 44th Association of Computational

Linguistic (ACL’06), 2006.

[156] P. Pasupat and P. Liang. Zero-shot entity extraction from web pages. In Proceedings of the

52nd Association of Computational Linguistic (ACL’14), pages 391–401, 2014.



150

[157] J. Pennington, R. Socher, and C.D. Manning. Glove: global vectors for word representation.

In EMNLP, volume 14, pages 1532–1543, 2014.

[158] R. Porzel and R. Malaka. A task-based approach for ontology evaluation. In ECAI Workshop

on Ontology Learning and Population, 2004.

[159] U. Priss. Facet-like structures in computer science. Axiomathes, 18(2):243–255, 2008.

[160] Tableau Public. http://public.tableau.com/s/, 2016. [Online; accessed 07-

April-2016].

[161] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on

semantic nets. Systems, Man and Cybernetics, IEEE Transactions on, 19(1):17–30, 1989.

[162] K. Ramirez-Amaro, M. Beetz, and G. Cheng. Transferring skills to humanoid robots

by extracting semantic representations from observations of human activities. Artificial

Intelligence, pages –, 2015.

[163] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for

disambiguation to wikipedia. In Proceedings of the 49th Association of Computational

Linguistic (ACL’11), 2011.

[164] P. Resnik. Semantic similarity in a taxonomy: an information-based measure and its appli-

cation to problems of ambiguity in natural language. Journal of Artificial Intelligence, 11:

95–130, 1999.

[165] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning

in a large-scale setting. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’11), pages 1641–1648, 2011.

[166] E. Rosch. Principles of categorization. Etnolingwistyka, 17:11–35, 2005.

http://public.tableau.com/s/


151

[167] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and

web-based tool for image annotation. International Journal on Computer Vision, 77(1-3):

157–173, 2008.

[168] A. Saxena, A. Jain, O. Sener, A. Jami, D.K. Misra, and H.S. Koppula. Robobrain: large-scale

knowledge engine for robots. CoRR, abs/1412.0691, 2014. URL http://arxiv.org/

abs/1412.0691.

[169] M. Schwarz, H. Schulz, and S. Behnke. The object recognition and pose estimation based on

pre-trained convolutional neural network features. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA’15), 2015.

[170] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Inte-

grated recognition, localization and detection using convolutional networks. arXiv preprint

arXiv:1312.6229, 2013.

[171] M. Sifer. Filter co-ordinations for exploring multi-dimensional data. Journal of Visual

Languages & Computing, 17(2):107–125, 2006.

[172] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[173] J. Sivic, B. Russell, A. Zisserman, I. Ecole, and N. Suprieure. Unsupervised discovery of

visual object class hierarchies. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR’08), 2008.

[174] R. Snow, D. Jurafsky, and A.Y. Ng. Learning syntactic patterns for automatic hypernym and

discovery. Advances in Neural Information Processing Systems 17 (NIPS’04), 2004.

[175] R. Socher, B. Huval, C. Manning, and A. Ng. Semantic compositionality through recursive

matrix-vector spaces. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP’12), 2012.

http://arxiv.org/abs/1412.0691
http://arxiv.org/abs/1412.0691


152

[176] R. Socher, A. Karpathy, Q.V. Le, C.D. Manning, and N.Y. Andrew. Grounded compositional

semantics for finding and describing images with sentences. Transactions of the Association

for Computational Linguistics (TACL’14), 2:207–218, 2014.

[177] A. Sorokin, D. Berenson, S. Srinivasa, and M. Hebert. People helping robots helping people:

crowdsourcing for grasping novel objects. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’10), October 2010.

[178] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An evaluation of space-filling

information visualizations for depicting hierarchical structures. International Journal of

Human-Computer Studies, 53(5):663–694, 2000.

[179] M. Steel and S. Bocker. Simple but fundamental limitations on super tree and consensus tree

methods. Systematic Biology, 49(2):363–368, 2000.

[180] F.M. Suchanek, G. Kasneci, and G. Weikum. Yago: a large ontology from wikipedia and

wordnet. Web Semantics: Science, Services and Agents on the World Wide Web, 6(3):203–217,

2008.

[181] C. Sun, N.Rampalli, F. Yang, and A. Doan. Chimera: large-scale classification using machine

learning, rules, and crowdsourcing. The VLDB Endowment, 7(13):1529–1540, August 2014.

[182] Y. Sun and D. Fox. Neol: toward never-ending object learning for robots. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA’16), 2016.

[183] Y. Sun, L. Bo, and D. Fox. Attribute based object identification. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA’13), 2013.

[184] Y. Sun, L. Bo, and D. Fox. Learning to identify new objects. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA’14), 2014.



153

[185] Y. Sun, A. Singla, D. Fox, and A. Krause. Building hierarchies of concepts via crowdsourc-

ing. In Proceedings of the 24th International Joint Conference on Artificial Intelligence

(IJCAI’15), 2015.

[186] Y.-Y. Sun, Y. Zhang, and Z.-H. Zhou. Multi-label learning with weak label. In Proceedings

of the 24th AAAI Conference on Artificial Intelligence (AAAI’10), 2010.

[187] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models:

a large margin approach. In Proceedings of the 22nd International Conference on Machine

Learning (ICML’05), 2005.

[188] M. Tenorth and M. Beetz. Representations for robot knowledge in the knowrob framework.

Artificial Intelligence, 2015.

[189] S. Thrun and T.M. Mitchell. Lifelong robot learning. Technical report, Robotics and

Autonomous Systems, 1993.

[190] T.B. Todd and P. Neville. A comparison of 2-d visualizations of hierarchies. In Infovis, page

131. IEEE, 2001.

[191] S. Tong and D. Koller. Active learning for structure in bayesian networks. In Proceedings of

the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), pages 863–869,

2001.

[192] A. Torralba and A.A. Efros. Unbiased look at dataset bias. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR’11), June 2011.

[193] K. Toutanova and C. D. Manning. Enriching the knowledge sources used in a maximum

entropy part-of-speech tagger. In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora: Held in Conjunction

with the 38th Annual Meeting of the Association for Computational Linguistics-Volume 13,

2000.



154

[194] Amazon Mechanical Turk. http://www.mturk.com/mturk/, 2016. [Online; ac-

cessed 07-April-2016].

[195] P. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proceedings of the

12th European Conference on Machine Learning (ECML’01), pages 491–502, 2001.

[196] P. Turney and P. Pantel. From frequency to meaning: vector space models of semantics.

Journal of Artificial Intelligence Research, 2010.

[197] W. Tutte. Graph Theory. Addison-Wesley, 1984.

[198] A. Vailaya, M.A. Figueiredo, A.K. Jain, and H.J. Zhang. Image classification for content-

based indexing. IEEE Transactions on Image Processing, 10(1):117–130, 2001.

[199] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images and language.

arXiv preprint arXiv:1511.06361, 2015.

[200] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: a neural image caption gen-

erator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR’15), pages 3156–3164, 2015.

[201] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up crowdsourced video

annotation. International Journal of Computer Vision, 101(1):184–204, 2013.

[202] E. Voorhees. Using wordnet to disambiguate word senses for text retrieval. In Proceedings

of the 16th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, 1993.

[203] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization

with humans in the loop. In Proceedings of the 13th IEEE International Conference on

Computer Vision (ICCV’11), pages 2524–2531. IEEE, 2011.

http://www.mturk.com/mturk/


155

[204] C. Wang, S. Yan, L. Zhang, and H. Zhang. Multi-label sparse coding for automatic im-

age annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’09), pages 1643–1650, 2009.

[205] J. Wang, K. Markert, and M. Everingham. Learning models for object recognition from

natural language descriptions. In the 20th British Machine Vision Conference (BMVC’09),

2009.

[206] WikiHow. Wikihow. http://www.wikihow.com, 2016.

[207] D.B. Wilson. Generating random spanning trees more quickly than the cover time. In the

28th Annual ACM Symposium on Theory of Computing, pages 296–303, 1996.

[208] W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: a look back and into

the future. ACM Computing Surveys, 44(4):20:1–20:36, 2012.

[209] C. Wu, I. Lenz, and A. Saxena. Hierarchical semantic labeling for task-relevant rgb-d

perception. In Proceedings of Robotics: Science and Systems (RSS’14), 2014.

[210] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the 32nd

Annual Meeting on Association for Computational Linguistics (ACL’94), pages 133–138.

Association for Computational Linguistics, 1994.

[211] F. Xu and J. Tenenbaum. Word learning as bayesian inference. In Proceedings of Annual

Conference of the Cognitive Science Society (CogSci’00), 2000.

[212] X. Xue, W. Zhang, J. Zhang, B. Wu, J. Fan, and Y. Lu. Correlative multi-label multi-instance

image annotation. In Proceedings of the 13th IEEE International Conference on Computer

Vision (ICCV’11), pages 651–658. IEEE, 2011.
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Appendix A

PROOFS

A.1 Derivation of the Objective Function

Lβπ̃(Λ′)− Lβπ̃(Λ) (A.1)

=
∑
T∈T

π̃(T ) logP (T |Λ)−
∑
T∈T

π̃(T ) logP (T |Λ′) +
∑
i,j

β(|λ′i,j| − |λi,j|) (A.2)

=
∑
T∈T

π̃(T ) log
exp(

∑
ei,j∈T λi,j)

exp(
∑

ei,j∈T λi,j + δi,j)
+
∑
T∈T

π̃(T ) log
Z(Λ′)

Z(Λ)
+
∑
i,j

β(|λ′i,j − |λi,j|) (A.3)

=
∑
T∈T

π̃(T )
∑
ei,j∈T

−δi,j + log
Z(Λ′)

Z(Λ′)
+
∑
i,j

β(|λ′i,j| − |λi,j|) (A.4)

=
∑
i,j

−δi,jP̃ (ei,j) + log

∑
T ′∈T exp(

∑
ei,j∈T ′ λi,j + δi,j)∑

T∈T exp(
∑

ei,j∈T λi,j)
+
∑
i,j

β(|λ′i,j| − |λi,j|) (A.5)

=
∑
i,j

−δi,jP̃ (ei,j) + log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

δi,j) +
∑
i,j

β(|λ′i,j| − |λi,j|) (A.6)

=
∑
i,j

−δi,jP̃ (ei,j) + log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

1

N
Nδi,j) +

∑
i,j

β(|λ′i,j| − |λi,j|) (A.7)

≤
∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + β(|λ′i,j| − |λi,j|) (A.8)

(A.2)→ (A.3) uses the definition of P (T |Λ).

(A.3)→ (A.4) uses the fact that

∑
T∈T

π̃(T )
∑
ei,j∈T

−δi,j =
∑
i,j

−δi,j
∑

T∈T :ei,j∈T

π̃(T ) =
∑
i,j

−δi,jP̃ (ei,j),

where P̃ (ei,j) is the marginal likelihood of the edge ei,j .

To get (A.7)→ (A.8), we use an inequality that, if xj ∈ R and pj ≥ 0 with
∑

j pj ≤ 1, then
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exp(
∑
j

pjxj)− 1 ≤
∑
j

pj(e
xj − 1).

Such that

exp(
∑
ei,j∈T

1

N
Nδi,j) ≤ 1 +

∑
ei,j∈T

1

N
(eNδi,j − 1).

The it follows

log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

1

N
Nδi,j) (A.9)

≤ log(1 +
∑
T∈T

P (T |Λ)
∑
ei,j∈T

1

N
(eNδi,j − 1)) (A.10)

= log(1 +
1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1)) (A.11)

≤ 1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1) (A.12)

(A.11)→ (A.12) is true because log(1 + x) ≤ x,∀x ≥ −1, and

1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1) ≥ 1

N

∑
i,j

−P (ei,j) = −1.

A.2 Minimization of (A.8)

Case 1: δi,j = −λi,j . Such that (A.8) becomes

∑
i,j

λi,jP̃ (ei,j) +
1

N
P (ei,j)(e

−Nλi,j − 1) (A.13)

Case 2: λi,j + δi,j ≥ 0. Such that (A.8) becomes

∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + βδi,j (A.14)
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Take derivative of (A.14), and set it to be 0:

−P̃ (ei,j) + P (ei,j)e
Nδi,j + β = 0,

the solution is

1

N
log

P̃ (ei,j)− β
P (ei,j)

.

Case 3: λi,j + δi,j < 0. Such that (A.8) becomes

∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1)− βδi,j (A.15)

Take derivative of (A.15), and set it to be 0:

−P̃ (ei,j) + P (ei,j)e
Nδi,j − β = 0,

the solution is

1

N
log

P̃ (ei,j) + β

P (ei,j)
.

A.3 Proof of Theorem 1

Theorem 3. Assume β is strictly positive. Then Algorithm 1 produces a sequences Λ(1),Λ(2), . . .

such that

lim
`→∞

Lβπ̃(Λ(`)) = min
Λ
Lβπ̃(Λ).

Proof. First let us define Λ+ and Λ− in terms of Λ as follows: for each (i, j), if λi,j ≥ 0, then

λ+
i,j = λi,j and λ−i,j = 0, and if λi,j ≤ 0, then λ+

i,j = 0 and λ−i,j = −λi,j . Λ′+, Λ′−, Λ(`)+, Λ(`)−, etc.

are defined analogously.

Let Fi,j denote the (i, j) component in (A.8), For any Λ and ∆, we have the following:
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|λ+ δ| − |λ| = min{δ+ + δ−|δ+ ≥ −λ+, δ− ≥ −λ−, δ+ − δ− = δ} (A.16)

Plugging into the definition of Fi,j gives:

Fi,j(Λ,∆) =− δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + β(|λi,j + δi,j| − |λi,j|) (A.17)

= min{Gi,j(Λ,∆
+,∆−)|δ+

i,j ≥ −λ+
i,j, δ

−
i,j ≥ λ−i,j, δ

+
i,j − δ−i,j = δi,j}, (A.18)

where

Gi,j(Λ,∆
+,∆−) = (δ−i,j − δ+

i,j)P̃ (ei,j) +
1

N
P (ei,j)(e

N(δ+i,j−δ
−
i,j) − 1) + β(δ+

i,j + δ−i,j) (A.19)

So, by (A.8),

Lβπ̃(Λ(`+1))− Lβπ̃(Λ(`)) ≤
∑
i,j

Fi,j(Λ
`,∆) (A.20)

=
∑
i,j

min
δi,j

Fi,j(Λ
`,∆) (A.21)

=
∑
i,j

min{Gi,j(Λ
`,∆+,∆−)|δ+

i,j ≥ −λ+
i,j, δ

−
i,j ≥ λ−i,j, δ

+
i,j − δ−i,j = δi,j}}

(A.22)

Note that Gi,j(Λ,0,0) = 0, so none of the terms in this sum can be positive. So the Λ`’s have a

convergent subsequence converging to some Λ̂ such that

∑
i,j

min{Gi,j(Λ
`,∆+,∆−)|δ+

i,j ≥ −λ+
i,j, δ

−
i,j ≥ λ−i,j, δ

+
i,j − δ−i,j = δi,j}} = 0. (A.23)

It is easy to verify that minimizing Lβπ̃(Λ) is the dual problem of the following convex program:
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max
p1,...,pN∈R+N

N∑
i=1

H(pi) (A.24)

s.t.

N∑
i=0

p(ei,j) = 1,∀j (A.25)

P̃ (ei,j)− P (ei,j) ≤ β, ∀(i, j) (A.26)

P (ei,j)− P̃ (ei,j) ≤ β, ∀(i, j). (A.27)

We will show that Λ̂+ and Λ̂− together with P (T |Λ̂) satisfy the KKT condition of the previ-

ous convex program, and thus form a solution to the prime problem as well as to the dual, the

minimization of Lβπ̃. For P (T |Λ̂), these conditions work out to be the following for all (i, j):

λ̂+
i,j ≥ 0, P̃ (ei,j)− P (ei,j) ≤ β, λ̂+

i,j(P̃ (ei,j)− P (ei,j)− β) = 0 (A.28)

λ̂−i,j ≥ 0, P (ei,j)− P̃ (ei,j) ≤ β, λ̂+
i,j(P (ei,j)− P̃ (ei,j)− β) = 0 (A.29)

Since Gi,j(Λ̂,0,0) = 0, by (A.23), if λ̂i,j > 0 then Gi,j(Λ,∆
+,0) is nonnegative in a neighbor-

hood of δ+
i,j = 0, and so has a local minimum at this point. Such that

∂Gi,j(Λ,∆
+,0)

∂δ+
i,j

|δ+i,j=0 = −P̃ (ei,j) + P (ei,j) + β = 0. (A.30)

If λ̂+
i,j = 0, then (A.23) gives that Gi,j(Λ̂,0,0) = 0 for δ+

i,j ≥ 0. Thus ∂Gi,j(Λ,∆
+,0) cannot

be decreasing at δ+
i,j = 0. Therefore, the partial derivative above must be nonnegative. Altogether,

these prove (A.28). (A.29) can be proved analogously.

As a whole, we proved that

lim
`→∞

Lβπ̃(Λ(`)) = Lβπ̃(Λ̂) = min
Λ
Lβπ̃(Λ).
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A.4 Proof of Theorem 2

Lemma 1. Suppose samples π̃ are obtained from any tree distribution π. Then

|Lπ̃(Λ)− Lπ(Λ)| ≤
N∑
i=0

N∑
j=1

|λi,j||P̃ (ei,j)− P (ei,j)|,

where P (ei,j) =
∑

T∈T :ei,j∈T π(T ) and P̃ (ei,j) =
∑

T∈T :ei,j∈T π̃(T ).

Proof.

Lπ̃(Λ) =
∑
T∈T

π̃(T ) log
exp

∑
ei,j∈T λi,j

Z(Λ)
(A.31)

Such that

|Lπ̃(Λ)− Lπ(Λ)| = |
∑
i,j

λi,j(P̃ (ei,j)− P (ei,j))| ≤
N∑
i=0

N∑
j=1

|λi,j||P̃ (ei,j)− P (ei,j)|. (A.32)

Lemma 2. Suppose samples π̃ are obtained from any tree distribution π. Assume that |P (ei,j)−

P̃ (ei,j)| ≤ βi,j,∀(i, j), Let Λ̂ minimize the regularized log loss Lβπ̃(Λ). The for every Λ it holds that

Lπ(Λ̂) ≤ Lπ(Λ) + 2
N∑
i=0

N∑
j=1

β|λi,j|.

Proof.

Lπ(Λ̂) ≤Lπ̃(Λ̂) +
∑
i,j

β|λ̂i,j| = Lβπ̃(Λ̂) (A.33)

≤Lβπ̃(Λ) = Lπ̃(Λ) +
∑
i,j

β|λi,j| (A.34)

≤Lπ(Λ) + 2
∑
i,j

β|λi,j|. (A.35)

( A.33) to ( A.34) is tree because of the optimality of Λ̂. ( A.34) to ( A.35) follow from Lemma 1.
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Theorem 4. Suppose m samples π̃ are obtained from any tree distribution π. Let Λ̂ minimize the

regularized log loss Lβπ̃(Λ) with β =
√

log(N/δ)/m. Then for every Λ it holds with probability at

least 1− δ that

Lπ(Λ̂) ≤ Lπ(Λ) + 2‖Λ‖1

√
log(N/δ)/m

Proof. By Hoeffding’s inequality, for a fixed pair of (i, j), the probability that P (ei,j) − P̃ (ei,j)

exceeds β is at most e−2β2m = δ
N2 . By the union bound, the probability of this happening for any

pair of (i, j) is at most δ. Then the theorem follows from Lemma 2.

A.5 Proof of proposition 1

To simplify the proof, we will parametrize the distribution using λi,j , such that

wi,j =

exp{λi,j}, if i 6= j

0, if i = j

Lemma 3. The partition function Z(Λ) = |L̂(Λ)|, where L̂(Λ) = L(Λ) + diag(log(Λ0,·))

Lemma 4. The marginal likelihood P (ei,j) of an edge ei,j can be computed as follows:

P (ei,j(Λ)) =
∂ log

(
|L̂(Λ)|

)
∂λi,j

The proofs of these propositions can be found in [113].

Proposition 2. Given that ei,j and ei,k are two edges, the marginal likelihood P (ei,j, ei,k) is given

as follows

P (ei,j, ei,k) = P (ei,j)P (ei,k)−

Wi,jWi,k

[L̂−1]i,i[L̂
−1]j,l, if i = 0

−
(

[L̂−1]i,i

)2

+ [L̂−1]i,i[L̂
−1]k,i − [L̂−1]i,i[L̂

−1]j,i + [L̂−1]i,i[L̂
−1]k,j, o.w.

where P (ei,j) is the marginal likelihood of edge ei,j .



164

Proof. By the definition of the marginal likelihood, we have the following

P (ei,j, ei,k) =
1

Z

∑
T :ei,j ,ei,k∈T

∏
eh,m∈T

exp{λh,m}

Using the results of Proposition 4, we can derive the following:

∂ logZ(Λ)

∂λi,j
=

1

Z(Λ)

∑
T :ei,j∈T

∏
eh,m∈T

exp(λh,m) (A.36)

∂ logZ(Λ)

∂λi,j
=
∑
h,m

∂ log |ĥ(Λ)|
∂L̂h,m(Λ)

∂L̂h,m(Λ)

∂λi,j
(A.37)

log
∂ logZ(Λ)

∂λi,j
= log

∑
T :ei,j∈T

∏
eh,m∈T

exp(λh,m)− logZ(Λ) (A.38)

∂

∂λi,k

(
log

∂ logZ(Λ)

∂λi,j

)
=

∑
T :ei,j ,ei,k∈T

∏
eh,m∈T exp(λh,m)∑

T :ei,j∈T
∏

eh,m∈T exp(λh,m)
− P (ei,k) (A.39)

=
P (ei,j, ei,k)

P (ei,j)
− P (ei,k) (A.40)

∂

∂λi,k

(
log

∂ logZ(Λ)

∂λi,j

)
=

∑
h,m

[
∂ log |L̂(Λ)|
∂L̂h,m(Λ)

∂2L̂h,m(Λ)

∂λi,j∂λi,k
+ L̂(h,m)(Λ)

∂λi,j

∂2 log |L̂(Λ)|
∂L̂h,m(Λ)∂λi,k

]
P (ei,j)

(A.41)

Compare right sides of both (A.40) and (A.41), we can see that

P (ei,j, ei,k) =
∑
h,m

∂ log |L̂(Λ)|
∂L̂h,m(Λ)

∂2L̂h,m(Λ)

∂λi,j∂λi,k
+
∑
h,m

∂L̂h,m(Λ)

∂λi,j

∂2 log |L̂(Λ)|
∂L̂h,m(Λ)∂λi,k

+ P (ei,j)P (ei,k)

(A.42)

∑
h,m

∂ log |L̂(Λ)|
∂L̂h,m(Λ)

∂2L̂h,m(Λ)

∂λi,j∂λi,k
= 0 (A.43)
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∑
h,m

∂L̂h,m(Λ)

∂λi,j

∂2 log |L̂(Λ)|
∂L̂h,m(Λ)∂λi,k

=
∑
h,m

∂L̂h,m(Λ)

∂λi,j

∑
h′,m′

∂L̂h′,m′(Λ)

∂λi,k

∂2 log |L̂(Λ)|
∂L̂h,m(Λ)∂L̂h′,m′(Λ)

(A.44)

If i = 0, it becomes

exp{λ0,j} exp{λ0,k}
∂2 log |L̂(Λ)|

∂L̂0,j(Λ)∂L̂0,k(Λ)
, (A.45)

otherwise,

exp{λi,j} exp{λi,k}

(
∂2 log |L̂(Λ)|
∂L̂2

i,i(Λ)
− ∂2 log |L̂(Λ)|
∂L̂i,i(Λ)∂L̂i,k(Λ)

+
∂2 log |L̂(Λ)|

∂L̂i,j(Λ)∂L̂i,i(Λ)
− ∂2 log |L̂(Λ)|
∂L̂i,j∂L̂i,k(Λ)

)
.

(A.46)

∂ log |L̂|
∂L̂

= (L̂T )−1 (A.47)

∂2 log |L̂|
∂L̂k,l∂L̂i,j

= −((L̂T )−1)k,i((L̂
T )−1)j,l (A.48)
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Appendix B

LEARNING USER-SPECIFIC HIERARCHIES

B.1 Background

In Chapter 4, we proposed a crowdsourcing method to estimate a distribution over hierarchies. The

Bayesian model used by that method can be represented by the plate notation in Figure B.1 (a).

The model assumes that there is one best hierarchy sampled according to a distribution p(T |W )

parameterized by weight matrix W . All the answers are generated based on the hierarchy and a

single parameter γ denoting a single noise rate. γ is usually referred to as the channel noise, which

includes all sought of noises, e.g., uncertainty over hierarchies, worker noise and others. This model

is referred to as Noisy-Realizable setting in Active Learning. Some work [105] has proved that it is

possible to recover the best hierarchy with high probability if the overall noise rate β is bounded.

The best hierarchy in this context is the hierarchy that matches the most answers given by workers.

The flaws of the Noisy-Realizable setting are apparent. It does not explicitly consider the

generative process of the answers since it wraps up all the possible uncertainties into one single

channel noise. We propose a new model considering the generative process of answers. The new

model is represented by the plate notation in Figure B.1 (b). To generate an answer a to a question

q (not shown in all the plate notations), the first step is to choose a hierarchy T according to the

distribution P (T |W ). The next step is to generate an answer to q according to T and the noise

rate γ, where γ represents how likely the answer given by T will be flipped by a worker. This

model is more flexible than the original one since it allows different answers to be generated by

different hierarchies. However, this model does not consider the fact that one worker will use the

same hierarchy to answer all the questions he is given. We call this model worker-ignorant model.

We refine the worker-ignorant model such that all answers given by the same worker are generated

by the same hierarchy. Figure B.1 (c) shows the new model, referred to as worker-aware model.
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(a) Realizable setting. (b) Worker-ignorant setting. (c) Worker-aware setting.

Figure B.1: Generative process of answers.

The worker-aware model also enables a robot to estimate the personalized hierarchy for each

worker. For many robotics applications, personalized knowledge of individual users has been shown

to be more useful. For example, a robot could enhance the satisfaction of users if it provides

personalized service [127]. Personalization could also help a robot tutor to yield significant benefits

in educational/assistive human-robot interactions [129]. We believe knowing the personalized

hierarchy could potentially enhance the experience of a human being during his/her interaction with

a robot.

In this chapter, we extend the model used in Chapter 4 to explicitly model the generative

process of answers. The new model is a two-level hierarchical Bayesian model represented by

the plate notation in Figure B.1 (c). Each answer given by a worker is modeled as a mixture

over underlying hierarchies. Each hierarchy is modeled as a compact model over finite number of

possible hierarchies. We present an efficient approximate inference based on sampling and an EM

algorithm to estimate the model parameters. We also propose a new Active Learning method to

select the most informative questions toward uncovering the underlying hierarchies.
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B.2 Models, Parameter Estimation and Inference

We focus on learning a distribution over hierarchies via asking crowdsourcing workers simple

questions regarding to the structure of the underlying hierarchies. The workers will give their

answers to these questions according to their belief of the hierarchies.

Formally, we define the following terms. Suppose there are N workers, and M questions. We

introduce an indicator matrix Π = (πi,j)M×N , where πi,j = 1 indicates that the j-th worker gives

an answer to the i-th question, and πi,j = 0 indicates the other way. We also define an answer

matrix A denoted by A ∈ {1, 0}M×N , in which ai,j is the answer to the i-th question, given by the

j-th worker. Our goal is to learn a distribution P (T |W ) over hierarchies T ∈ T , where T is a tree

structure with L nodes. The model parameter is a weight matrix W = (wi,j)(L+1)×L, where wi,j is a

non-negative weight for the edge ei,j . The probability distribution is denoted as follows:

P (T |W ) =

∏
ei,j∈T wi,j

Z(W )
, (B.1)

where Z(W ) =
∑

T ′∈T
∏

ei,j∈T ′ wi,j is the partition function.

We will discuss two new generative probabilistic models corresponding to the plate notations of

Figure B.1 (b) and (c).

B.2.1 Models

Worker-Ignorant Model

The worker-ignorant model in Figure B.1 (b) assumes the following generative process for each

answer a in A. It first chooses a hierarchy T according to P (T |W ). It then uses T to decide the

answer T (q) to the current question q. Finally, it generates the final answer a, such that a = T (q)

with a probability 1− γ.

Given the parameters W and γ, the joint distribution of the set of answers A, and the corre-

sponding hierarchies T = {T1, . . . , TM×N} is given by:
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P (A,Π,T |W, γ) =
∏
i,j

(P (ai,j|Ti,j, γ)P (Ti,j|W ))πi,j , (B.2)

where

P (ai,j|Ti,j, γ) =

(1− γ)ai,jγ1−ai,j , if T (pi,j) = 1

γai,j(1− γ)1−ai,j , o.w.
(B.3)

Summing over T , we obtain the marginal distribution of the answers:

P (A,Π|W, γ) =
∏
i,j

∑
T∈T

(P (ai,j|Ti,j = T, γ)P (Ti,j = T |W ))πi,j . (B.4)

Worker-Aware Model

The worker-aware model in Figure B.1 (c) assumes that all the answers given by the same worker

are generated from the same hierarchy T . So this model first generates a hierarchy for each worker,

and the worker uses the hierarchy to generate all his answers. So, the marginal distribution of the

answers is given by:

P (A,Π|W, γ) =
∏
i

∑
T∈T

∏
j

(P (ai,j|Ti = T, γ)P (Ti = T |W ))πi,j . (B.5)

As can be seen, worker-ignorant model is a special case of worker-aware model, where each

worker is only allowed to answer one question. So, in the rest of this section we will just derive

parameter estimation and inference for the worker-aware model.

B.2.2 Model Parameter Estimation

In this section we present an EM algorithm for parameter estimation in the worker-aware model.

In particular, given a set of answers A = (ai,j)M×N , we wish to find parameters W and γ that

maximize the marginal log-likelihood of of the data:
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logP (A,Π|W, γ) =
∑
i

log
∑
T∈T

∏
j

(P (ai,j|Ti = T, γ)P (Ti = T |W ))πi,j . (B.6)

As can be seen that the ground truth hierarchy is hidden in the marginal log-likelihood. So

we propose an Expectation-Maximizing (EM) algorithm to find the solutions [49, 145]. EM

algorithm alternates between E-step and M-step. In the E-step, the algorithm computes the posterior

probabilities of the hidden variables to derive a tightest lower bound of the real log-likelihood. In

the M-step, the algorithm optimizes the derived lower bound to update the model parameters. The

algorithm iterates between the two steps until converges.

E-step: In the E-step, we need to compute the posterior probability of each hierarchy given the

current parameters W, γ and data A. It is given by

γ(Ti = T |W, γ,A) ∝ P (Ti = T |W )
∏
j

P (ai,j|Ti = T, γ)πi,j (B.7)

according to Bayes’ rule. Given the posterior probability, we can derive the tightest lower-bound of

the true log-likelihood as follows:

F =
∑
i

∑
T∈T

γ(Ti = T |W, γ,A)
∑
j

πi,j logP (ai,j|Ti = T, γ)P (Ti = T |W ). (B.8)

Usually, the M-step maximizes the lower bound in equation (B.8) directly. However, computing

equation (B.8) requires enumerating all the possible hierarchies T ∈ T , which is intractable. Instead

of minimizing the exact lower, we adopt the importance sampling method to get an empirical

estimate of (B.8). Such that in the following M-step, our algorithm optimizes the approximate

lower-bound rather than the exact lower bound.

Our target distribution is γ(Ti = T |W, γ,A). Since we know how to draw samples from

P (T |W ), we will use it as the proposal distribution. Such that the importance weight for each

sample T is computed as follows:
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w(Ti = T ) =

∏
j (P (ai,j|T, γ))πi,j∑

T ′∈π̃
∏

j (P (ai,.|T ′, γ))πi,j
. (B.9)

Given a set of samples π̃ from the true posterior distribution γ(T |W, γ,A), the empirical estimate

of the lower bound defined in equation (B.8) is then computed as follows:

F̂ =
∑
i

∑
j

πi,j
∑
T∈π̃

w(Ti = T ) logP (ai,j|Ti = T, γ)P (Ti = T |W ) = F̂W + F̂γ, (B.10)

where

F̂W =
∑
i

∑
j

πi,j
∑
T∈π̃

w(Ti = T ) logP (Ti = T |W ) (B.11)

and

F̂γ =
∑
i

∑
j

πi,j
∑
T∈π̃

w(Ti = T ) logP (ai,j|Ti = T, γ) (B.12)

M-Step: In the M-Step, we maximize (B.10) to update the model parameters. It is worth noting

that optimizing W and γ are decoupled in the new objective function, which means we can optimize

W and γ independently.

To optimize W , we observe that the objective function of maximizing F̂W has a similar form as

the objective function of equation (4.9) in the non-realizable settings. The only difference is that the

weights in (B.10) are the importance weights, while in the previous problem the weights are the

empirical estimations of the posterior distribution. Therefore, the new objective can be optimized

using the same iterative optimization techniques used in Chapter 4.

To update γ, we can take a gradient of F̂γ denoted as follows

∂F̂γ
∂γ

=
∑
i,j

πi,j
∑
T∈π̃

w(Ti = T )

(
T (ai,j)

1

γ
− (1− T (ai,j))

1

1− γ

)
, (B.13)



172

and set it to be 0. The solution is as follows:

γ =

∑
i,j πi,j

∑
T∈π̃:T (ai,j)=1 w(Ti = T )∑

i,j πi,j
. (B.14)

B.2.3 Inference

Another key inference problem in the worker-aware model is to estimate the most probable hierar-

chies for each individual worker:

T ∗ = arg max
T∈T

P (T |A,Π,W, γ). (B.15)

Unfortunately, directly solving this problem is intractable. Instead, we propose to find a

variational distribution of this posterior distribution. Specifically, we find the variational distribution

of the form defined in equation (B.1) and optimize the parameter W †, such that:

W † = arg min
W
KL (P (T |W )|P (T |A,Π,W, γ)) . (B.16)

Again, this problem can be solved using the same techniques used in Chapter 4. Then we find the

MAP hierarchy according to the variational distribution, which can be solved efficiently using the

minimum spanning tree algorithm as described in Chapter 4.

B.3 Active Learning in Bayesian Setting

In this section, we will discuss how to use active learning to determine the questions that are the

most informative towards discovering the underlying hierarchy distribution. In Chapter 4, the active

learning criterion is to reduce the uncertainty of the best hierarchy. In this chapter, our learning goal

is to uncover the distribution over hierarchies parametrized by the parameter W . Therefore, the goal

of the active query would be minimizing the uncertainty over W .

To estimate the uncertainty over W , we will extend the previous model and use a Bayesian

parameter estimation, such that we can keep a density over all possible parameter W s. Figure B.2
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Figure B.2: Hierarchical Bayesian Model.

gives the plate notation of the new model. To make the problem tractable, we make an assumption

that the columns of W are independent. This independence allows us to represent the joint

distribution P (W ) as a set of independent distribution, one for each column W·,i.

Since each column of W is normalized to be 1, each W·,i can be treated as a multinomial.

For multinomials, the conjugate prior is a Dirichlet distribution [48], which is parametrized by

hyperparameters αi ∈ R+. We will discuss how to update the parameters of the Dirichlet distribution

with a new answer a to a path question q.

In the active learning setting, we have the ability to ask a certain question. We use Q to denote

the set of candidate questions. In the case of learning hierarchies, Q includes all possible path

questions qi,j, i 6= j. To fully specify the algorithm, we need to address two issues: we need to

describe how the parameters of the distribution is updated given the answer a to q, and we need to

construct a mechanism for selecting the next query based on P (W ).

B.3.1 Updating Rule

In the Bayesian settings, we have one more hidden variable W . We present an empirical Bayes

method for parameter estimation. In particular, given a set of answers A = (ai,j)M×N , we wish to

find the parameter α and β that maximize the marginal log-likelihood of the data:
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Algorithm 5 Gibbs Sampling Procedure
1: Input:

A: Set of answers given by crowdsourcing workers.

S: Number of samples

t′: Burn in parameter

2: Output:

Samples for each Ti

Samples for parameter W

3: Initialize:

Initialize W (0), such that P (T |W (0)) is a uniform distribution

Sample T (0)
i ∼ P (T |W (0))

4: for t = 1→ S do

5: for i = 1→ N do

6: Sample T (t)
i ∼ P (Ti|T (t)

1 , . . . , T
(t)
i−1, T

(t−1)
i+1 , . . . , T

(t−1)
N , A,W (t−1))

7: for l = 1→ L do

8: Sample W (t)
·,l ∼ P (W·,l|T (t), A,W

(t)
·,1 , . . . ,W

(t)
·,l−1,W

(t−1)
·,l+1 , . . . ,W

(t−1)
·,L )

9: Return: T (t)
i and W (t) for t ≥ t′ and i = 1, . . . , N .

P (A|α, β) =

∫ ∫
P (W |α)

M∏
i=1

∑
T∈T

P (Ti = T |W )
N∏
j=1

P (ai,j|Tj = T, γ)P (γ|β)dWdγ. (B.17)

We drop Π to simplify the notation.

Again, the computation of this quality is not tractable. There are several strategies to learn this

model, e.g., using variational inference with EM as proposed by Blei et al., or using expectation

propagation with EM [147]. In this work, we take the Gibbs Sampling methodology [82], which

has similar performance as the EM-based method and is more robust to noise.

Algorithm 5 shows the procedure of Gibbs Sampling. The inference problem here is to esti-

mate P (T1, . . . , TN ,W·,1, . . . ,W·,L|A,α, β). Suppose that we have chosen some initial hierarchies

T
(0)
1 , . . . , T

(0)
N and weight matrix W (0). Each step t of the Gibbs sampling procedure involves one

of the two sampling process: 1) replacing Ti by a hierarchy drawn from the distribution of Ti con-
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ditioned on remaining hierarchies T−i = {T (t)
1 , . . . , T

(t)
i−1, T

(t−1)
i+1 , . . . , T

(t−1)
N } and W ; 2) replacing

W
(0)
·,l by a multinomial distribution draw from the distribution of W (0)

·,l conditioned on T and the

remaining W·,−i = {W (t)
·,1 , . . . ,W

(t)
·,l−1,W

(t−1)
·,l+1 , . . . ,W

(t−1)
·,L }. The procedure is repeated by cycling

through all the Tis and W·,ls.

The major component of the algorithm is sampling from the conditional distribution

P (Ti|T−i, A,W ) and P (W·,l|T , A,W·,−l).

The conditional posterior distribution of Ti is given by:

P (Ti|T−i, A,W ) = P (A·,i|Ti)P (Ti|W ), (B.18)

which is derived based on the conditional independence of the model. The first term of equation

(B.18) is the likelihood, and the second term is the prior. Since we can sample from P (Ti|W )

according to the results in Chapter 4, we can also sample from the posterior distribution in equation

(B.18) using e.g., rejection sampling.

The posterior of W·,l is given by:

P (W·,l|T,A,W·,−l) ∝ P (A|T )P (T |W )P (W·,l|W·,−l). (B.19)

Since we make an independence assumption for the parameters W that the columns of W are

independent of each other, the last term of equation (B.19) only depends on the hyper parameter

αl. So we can use rejection sampling to sample from the target distribution in equation (B.19) with

P (W·,l|αl) as the proposal distribution.

B.3.2 Selection Rule

We have investigated several entropy-based strategies for selecting a target path question.

Maximum Entropy of Path Questions We can evaluate the entropies of questions using the

set of tree samples sampled according to Algorithm 5. Therefore, the system will select the most

confusing path questions.
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Maximum Entropy of Weight Parameters We can estimate the entropies of the entries of weight

matrix using the samples of weight matrix given by Algorithm 5. It is worth noting that weights

reflect the likelihood of edges, but we are asking path questions. We use the uncertainty of W as a

surrogate for the path uncertainty.

B.4 Summary

In this chapter, we discuss how to extend the hierarchy-building method to learn user-specific

hierarchies. We propose a two-level hierarchical Bayesian model to model the generative process of

all the questions, and provide an EM algorithm to learn model parameters. We also discuss several

active learning methods over the model based on information gain criterion, and propose a Gibbs

Sampling method to update the model parameters. In the future, we will perform evaluation of the

proposed methods on both simulation and real-world data.
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