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Abstract: In this paper, we examine the problem of robotic manipulation of gran-
ular media. We evaluate multiple predictive models used to infer the dynamics
of scooping and dumping actions. These models are evaluated on a task that in-
volves manipulating the media in order to deform it into a desired shape. Our
best performing model is based on a highly-tailored convolutional network archi-
tecture with domain-specific optimizations, which we show accurately models the
physical interaction of the robotic scoop with the underlying media. We empiri-
cally demonstrate that explicitly predicting physical mechanics results in a policy
that out-performs both a hand-crafted dynamics baseline, and a “value-network”,
which must otherwise implicitly predict the same mechanics in order to produce
accurate value estimates.
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1 Introduction

Playing in the sand and constructing sand castles is a common pastime for children. It is easy
for a child to view a pile of sand, visualize what they want to make, and construct a reasonable
approximation to this desired shape. These kinds of skills transfer readily to a wide variety of tasks;
from manipulating beans while cooking, to using construction machinery to excavate soil. In fact,
it would seem that reasoning about manipulation of granular media and fluids is no more difficult
for humans than manipulation of rigid objects. Yet in robotics there has been relatively little work
examining how robots can learn such manipulation skills. If we want robots to operate intelligently
in our environments, then it is necessary for them to be able to reason about substances like sand
and beans that do not lend themselves readily to straightforward kinematic modeling.

In this paper, we examine methods for modeling granular media using either a convolutional network
(ConvNet) architecture (in both dynamics or value-net variants), or using a fixed-function baseline
method. The goal of this paper is to examine how these models can enable interaction with sub-
stances that cannot be modeled easily or accurately with simple kinematics, and whether or not an
explicit dynamics prediction is necessary to solve our manipulation task. To that end, we evaluate
the models on a task where the robot must use a scoop to manipulate pinto beans in a tray to form a
desired shape (Figure 1 shows our experimental setup). This task domain combines multiple inter-
esting challenges. Firstly, the beans are difficult to model as a set of discrete rigid objects and thus
have non-trivial dynamics. Secondly, this domain allows for a wide variety of distinct manipulation
tasks; such as pushing, collecting, scooping, or dumping to arrange the beans into a desired shape.
Finally, this domain allows us to directly compare multiple models for manipulating granular media,
from hard-coded heuristics to learned convolutional networks.

To solve this task, we develop an algorithm that uses learned predictive models to choose an action
sequence which will form a target shape from the granular media. We study four such predictive
models. 1. A standard, unstructured ConvNet to predict the shape of the media conditioned on an
initial configuration and a candidate manipulation action. 2. A similar ConvNet model with addi-
tional task-specific optimizations built into the architecture to improve prediction accuracy. 3. A
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ConvNet to simply learn whether an action is “good” or “bad” with respect to a given goal shape.
4. A baseline method which uses geometric heuristics to compute a rough estimate of the result-
ing arrangement of the media, allowing us to measure the value of learning the model rather than
specifying it by hand.

Figure 1: One of the robots in front of
it’s table. In the gripper is the rigidly at-
tached spoon used for scooping. On the
table is the tray (green) containing the
pinto beans used as the granular media.
The black tray is to catch spilled beans.

We evaluate all of our predictive models on “easy” and
“hard” target shapes. In both cases, the ConvNets trained
to explicitly model the dynamics outperforms other meth-
ods. However, our results show that using a black-box
ConvNet does not suffice; rather, policy performance is
improved significantly when the network is structured in a
way as to preserve essential physical properties of the dy-
namics. By using a network trained in a structured man-
ner, the robot is able to accurately predict the state transi-
tions and is better able to choose actions which maximize
its potential to reach the goal shape.

2 Related Work

In recent years, there has been some work in robotics
in areas related to interaction and manipulation of gran-
ular media. For example, there has been a significant
amount of work on legged locomotion over granular
media [1, 2, 3]. There has also been work on auto-
mated operation of construction equipment for scooping
[4, 5, 6, 7]. Additionally, much of the work related to
robotic pouring has utilized granular media rather than
liquids [8, 9, 10, 11, 12]. Recent work by Xu and Cak-
mak [13] explored the ability of robots to clean, among
other things, granular media from surfaces using a low-
cost tool. In contrast to this prior work, here we directly
tackle the problem of manipulating granular media in a robust, flexible manner.

To manipulate granular media, our robot needs to develop a control policy. In this paper we focus
on policies that utilize ConvNets either for direct policy learning or indirectly (e.g., by estimating
dynamics). While there hasn’t been much prior work developing such policies for manipulating
granular media, there has been work on developing control policies for tasks such as maze navigation
[14], car racing [15], and playing common Atari video games [16]. However, all of these were
performed in simulators, where it is easy to generate large amounts of data to train the underlying
ConvNets. It is much more difficult to train deep learning algorithms like these in a real robot
environment. Nonetheless, recent work has applied techniques similar to this using methods such as
transfer learning from simulation to real-world [17, 18] or structured learning methods like guided
policy search [19, 20]. These types of methods take advantage of other techniques (e.g., simulation
or optimal control) to bootstrap their learning models and thus reduce the amount of data needed.
However, an alternative approach is to simply collect more data. This has been carried out in the
literature by utilizing an array of robots, rather than a single robot, and allowing them to collect data
continuously over a long period of time [21, 22, 23]. We use this approach in this paper to allow us
to collect a large dataset for training our learning models.

One of the main types of models that the robot learns in this paper is a predictive model using
ConvNets. Recent work in robotics has shown how ConvNets can learn pixel-wise predictions for
a video prediction task [23], as well as the dynamics of objects when subjected to robotic poke
actions [24]. However, work by Byraven and Fox [25] showed that for dense, unstructured state
spaces (in their case raw point clouds from a depth camera), it is often necessary to enforce structure
in the network to achieve maximal performance. In this paper, we compare a standard unstructured
network to a structured network for learning dense predictions involving granular media.

Similar to this work, ConvNets have recently been utilized for learning intuition of physical interac-
tions by mimicking physics simulators [26, 27], for detecting and pouring liquids [28, 29], and for
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(a) RGB (b) Depth (c) Height-Map (d) Action Map

Figure 2: An example data frame. From left to right: the RGB image, the corresponding depth
image, the height-map computed from the depth image, and finally an example action map.

explicit modeling of rigid body dynamics [25, 30] or fluid dynamics [31]. To our knowledge, this
work is the first to use ConvNets to predict the dynamics of granular media.

3 Task Overview

In this paper the robot is tasked with using a scoop to manipulate granular media in a tray to form a
desired shape. Given an initial state of the environment h0, and a goal state hg , the robot must select
a series of actions a0, ..., aT that minimizes the L1-norm2 between the final and goal states, i.e.,

l(h0, a0, ..., aT , hg) = ‖F(h0, a0, ..., aT )− hg‖1
where F applies the actions a0, ..., aT sequentially to the initial state h0 to produce the final state
F(h0, a0, ..., aT ) = hT+1. The state ht is represented as a height-map over the media in the tray
and is a 2D grid, where the value in each cell is the height of the surface of the granular media at
that location in the tray. For this paper, each cell is approximately 1 cm × 1 cm. An example of a
height-map is shown in Figure 2c.

3.1 The scoop & dump Action

The action the robot performs in this paper is a scoop & dump action, which takes a set of parameters
θt and then performs a scoop on the bottom of the tray followed by a dump above it. The parameters
θt comprise 6 elements (forming a 9D vector): the start location (2D), the start angle (1D), the end
location (2D), the end angle (1D), the roll angle (1D), and the dump location (2D). The action is
split into two parts, scoop and dump. At the start of the scoop, the robot moves the tip of the scoop
to the XY coordinates specified by the start location in θt in the bottom of the tray. The robot then
moves the tip of the scoop in a straight line along the bottom towards the XY coordinates specified
by the end location. During the scoop, the robot sets the scoop angle, that is the angle between the
plane of the tray and the plane of the scoop (with 0 being parallel), by linearly interpolating between
the start and end angles specified in θt. Additionally, the robot sets the leading edge of the scoop
(the part of the scoop pointing towards the end location) according to the roll angle, with the front
leading when the roll angle is 0 degrees and the side of the scoop leading when the roll angle is 90
degrees. After the scoop reaches the end location, the robot pulls it directly up out of the tray. The
robot then performs the dump, which consists of moving the scoop tip over the dump location and
rotating the scoop to a fixed angle to allow any granular media on it to fall to the tray.

Note that the scoop & dump parameterization results in a diverse set of possible behaviors, and can
represent complex manipulations in addition to just scooping and dumping; for instance a “scoop”
with the spoon edge perpendicular to the line of motion will result in a “pushing” action, where no
beens are collected in the spoon, but are rather deposited at the end of the scoop motion.

We reparameterize the set of action parameters, θt, as an “action map”; an image the same size
as the height-map and which encodes the spatial location of our scoop and dump actions. Starting
from an empty image with the same dimensions as the height-map, we draw a straight line from
the start location to the end location, and we linearly vary the color of the line from red to green.
Additionally we draw a blue dot at the dump location. Finally, we tile the 3 angles across 3 extra
channels, which we concatenate channel-wise to the action map. An example of this action map
(without the angles) is shown in Figure 2d. Representing the action parameters in this way brings

2We use the L1-norm rather than Earth mover’s distance for the sake of simplicity.
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Figure 3: Network layout for the scoop & dump–net.

the actions into pixel-alignment with the ConvNets input state space (the height-map), which makes
it more conducive for learning a stable and accurate mapping for our fully-convolutional network
architecture (described in the following section).

4 Predictive Models

In this paper the robot’s control policy that selects the series of actions a0, ..., aT relies on an un-
derlying predictive model, i.e., a model that is able to predict some future state based on the current
state and a proposed action. We evaluate four different types of predictive models in this paper. The
first two utilize ConvNets trained to predict the next state given the current state and a proposed
action (both describe in the next section). The third utilizes a ConvNet to predict how much closer
(or further) an action will take the robot from a given goal. The final model we add as a baseline
comparison; it uses hard-coded heuristics to predict the next state from the current state and pro-
posed action. The following sections describe each of these models. In section 6.1 we describe how
the robot utilizes these models to select actions.

4.1 Predicting the Next State Using ConvNets

The first two predictive models take the current height-map ht and a proposed action θ̃i and attempt
to predict the next state h̄t+1. To do this the robot uses one of two fully-convolutional network archi-
tectures: the single–net and the scoop & dump–net. The single–net is a standard fully-convolutional
network (i.e. comprised of only convolution and ReLU layers) to predict the per-grid-cell change in
the height-map (the layout of the single–net is identical to the top half of Figure 3). Empirically, this
network tended to have difficulty conserving mass between the scoop and dump parts of the action
(i.e., the mass scooped should be approximately equal to the mass dumped). To remedy this, we
created the scoop & dump–net, which splits the network into two halves, one to predict the change
from the scoop part of the action, and the other to predict the change from the dump part of the
action. The scoop & dump–net is shown in Figure 3. The top half of the network takes in the current
height-map and the action map, and outputs the predicted change due to the scoop. The bottom half
of the network takes as input the current height-map plus the changes predicted by the first network
and the action map, and predicts the changes due to the dump. In this way, the bottom half sees what
the height-map is predicted to look like after the scoop has been performed. Additionally, to help
the network enforce mass conservation, we add an explicit summation to the network that sums the
change in mass due to the scoop and then passes it in a separate channel to the bottom half of the
network, allowing it to directly reason about mass conservation. Finally, we also modify the loss
function for training to include an additional term for the intermediate scoop state (recorded from
real-world height-maps).

4.2 Predicting Distance to the Goal

Our third predictive model attempts to infer how much closer the next state will be to the goal
compared to the current state. Specifically, given the current state ht, the proposed action parameters
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Figure 4: The network layout for the value–net.

θ̃i, and the goal state hg , this model attempts to predict the following scalar quantity:

‖hg −F
(
ht, at[θ̃

i]
)
‖1 − ‖hg − ht‖1

where F
(
ht, at[θ̃

i]
)

is the next state after applying action at with parameters θ̃i.

However unlike the previous two models of Section 4.1, this predictive model eschews explicitly
computing the next state and instead uses a ConvNet to directly regress to the scalar difference in
L1-norms. The network takes as input the current height-map ht, the goal height-map hg , and the
proposed action map θ̃i, and outputs a single real value representing its prediction for the above
equation. Intuitively this is a measure of “value” of a given action; a negative value will move the
state closer to the target, while a positive value will move the state away from the target. The layout
of the value–net is shown in Figure 4. When computing the scalar output (i.e. the “goodness” of a
given action) the network is not required to explicitly predict the complex dynamics of the granular
media. We compare this model to the other models in the results in section 7.

4.3 Baseline Predictive Model

Our final predictive model is a hard-coded heuristic function as a baseline for comparison. Similar
to the first two predictive models from Section 4.1, this model predicts an approximate next state,
conditioned on the current state ht and a proposed action θ̃i. At a high-level, the model approxi-
mates a volume of mass to be removed from the height-map at the scoop location, and places the
corresponding mass directly at the dump location. The details are as follows.

Given the start pose si and end pose ei in θ̃i, the robot draws a straight line from si to ei over the
current height map ht. Next the robot generates ht+scoop by removing all the granular media within
w
2 cm of the line, where w is the width of the scoop, with the exception of media before si or after
ei. This results in a rectangular section of ht+scoop, running along the line segment from si to ei,
set to all 0s (i.e., all the granular media removed).

The robot next computes the sum total of the volume of media removed, and divides it between c, the
volume of media scooped, and p, the volume of media pushed. For every grid cell in the rectangle
affected by the scoop action described in the previous paragraph, the robot computes αg , the angle
of the scoop. This angle αg is computed by linearly interpolating between the start angle, αi

s, and
the end angle, αi

e, along the line from si to ei (both αi
s and αi

e are specified by the proposed action
θ̃i). Recall from Section 3.1 that the angle of the scoop is the angle between the plane of the tray
and the plane of the scoop, with 0 degrees being parallel. For grid cells where αg is positive, their
volume is added to c, and for grid cells where αg is negative, their volume is added to p. Intuitively,
this means that when the open face of the scoop is facing forward (i.e., αg is positive), the media is
scooped, that is, it stays in the scoop when it is raised from the tray. However, when the underside
of the scoop is facing forward (i.e., αg is negative), the media is pushed, that is, it is pushed in front
of the scoop until it reaches ei, then stays there and does not go with the scoop when it is raised.

Finally, to generate ht+1, the robot adds two narrow Gaussians to ht+scoop. It adds the first at ei
and adjusts it so that the volume of the Gaussian is equal to p. This is the media that was pushed by
the scoop. It adds the second at the dump location specified in θ̃i and adjusts it so that its volume is
equal to c. This is the media that was scooped by the scoop, and thus is deposited by the scoop at
the dump location.
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5 Experimental Setup

5.1 Robot and Sensors

In this paper we utilized 7 KUKA LBR IIWA robotic arms, however each acted independently
and did not interfere with each other. The use of multiple arms in parallel allows us to perform
data collection at a faster rate. The arms have 7 degrees of freedom and are each mounted on a
horizontal table. Another table is placed immediately in front of each robot arm and acts as the
robot’s workspace. The robotic setup is shown in Figure 1. Each robot has it’s own depth camera
capable of recording 640×480 depth images at 30 Hz.

5.2 Objects and Granular Media

We use pinto beans as the granular media since they are both large enough to not lodge in the robot’s
joints and small enough to have interesting dynamics. They also appear with minimal noise on
infrared depth cameras and are rigid enough to not break or deform after extended manipulation.
For the scoop tool we use a standard large metal cooking spoon, which we rigidly attach to the
robot’s end-effector. Finally, we place a tray in front of the robot and rigidly fix it to the table.
The tray we use has a divider that splits the tray into left and right halves, which allows for more
interesting interactions with the granular media by the robot. The precise pose of the tray relative to
the robot and the camera are calibrated a priori and fixed for the duration of the experiments.

5.3 Data Collection

To train the ConvNets used by the robot policy, we collected a dataset of robot scooping actions.
First, we filled one side of the tray in front of each robot with 3.75kg of pinto beans. Next, each
robot observed the tray in front of it and generated a goal state by randomly placing a target pile
in one of the four corners or center of the empty side of the tray. The robots then executed their
policies, attempting to scoop the beans from the full side of the tray to the target pile on the empty
side. After 75 iterations of the scoop & dump action, the robots randomly generated a new goal on
the other side of the tray. This process of generating goals and executing the policy was repeated
until sufficient data had been collected, with the experimenter periodically resetting all the beans to
one side of the tray in between repetitions.

Overall, we collected approximately 15,000 examples of the scoop & dump action. For the first
10,000, the robots used the baseline scoring function during policy execution as described in sec-
tion 4.3. For the last 5,000, we trained a scoop & dump–net on the first 10,000 data-points and then
used the dynamics scoring function for the policy as described in section 4.1.

5.4 Data Processing

The state representation used by the policy in this paper is a height-map over the media in the tray,
however the robots’ observations are depth images from a depth camera. To convert the depth images
to a height-map, the robot first constructs a point-cloud from the depth image using the camera’s
known intrinsics. The point-cloud is then transformed into the tray’s coordinate frame and points
within the tray’s bounding-box are projected to the 2D discretized height-map surface, recording
the resultant height above the tray. Figures 2b and 2c show a depth image and its corresponding
height-map. The robot’s arm and the scoop are excluded from the image by moving the arm up and
out of the robot’s view.

6 Evaluation

6.1 Robot Policy

To select the correct actions, the robot utilizes a greedy policy based on the cross-entropy method
(CEM) [32]. CEM is a sampling method that uses a scoring function L to iteratively sort samples,
estimate a distribution from the top K, and resample. To compute the action parameters θt, the
robot first samples N sets of parameters θ̃1, ..., θ̃N uniformly at random from the parameter space.
Next, for each sampled parameter set θ̃i, the robot computes the scoreL(θ̃i, ht, hg) using the scoring
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function L, the current state ht, and the goal state hg . Intuitively, L is a measure of how “good” the
robot believes taking an action with parameters θ̃i in state ht towards goal hg will be, with lower
values indicating better parameters. The robot then discards all but the best K sets (i.e., the lowest
scoring K sets), where K < N . Next the robot fits a Gaussian distribution to the K samples,
and then resamples N new sets of parameters from this Gaussian. The robot repeats this loop of
sampling from a distribution, picking the best K, and refitting the distribution, for a fixed number of
steps. On the final iteration, the robot sets θt to be the values of the top performing set of parameters
θ̃i.

The scoring function L uses the predictive model underneath to compute the score. For the models
in sections 4.1 and 4.3, since they both predict the next state, the scoring function simply returns the
L1 error (mean absolute error) between the predicted next state and the goal state. For the model
described in section 4.2, the robot directly uses the output of the network as the score since it already
predicts how “good” a proposed action is. For the results in section 7, we compare using each of the
predictive models in the scoring function.

6.2 Training the Models

The predictive models described in sections 4.1 and 4.2 utilize ConvNets. To train those networks,
we use the dataset collected in section 5.3. For all networks, we use the mini-batched gradient
descent method Adam [33] with a learning rate of 5e−4 to iteratively update the weights of the
networks. All weights were initialized randomly. We first pre-trained all the networks for 30,000
iterations using the baseline model output predictions (using initial states from the robot data) de-
scribed in section 4.33. Next we trained the networks for 100,000 iterations on the initial and next
states captured from the robot.

Since each network was slightly different from the others, we used different loss functions for each.
For the single–net (described in section 4.1), we use the L2-loss on the predicted next state. For
the scoop & dump–net (also described in section 4.1), we also use the L2-loss on the predicted
next state, but we add another L2-loss on the output of the top half of the network (the scoop only
prediction), which is added with equal weight. Additionally we stop the gradients from the first
loss from propagating directly back into the top half of the network, which encourages the top half
to predict only the result of the scoop part of the action. Finally, for the value–net (described in
section 4.2) we use an L2-loss on the change in mean absolute error to that goal from the before
action state to the after action state (each scoop action in the dataset had a corresponding goal).

6.3 Tasks

We evaluate the robot’s models on two example tasks, a “simple” task and a “hard” task. The first
task is for the robot to scoop on one side of the tray that is filled with beans, and dump the beans
into a Gaussian-shaped pile on the empty side. The robot is given 100 scoop & dump actions to
complete the goal shape. While this may seem relatively simple, it is actually quite complicated.
The robot must be able to reason about what types of scoop actions will result in beans collecting
in the scoop. It also must be able to reason about how many beans it will acquire and about where
those beans will go when dumping them. That is, for even such a “simple” task the robot must have
an intimate understanding of the dynamics of the granular media. We also evaluate the robot on a
“hard” task that adds another level of complexity. In this task, the robot must dump the beans into a
more complex shape, requiring the robot to reason in more detail about the dynamics of the dumped
beans. In this paper, we use the shape of the letter “G” (in Baskerville typeface) as the target.

7 Results

Figure 5 shows the results4. Figure 5a shows the error between predicted next states and the actual
next states on a test set for each of the three models that predict state transitions 5. The X-axis shows

3We empirically determined that the networks performed better with pre-training than without.
4Please refer to the associated video for additional results: https://youtu.be/YUb5hi-OK70
5For this portion of the analysis we don’t compare with the value–net because there is no next-state pre-

diction to compare with, although empirically the error for it did seem to converge to a reasonable value after
training.
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Figure 5: The results of evaluating our predictive models. Left to right: mean error (in mm, con-
fidence regions indicated by dashed lines) of the 3 models predicting the state transition; the mean
error of the 4 models on the pile task and on the G task.

how the models perform over multi-step predictions (i.e., using their own output as input for the next
timestep), and the Y-axis shows the average error in millimeters, with the dashed lines indicating the
standard deviation for each model. Interestingly, the single–net and the scoop & dump–net perform
very similarly on our test set. As expected, the rough heuristic baseline model performs poorly as it
does not attempt to accurately predict the dynamics but only roughly captures the overall behavior.

From Figure 5b it is apparent that while the baseline does not predict accurate dynamics, it is never-
the-less able to solve the pile task to some degree. Figure 5b shows the error in millimeters for
each model averaged across 3 runs for the pile task with each run initialized to the same mass of
beans (3.75kg) and leveled in the same container. The X-axis shows the error over time as the
robot completes more scoop & dump actions (100 total). In all cases the error goes down over time
as expected. From the graph it is apparent that the value–net performs much more poorly than the
other models and is unable to reason effectively about the robot’s actions. Without explicitly training
the network to learn the rich, high-dimensional statistics of the full output state representation (as in
the scoop & dump–net), it may easily get stuck in local minima during training (particularly in the
regime of limited training data) and as a result performs poorly. It is clear that it is unsuitable for
these kinds of tasks and so we leave it out of the remaining evaluations. Interestingly, the baseline
method outperforms the single–net method for the first 50 of 100 actions, and although it does
eventually converge to a state closer to the goal, it does so much more slowly. The scoop & dump–
net, on the other hand, not only reaches a state closer to the goal, but converges much faster than
any other method. This clearly indicates that even though the single–net and scoop & dump–net
had similar performance on the test set, when actually using the models on control tasks, the scoop
& dump–net is better able to inform the policy about the dynamics of the actions on the granular
media.

Examining Figure 5c, it is clear that this trend remains true for even more complicated tasks. This
figure shows the performance of 3 of the models on the G task (we left out the value–net due to
its poor performance on the pile task) averaged across three runs each. Interestingly, the baseline,
while converging more slowly in this case than the single–net, in the end outperforms it by a narrow
margin. These results taken together indicate that the structure of the scoop & dump–net is better
suited to acting as a predictive model of a robotic control policy involving granular media than a
naive unstructured network like the single–net.

8 Conclusion

In this paper, we developed 4 predictive models for enabling a robotic control policy to manipulate
granular media into a desired shape. We evaluated these models on both a test set and on a pair of
manipulation tasks of varying difficulty. The results clearly show that for tasks involving granular
media, the best performance can be achieved by training structured ConvNets to predict full state
transitions. Our scoop & dump–net, which explicitly modeled the different parts of the action in
the network structure, outperformed both our value–net, which only predicted the value of an action
with respect to a goal, and our single–net, which predicted the full state transition but did not have
any internal structuring to reflect the nature of the action. This is consistent with prior work [25],
which showed that structured networks are also necessary when predicting the motion of dense
point clouds. Our results show using structured, learned predictive models can enable robots to
reason about substances such as granular media that are difficult to reason about with traditional
kinematic models.
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