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Abstract Bayesian filtering is a general framework for
recursively estimating the state of a dynamical system.
Key components of each Bayes filter are probabilistic pre-
diction and observation models. This paper shows how
non-parametric Gaussian process (GP) regression can be
used for learning such models from training data. We also
show how Gaussian process models can be integrated into
different versions of Bayes filters, namely particle filters
and extended and unscented Kalman filters. The resulting
GP-BayesFilters can have several advantages over standard
(parametric) filters. Most importantly, GP-BayesFilters do
not require an accurate, parametric model of the system.
Given enough training data, they enable improved tracking
accuracy compared to parametric models, and they degrade
gracefully with increased model uncertainty. These advan-
tages stem from the fact that GPs consider both the noise
in the system and the uncertainty in the model. If an ap-
proximate parametric model is available, it can be incor-
porated into the GP, resulting in further performance im-
provements. In experiments, we show different properties of
GP-BayesFilters using data collected with an autonomous
micro-blimp as well as synthetic data.
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1 Introduction

Estimating the state of a dynamic system is a fundamen-
tal problem in robotics. The most successful techniques
for state estimation are Bayesian filters such as particle fil-
ters or extended and unscented Kalman filters (Thrun et al.
2005). Bayes filters recursively estimate posterior probabil-
ity distributions over the state of a system. The key com-
ponents of a Bayes filter are the prediction and observa-
tion models, which probabilistically describe the temporal
evolution of the process and the measurements returned by
the sensors, respectively.1 Typically, these models are para-
metric descriptions of the involved processes. The parame-
ters and noise components of the models can be estimated
from training data or tuned manually (Abbeel et al. 2005;
Bar-Shalom et al. 2001; Limketkai et al. 2007). Even though
such parametric models are very efficient, accurate paramet-
ric models are difficult to obtain, and their predictive ca-
pabilities may be limited because they often ignore hard to
model aspects of the process. Examples of difficult to model
systems include anatomically correct robot hands (Desh-
pande et al. 2009), the dynamics of robotics arms (Nguyen
and Peters 2008), or the spatial distribution of wireless sig-
nal strength (Ferris et al. 2006). A main problem is often
that although the basic physics are easy to understand, these
systems have very complex relationships between their var-
ious elements. In addition, some aspects of the system may
be hard to directly measure, such as friction.

To overcome the limitations of parametric models, re-
searchers have recently introduced non-parametric, Gaus-
sian process regression models (Rasmussen and Williams

1Throughout this paper we will use the term “prediction” model instead
of “process” model in order to avoid confusion with the term Gaussian
process.
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2005) to learn prediction and observation models for dy-
namical systems. GPs have been applied successfully to the
problem of learning predictive state models (Girard et al.
2005; Grimes et al. 2006; Ko et al. 2007b; Liu et al. 2005).
The fact that GP regression models provide uncertainty es-
timates for their predictions allows them to be readily incor-
porated into particle filters as observation models (Ferris et
al. 2006) or for improved sampling distributions (Plagemann
et al. 2007).

In this paper we demonstrate the integration of Gaussian
Processes (GP) into different forms of Bayes filters. Specif-
ically, we show how GP prediction and observation mod-
els can be combined with particle filters (GP-PF), extended
Kalman filters (GP-EKF), and unscented Kalman filters
(GP-UKF) (parts of this work have been published in Ko and
Fox 2008; Ko et al. 2007a). The development of GP-EKFs
requires a linearization of GP regression models, which we
derive in this paper. The resulting GP-BayesFilters inherit
the following features from GP regression:

• GP-BayesFilters do not depend on the availability of para-
metric prediction and observation models. The underlying
models and all their parameters can be learned from train-
ing data, using non-parametric regression.

• GP-BayesFilters can take advantage of parametric mod-
els, if available. By incorporating such models into the GP
regression, the filter parameters can typically be learned
from significantly less training data.

• GP-BayesFilters generate state-dependent uncertainty es-
timates that take both noise and regression uncertainty
due to limited training data into account. As a result,
the filter automatically increases its uncertainty when the
process enters areas in which not enough training data is
available.

• GP-BayesFilters using standard GPs might become too
inefficient when large training data sets are required.
However, the incorporation of sparse GPs can signifi-
cantly increase the efficiency of GP-BayesFilters. Fur-
thermore, using heteroscedastic GPs results in GP-
BayesFilters that can model systems with state dependent
noise.

In addition to describing the formal framework of GP-
BayesFilters, we perform a thorough comparison of the per-
formance of the different filters based on simulation experi-
ments and data collected by a robotic blimp.

This paper is organized as follows. After discussing
related work, we provide the necessary background on
Gaussian processes and Bayesian filtering. We then show
how we can obtain GP prediction and observation models
from data in Sect. 4. The different instantiations of GP-
BayesFilters are introduced in Sect. 5, followed by an ex-
perimental evaluation. We conclude in Sect. 7.

2 Related work

The application of GPs to prediction modeling or dynam-
ical system identification has been done by several re-
searchers (Girard et al. 2005; Kocijan et al. 2003). Girard
and colleagues use multiple previous states to make future
predictions. The key novelty in this work is to not only
consider the mean of the previous states, but also their un-
certainty. They show how GPs learned using this type of
data lead to more accurate predictions. The drawback is
that it requires large amounts of training data which may
not be available for highly complex, high dimensional sys-
tems. System identification using Gaussian processes is also
addressed in (Grimes et al. 2006). In this case, Gaussian
processes model the state dynamics of a humanoid robot.
The focus of this work was on dynamic imitation of a human
with a robot while considering external forces like gravity
and inertia.

The use of GPs for observation models has also been con-
sidered. In (Ferris et al. 2007, 2006), GPs represent obser-
vation models for a person’s or robot’s position based on
wireless signal strength. They develop a system for indoor
localization using a particle filter. The fact that GP regres-
sion models provide uncertainty estimates allows them to
be readily incorporated into the PF. GP observation mod-
els are again applied for localization with a particle filter
in (Brooks et al. 2006). In this case, the observation model
is constructed for an omni-directional camera. Dimension-
ality reduction is done on the camera images via wavelet
decomposition. This data along with ground truth robot po-
sitions are used as the training data for the Gaussian process
observation model.

Gaussian processes have been applied to various robot-
ics applications. In (Plagemann et al. 2007), they are used to
sense failure modes of a mobile robot. Online GPs are used
to represent a forward dynamics model for several robotic
arms in (Nguyen and Peters 2008). In (Engel et al. 2006),
Gaussian processes are applied to reinforcement learning for
mobile robots. GPs are employed to learn the value func-
tion through temporal difference learning. This technique
is demonstrated on a simulated octopus arm. GPs are also
applied to the reinforcement learning problem in (Ko et al.
2007b), where they are used to find parameters of a con-
troller for a small blimp. RL episodes were run in simulation
using a Gaussian process prediction model.

The idea of combining parametric and non-parametric
models for regression has also been explored in (Sanner
and Slotine 1991) where a neural network is combined with
a standard parametric model in learning function approx-
imations. However, their main focus is on online learning
of the target function and theoretical guarantees of conver-
gence.

A relevant extension of GPs was developed by Lawrence
(2005), who used GPs for dimensionality reduction in a
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technique called Gaussian process latent variable model
(GPLVM). This work is similar to PCA dimensionality re-
duction, except with a Gaussian process mapping between
latent and data space. In related work, Wang et al. (2006)
extend GPLVMs by learning a dynamics model in latent
space. They demonstrate their technique on several differ-
ent human motion patterns. An interesting connection to our
work is that it is possible to extract a GP-BayesFilter from a
GPDM, which is applicable even when ground truth system
data is unavailable.

There is also a large amount of literature dedicated to im-
proving Gaussian process efficiency and expressive power.
These methods are somewhat orthogonal to our work since
GP-BayesFilters can employ any type of GPs as long as
they give adequate predictions and uncertainties. We test
several of these algorithms in the experimental results of
this paper. One of the main drawbacks of using Gaussian
processes is the cubic complexity of training given the num-
ber of training points. In order to reduce this complexity,
several researchers introduced sparse GP methods (Csató
and Opper 2002; Seeger and Williams 2003; Seo et al. 2000;
Smola and Bartlett 2001; Snelson and Ghahramani 2006).
The idea of sparse GPs is to reduce the training set size by
intelligently selecting a subset of training points, also called
the active set, on which calculations are performed. Even
though calculations are only done on the active training set,
the full training data is taken into account by the formula-
tion of these sparse GPs. A comprehensive summary of most
of these techniques is presented in (Quinonero-Candela and
Rasmussen 2005). In addition to sparse GPs, there are also
modifications to GPs that allow them to model a wider array
of phenomena. Work on modeling non-stationary processes,
ones in which the smoothness of the process is state de-
pendent, can be found in (Paciorek 2003) and (Plagemann
et al. 2008). Finally, heteroscedastic processes, where noise
is state dependent, can be modeled using techniques found
in (Kersting et al. 2007) and (Goldberg et al. 1998).

3 Background for GP-BayesFilters

Before we describe the generic GP-BayesFilter, let us dis-
cuss the basic concepts underlying Gaussian processes and
Bayes filters.

3.1 Gaussian processes for regression

Gaussian processes are a powerful, non-parametric tool for
learning regression functions from sample data. Key advan-
tages of GPs are their modeling flexibility, their ability to
provide uncertainty estimates, and their ability to learn noise
and smoothness parameters from training data (Rasmussen
and Williams 2005).

3.1.1 Basic Gaussian process model

A Gaussian process represents distributions over functions
based on training data. To see this, assume we have a set
of training data, D = 〈X,y〉, where X = [x1,x2, . . . ,xn] is a
matrix containing d-dimensional input examples xi , and y =
[y1, y2, . . . , yn] is a vector containing scalar training outputs
yi . One assumes that the observations are drawn from the
noisy process

yi = f (xi ) + ε, (1)

where ε is zero mean, additive Gaussian noise with variance
σ 2

n . Conditioned on training data D = 〈X,y〉 and a test input
x∗, a GP defines a Gaussian predictive distribution over the
output y∗ with mean

GPμ (x∗,D) = kT∗ K−1y (2)

and variance

GP� (x∗,D) = k(x∗,x∗) − kT∗ K−1k∗. (3)

Here, k is the kernel function of the GP, k∗ is a vector de-
fined by kernel values between x∗ and the training inputs X,
and K is the n×n kernel matrix of the training input values;
that is, k∗[i] = k(x∗,xi ) and K[i, j ] = k(xi ,xj ). Note that
the prediction uncertainty, captured by the variance GP� ,
depends on both the process noise and the correlation be-
tween the test input and the training data.

The choice of the kernel function depends on the appli-
cation, the most widely used being the squared exponential,
or Gaussian, kernel with additive noise:

k(x,x′) = σ 2
f e− 1

2 (x−x′)W(x−x′)T + σ 2
n δ, (4)

where σ 2
f is the signal variance. The signal variance ba-

sically controls the uncertainty of predictions in areas of
low training data density. The diagonal matrix W con-
tains the length scales of the process, such that W =
diag([1/l2

1 ,1/l2
2, . . . ,1/l2

d ]). The length scales reflect the
relative smoothness of the process along the different input
dimensions. The final GP parameter is σ 2

n , which is controls
the global noise of the process. An example of GP regression
is given in Fig. 1.

3.1.2 Hyperparameter learning

The parameters θ = [W,σf ,σn] are called the hyperparame-
ters of the Gaussian process. They can be learned by max-
imizing the log marginal likelihood of the training outputs
given the inputs:

θmax = argmax
θ

{log(p(y|X, θ))} . (5)
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Fig. 1 Example of one-dimensional GP regression. Shown are a sine
function (black), noisy samples drawn from the function (diamonds),
the resulting GP mean function estimate (dashed), and the GP uncer-
tainty sigma bounds (blue/gray). The GP hyperparameters were deter-
mined via optimization of the data likelihood. Note how the uncertainty
widens in the x-interval [3, 7] due to the sparseness of data points in
this area

The log term in (5) can be expressed as

log(p(y|X, θ)) = − 1

2
yT (K(X,X) + σ 2

n I )−1y

− 1

2
log |K(X,X) + σ 2

n I | − n

2
log 2π.

(6)

This optimization problem can be solved using numeri-
cal optimization techniques such as conjugate gradient as-
cent (Rasmussen and Williams 2005). The partial derivatives
of the log likelihood are required for this optimization and
can be expressed as

∂

∂θk

log(p(y|X, θ)) = 1

2
tr

[
(K−1y)(K−1y)T

∂K

∂θk

]
. (7)

Each element ∂K[i,j ]
∂θk

is the partial derivative of the kernel
function with respect to the hyperparameters:

∂k(xi ,xj )

∂σf

= 2σf e− 1
2 (xi−xj )W(xi−xj )T , (8)

∂k(xi ,xj )

∂σn

= 2σnδ, (9)

∂k(xi ,xj )

∂Wii

= −1

2
(xi[i]−xj [i])2σ 2

f e− 1
2 (xi−xj )W(xi−xj )T .

(10)

The optimization problem is non-convex, so there is no guar-
antee of finding a global optimum. However, the optimiza-
tion nevertheless tends to work well in practice.

3.1.3 Sparse Gaussian processes

The efficiency of GPs can be greatly increased by reduc-
ing the number of data points used to represent the GP.
While different algorithms have been introduced for gen-
erating such sparse GPs, we here focus on an approach that
uses a set of so-called pseudo-inputs to represent the training
data (Snelson and Ghahramani 2006). The key idea of this
approach is that although the pseudo-inputs (active points)
are initialized as a subset of the training points, they are
continuous variables the values of which are determined
via optimization. This enables the simultaneous optimiza-
tion of both the GP hyperparameters and the locations of the
pseudo-inputs. This optimization is smoother than that done
in other sparse GP work such as (Csató and Opper 2002;
Seeger and Williams 2003; Smola and Bartlett 2001), where
active points are a subset of the training points. The sparse
GP learning in these other works involves iteratively select-
ing points and optimizing the hyperparameters. The addition
of new points interferes with hyperparameter optimization
which might make convergence difficult. In general, the use
of sparse GP techniques reduces training complexity from
O(n3) to O(m2n) where n and m are the number of training
and active points respectively. The complexity of mean pre-
diction becomes O(m) and covariance prediction O(m2).

3.1.4 State-dependent noise models

In (Kersting et al. 2007), Kersting and colleagues describe a
technique for using GPs to model systems with state depen-
dent noise. These systems are also known as heteroscedastic
systems. This is opposed to the regular GP with a station-
ary kernel function which assumes a global noise value, and
where all variations in the uncertainty are a result of differ-
ences in training data density. State dependent noise models
have been examined before in other contexts. Techniques
for modeling heteroscedastic systems have been considered
using SVMs, splines, and locally linear regression models
in (Edakunni et al. 2007), (Nott 2006), and (Schölkopf et al.
2000), respectively. This work is closely related to (Gold-
berg et al. 1998). Both use two separate GPs to model the
data. The first GP learns to predict the mean in much the
same way the regular GP does. The other GP is used to
model the prediction uncertainty. The key difference is that
Kersting et al. use the most likely noise instead of a MCMC
approximation of the noise distribution. Using this simplifi-
cation, they can develop an EM-like algorithm for optimiz-
ing the model. Since these techniques remains fully within
GP regression framework, integration with sparse GP tech-
niques is possible. We examine GP-BayesFilters with these
GP models in Sect. 6.
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3.2 Bayes Filters

Bayes filters recursively estimate posterior distributions over
the state xk of a dynamical system conditioned on all sensor
information collected so far:

p(xk|z1:k,u1:k−1)

∝ p(zk|xk)

∫
p(xk|xk−1,uk−1)p(xk−1|z1:k)dxk−1. (11)

Here z1:k and u1:k−1 are the histories of sensor mea-
surements and controls obtained up to time k. The term
p(xk|xk−1,uk−1) is the prediction model, a probabilistic
model of the system dynamics. p(zk|xk), the observation
model, describes the likelihood of making an observation zk

given the state xk . Typically, these models are parametric
descriptions of the underlying processes, see (Thrun et al.
2005) for several examples. In GP-BayesFilters, both pre-
diction and observation models are learned from training
data using non-parametric, Gaussian process regression.

In this paper we implement and test three different instan-
tiations of Bayes filters using GP prediction and observation
models. Specifically, we present algorithms for GP integra-
tion into particle filters (PF), extended Kalman filters (EKF),
and unscented Kalman filters (UKF). These filters apply dif-
ferent approximations to posteriors over the state space.

The key idea of the particle filter is to represent posteri-
ors by sets of weighted samples, or particles. These filters
are highly accurate given enough particles. This accuracy
comes at a price, however, since the particle filter may re-
quire a large number of particles and thus suffers from poor
time efficiency. This is mitigated somewhat by using Rao-
Blackwellised PFs (Doucet et al. 2000).

Kalman filters, on the other hand, represent the state es-
timate with a Gaussian distribution. This allows for highly
efficient updates but at a cost of representational power and
hence accuracy. For example, Kalman filters are incapable
of representing multimodal distributions. Extended and un-
scented Kalman filters are extensions of regular Kalman fil-
ters designed to work with non-linear systems. In order to do
this, both extended and unscented Kalman filters linearize
the non-linear prediction and observation functions. At the
core of the Kalman filter is the prediction of the new state
from the previous state, and the prediction of the observa-
tion from that new state. The extended Kalman filter uses the
prediction and observation function to propagate the mean
directly, and the Jacobian of the prediction and observa-
tion function to calculate the new covariance. The unscented
Kalman filter propagates via the unscented transform. In it,
a deterministic set of samples called sigma points are prop-
agated using the prediction and observation function. The
unscented Kalman filter then calculates the new mean and
covariance from these sigma points. The UKF is in theory at
least as accurate as the EKF (Julier and Uhlmann 1997), but

we show later that this is not always the case when UKFs
are integrated with GP prediction and observation models.

4 Learning prediction and observation models with
GPs

Gaussian process regression can be applied directly to the
problem of learning prediction and observation models re-
quired by the Bayes filter (11). In our context, a model needs
to provide both a mean prediction as well as an uncertainty
or noise in that prediction. Gaussian processes neatly pro-
vide both. There is an assumption made that the noise is
Gaussian, but that is assumed by the Kalman filters as well.
Particle filters can utilize non-Gaussian noise models, so this
may be a slight drawback of using GP models.

4.1 Training data

The training data is a sampling from the dynamics and ob-
servations of the system. We make the assumption that it is
representative of the system, that is, the training data covers
those parts of the state space that are visited during normal
operation (we explore the behavior of GP models when this
is not the case in Sect. 6.3.1.) The training data for each
GP consists of a set of input-output relations. The prediction
model maps the state and control, (xk ,uk), to the state tran-
sition 
xk = xk+1 − xk . The next state can then be found
by adding the state transition to the previous state. The ob-
servation model maps from the state, xk , to the observation,
zk . The appropriate form of the prediction and observation
training data sets is thus

Dp = 〈
(X,U),X′〉 , (12)

Do = 〈X,Z〉 , (13)

where X is a matrix containing ground truth states, and
X′ = [
x1,
x2, . . . ,
xk] is a matrix containing transitions
made from those states when applying the controls stored
in U . Z is the matrix of observations made when in the cor-
responding states X.

The resulting GP prediction and observation models are
then

p(xk|xk−1,uk−1)

≈ N
(
GPμ([xk−1,uk−1],Dp),GP�([xk−1,uk−1],Dp)

)
(14)

and

p(zk|xk) ≈ N
(
GPμ(xk,Do),GP�(xk,Do)

)
, (15)

respectively. The reader may notice that while these models
are Gaussians, both the means and variances are non-linear
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functions of the input and training data. Furthermore, the lo-
cally Gaussian nature of these models allows a very natural
integration into different instantiations of Bayes filters, as
we will describe in Sect. 5.

GPs are typically defined for scalar outputs, and GP-
BayesFilters represent models for vectorial outputs by learn-
ing a different GP for each output dimension. Since the out-
put dimensions are now independent of each other, the re-
sulting noise covariances GP� are diagonal matrices.

4.2 Model enhancement using parametric models

So far, the evolution of the dynamic system and the ob-
servation predictions are represented by Gaussian processes
alone. There are some drawbacks to this approach. Because
there is a zero mean assumption in the GP, test states that
are far away from the training states will have outputs that
quickly tend towards zero. This makes the choice of train-
ing data for the GP very important. In addition, purely non-
parametric models lack interpretability. Since they are data-
driven and lack parameters, non-parametric models give no
insight into the system.

Higher prediction accuracy can be obtained by combin-
ing GP models with parametric models. A parametric model
is one which attempts to represent a particular phenomenon
with physical equations. For example a blimp model would
be described by aerodynamics equations, a mobile robot
with physics or inverse kinematics. These equations leave
open variables or parameters which are optimized with re-
spect to training data. The noise component of these mod-
els can be found by calculating the expected squared differ-
ence between the parametric function and the ground truth.
The disadvantage of parametric models is that substantial
domain expertise is required to build these models, and even
then they are often simplified representations of the actual
systems.

A combination of GP and parametric models alleviates
some of the problems with either model alone. First, there
is an overall increase in accuracy, since the GP model can
represent aspects of the system that are not captured by the
parametric model. Also, since parametric models capture
the physical process underlying the dynamical system, they
typically generalize well beyond the training data. We call
the combination of GP and parametric models enhanced-GP
(EGP) models.

Essentially, EGPs learn the residual output after factoring
the contributions of the parametric model. For the predic-
tion model, instead of learning the change in state, we need
to learn the change in state after processing by the paramet-
ric model. If f (x,u) is the parametric mean function which
predicts the change in system state from time k to k+1, then
the training for the enhanced-GP model becomes


x̂k = xk+1 − xk − f (xk,uk). (16)

The training input for the GP remains the same. The training
data for the prediction model is now

Dp = 〈(X,U), X̂′〉, (17)

where X̂′ = [
x̂1,
x̂2, . . . ,
x̂k]. The training output for
the observation model can be derived similarly. It is

ẑk = zk+1 − zk − g(xk), (18)

where g(x) is the parametric observation function and Ẑ =
[ẑ1, ẑ2, . . . , ẑk]. The training data for the enhanced-GP ob-
servation model becomes

Do = 〈X, Ẑ〉. (19)

5 Instantiations of GP-BayesFilters

We will now show how GP models can be incorporated into
different instantiations of Bayes filters. For notation, we will
stick close to the versions presented in (Thrun et al. 2005).

5.1 GP-PF: Gaussian process particle filters

Particle filters are sample-based implementations of Bayes
filters which represent posteriors over the state xk by sets
Xk of weighted samples:

Xk = {〈xm
k ,w

(m)
k 〉 | m = 1, . . . ,M}.

Here each xm
k is a sample (or state), and each w

(m)
k is a non-

negative numerical factor called importance weight. Parti-
cle filters update posteriors according to a sampling pro-
cedure (Thrun et al. 2005). Table 1 shows how this pro-
cedure can be implemented with GP prediction and ob-
servation models. In Step 4, the state at time k is sam-
pled based on the previous state xm

k−1 and control uk−1,
using the GP prediction model defined in (14). Here,
GP([xm

k−1,uk−1],Dp) is short for the Gaussian represented
by N (GPμ([xm

k−1,uk−1],Dp), GP�([xm
k−1,uk−1],Dp)).

Note that the covariance of this prediction is typically dif-
ferent for each sample, taking the local density of training
data into account. Importance sampling is implemented in
Step 5, where each particle is weighted by the likelihood of
the actual most recent measurement zk given expected mea-
surement from the sampled state xm

k . This likelihood can
be easily extracted from the GP observation model defined
in (15). All other steps are identical to the generic particle
filter algorithm, where Steps 8 through 11 implement the
resampling step (see Thrun et al. 2005).
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Table 1 The GP-PF algorithm

1: Algorithm GP-PF(Xk−1,uk−1, zk ):

2: X̂k = Xk = ∅
3: for m = 1 to M do

4: sample xm
k ∼ xm

k−1 + GP([xm
k−1,uk−1],Dp)

5: w
[m]
k = N (zk;GPμ(xm

k ,Do),GP�(xm
k ,Do))

6: add 〈xm
k ,w

[m]
k 〉 to X̂k

7: endfor

8: for m = 1 to M do

9: draw i with probability ∝ w
[i]
k

10: add x[i]
k to Xk

11: endfor

12: return Xk

5.2 GP-EKF: Gaussian process extended Kalman filters

The following describes the integration of GP prediction and
observation models into the extended Kalman filter. In addi-
tion to the GP mean and covariance estimates used in the
GP-PF, the incorporation of GP models into the EKF re-
quires a linearization of the GP prediction and observation
model in order to propagate the state and observation, re-
spectively. For the EKF, this linearization is computed by
taking the first term of the Taylor series expansion of the GP
function. The Jacobian of the GP mean function (2) can be
expressed as

∂(GPμ(x∗,D))

∂(x∗)
= ∂(k∗)

∂(x∗)

T

K−1y. (20)

As noted above, k∗ is the vector of kernel values between
the query input x∗ and the training inputs X. The Jacobian
of the kernel vector function with respect to the inputs is

∂(k∗)
∂(x∗)

=

⎡
⎢⎢⎣

∂(k(x∗,x1))
∂(x∗[1]) . . .

∂(k(x∗,x1))
∂(x∗[d])

...
. . .

...
∂(k(x∗,xn))

∂(x∗[1]) . . .
∂(k(x∗,xn))

∂(x∗[d])

⎤
⎥⎥⎦ , (21)

where n is the number of training points and d is the dimen-
sionality of the input space. The actual partial derivatives
depend on the kernel function used. For the squared expo-
nential kernel, it is

∂(k(x∗,x))

∂(x∗[i]) = −Wii(x∗[i] − x[i])σ 2
f e− 1

2 (x∗−x)W(x∗−x)T .

(22)

Equation (20) defines the d-dimensional Jacobian vector for
the GP mean function for a single output dimension. The
full d × d Jacobian of a prediction or observation model is
determined by stacking d Jacobian vectors together, one for
each of the output dimensions.

Table 2 The GP-EKF algorithm

1: Algorithm GP-EKF(μk−1,�k−1,uk−1, zk):

2: μ̂k = μk−1 + GPμ([μk−1,uk−1],Dp)

3: Qk = GP�([μk−1,uk−1],Dp)

4: Gk = I + ∂GPμ([μk−1,uk−1],Dp)
∂xk−1

5: �̂k = Gk �k−1 GT
k + Qk

6: ẑk = GPμ(μ̂k,Do)

7: Rk = GP�

(
μ̂k,Do

)
8: Hk = ∂GPμ(μ̂k ,Do)

∂xk

9: Kk = �̂k HT
k (Hk �̂k HT

k + Rk)
−1

10: μk = μ̂k + Kk(zk − ẑk)

11: �k = (I − Kk Hk) �̂k

12: return μk,�k

We are now prepared to incorporate GP prediction and
observation models into an EKF, as shown in Table 2. Step 2
uses the GP prediction model (2) to generate the predicted
mean μ̂k . Step 3 sets the additive process noise, Qk , which
corresponds directly to the GP uncertainty. Gk , the lineariza-
tion of the prediction model, is the sum of the identity matrix
and the Jacobian of the GP mean function found in (20). The
identity matrix is necessary since the GP mean function only
represents the change in state from one time step to the other.
A change in any of the dimensions of the previous state has
a direct effect on the new state. Step 5 uses these matrices to
compute the predictive uncertainty, in the same way as the
standard EKF algorithm. Similarly, Steps 6 through 8 com-
pute the predicted observation, ẑk , the noise covariance, Rk ,
and the linearization of the observation model, Hk , using
the GP observation model. The remaining steps are identi-
cal to the standard EKF algorithm, where Step 9 computes
the Kalman gain, followed by the update of the mean and
covariance estimates in Steps 10 and 11, respectively.

5.3 GP-UKF: Gaussian process unscented Kalman filters

The GP-UKF algorithm is shown in Table 3. The key idea
underlying unscented Kalman filters is to replace the lin-
earization employed by the EKF by a more accurate lin-
earization based on the unscented transform. To do so, the
UKF generates a set of so-called sigma points based on the
mean and variance estimates of the previous time step. This
set, generated in Step 2, contains 2d + 1 points, where d is
the dimensionality of the state space. Each of these points
is then projected forward in time using the GP prediction
model in Step 3. The additive process noise, computed in
Step 4, is identical to the noise used in the GP-EKF algo-
rithm.2 Steps 5 and 6 are identical to the standard unscented

2While a more accurate estimate of the uncertainty Qk could be com-
puted by taking into account the GP uncertainty at each sigma point,
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Table 3 The GP-UKF algorithm

1: Algorithm GP-UKF(μk−1,�k−1,uk−1, zk ):

2: Xk−1 = (μk−1 μk−1 + γ
√

�k−1 μk−1 − γ
√

�k−1 )

3: for i = 0 . . .2n: X̄ [i]
k = X [i]

k−1 + GPμ([X [i]
k−1,uk−1],Dp)

4: Qk = GP�

([μk−1,uk−1],Dp

)

5: μ̂k =
2n∑
i=0

w[i]
m X̄ [i]

k

6: �̂k =
2n∑
i=0

w[i]
c (X̄ [i]

k − μ̂k)(X̄
[i]
k − μ̂k)

T + Qk

7: X̂ k = (
μ̂t μ̂t + γ

√
�̂k μ̂t − γ

√
�̂k

)
8: for i = 0 . . .2n: Ẑ [i]

k = GPμ(X̂ [i]
k ,Do)

9: Rk = GP�(μ̂k,Do)

10: ẑk =
2n∑
i=0

w[i]
m Ẑ [i]

k

11: Sk =
2n∑
i=0

w[i]
c (Ẑ [i]

k − ẑk)(Ẑ
[i]
k − ẑk)

T + Rk

12: �̂
x,z
k =

2n∑
i=0

w[i]
c (X̂ [i]

k − μ̂k)(Ẑ
[i]
k − ẑk)

T

13: Kk = �̂
x,z
k S−1

k

14: μk = μ̂k + Kk(zk − ẑk)

15: �k = �̂k − Kk Sk KT
k

16: return μk,�k

Kalman filter; they compute the predictive mean and covari-
ance from the predicted sigma points. A new set of sigma
points is extracted from this updated estimate in Step 7. The
GP observation model is used in Step 8 to predict an obser-
vation for each of these points. The observation noise ma-
trix, Rk , is set to the GP uncertainty in Step 9.

Steps 10 through 16 are standard UKF updates (see
Thrun et al. 2005). The mean observation is determined
from the observation sigma points in Step 10, and Steps 11
and 12 compute uncertainties and correlations used to de-
termine the Kalman gain in Step 13. Finally, the next two
steps update the mean and covariance estimates, which are
returned in Step 16.

5.4 GP-BayesFilter complexity analysis

This section examines the run-time complexity of the three
different algorithms. In typical tracking applications, the
number n of training points used for the GP is much higher
than the dimensionality d of the state space. In these cases,
the complexity of GP-BayesFilters is dominated by GP op-
erations, on which we will concentrate our analysis. Fur-
thermore, since the ratio between prediction and observation

we here consider the more simple approach of only using the uncer-
tainty at the mean sigma point.

evaluations is the same for all algorithms, we focus on the
prediction step of each algorithm (the correction step is anal-
ogous). C denotes the cost of the various steps. The algo-
rithms are broken down into the cost of kernel evaluations,
Ckern, and multiplications, Cmult.

Since GP-PFs need to perform one GP mean and variance
computation per particle, the overall complexity of GP-PFs
follows as

Cpf = M (Cμ + C�), (23)

where M is the number of particles. The GP-EKF algorithm
requires one GP mean and variance computation plus one
GP Taylor series expansion step:

Cekf = Cμ + C� + Ctse. (24)

The GP-UKF algorithm requires one GP mean computation
for each sigma point. One GP variance computation is also
necessary per step. Since 2d + 1 sigma points are used for
the prediction step, the complexity follows as

Cukf = (2d + 1)Cμ + C�. (25)

To get a more accurate measure, we have to consider the
complexity of the individual GP operations. The core of
each GP mean prediction operation consists of a kernel eval-
uation (4) followed by a multiplication. The computation
of the mean function GPμ (x∗,D) defined in (2) requires
n such evaluations, one for each combination of the query
point x∗ and a training point xi . In addition, this operation
must be done for each output dimension since we use a sep-
arate GP for each dimension. We assume the number of out-
put dimensions is equal to the dimensionality of the state
space:

Cμ = nd(Ckern + Cmult). (26)

Note that the term K−1y in (2) and (20) is independent of
x∗ and can be cached.

In computing the prediction covariance GP�(x∗,D), we
assume the mean prediction has already been performed
since this would be the case for all three GP-BayesFilter
algorithms examined here. In particular, k∗ can be as-
sumed to be already calculated. Evaluation of kT∗ K−1k∗ re-
quires n(d + 1) multiplications for each output dimension.
k(x∗,x∗) is just a single kernel evaluation, so the total com-
plexity is

C� = nd(d + 1) Cmult + d Ckern, (27)

Finally, the linearization of the GP, given in (22), requires
calculation of the Jacobian of the kernel function followed
by a multiplication by K−1y. For the squared exponential
kernel, each element of the Jacobian can be found after two
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additional multiplications, since the partial derivative can be
rewritten as

∂(k(x∗,x))

∂(x∗[i]) = −Wii(x∗[i] − x[i])k(x∗,x). (28)

The kernel evaluations, k(x∗,xi ), are cached, so the cost to
compute the Jacobian of the kernel function for each output
dimension is 2ndCmult. This is followed by multiplication
with K−1y which costs nd Cmult per dimension. The overall
cost of the linearization operation is then,

Ctse = 3nd2 Cmult. (29)

The total costs in terms of kernel computations and mul-
tiplications are shown in Table 4.

This analysis has been done on the GP-BayesFilter us-
ing the squared exponential kernel. Unfortunately, the cost
of kernel evaluations and multiplications cannot be unified
into a single value since the exponential in the kernel func-
tion has variable cost depending on the hardware used. How-
ever, there are still some conclusions that can be made from
this analysis. The first is GP-PF has very high computational
cost since the number of particles required is often much
greater than the dimensionality of the state space. However,
GP-PF has a redeeming characteristic as it is the only filter
that can represent multi-modal beliefs. GP-EKF has some
more multiply operations than GP-UKF but they are on the
same order. However, GP-UKF is O(nd2) in terms of kernel
evaluations, while GP-EKF is only O(nd). Since the kernel
computation is generally much slower than a multiply op-
eration, the kernel computation will tend to dominate in the
run time for these two filters. GP-EKF will thus be signif-
icantly faster than GP-UKF. Results in Sect. 6 show this to
be true.

Table 4 Computational requirements

Ckern Cmult

GP-UKF nd(2d + 1) + d 3nd(d + 2
3 )

GP-EKF d(n + 1) 4nd(d + 1
2 )

GP-PF Mnd Mnd(d + 1)

6 Experiments

We present two sets of experiments. In the first set, we eval-
uate different properties of GP-BayesFilters in the context of
tracking a small blimp using cameras mounted in an indoor
environment. The second set provides a setting in which GP-
EKF may offer higher accuracy than GP-UKF.

6.1 Robotic blimp testbed

The experimental testbed for evaluating the GP-BayesFilters
is a robotic micro-blimp flying through a motion capture lab,
as shown in Fig. 2.

6.1.1 Hardware

A custom-built gondola is suspended beneath a 5.5 foot
(1.7 meter) long envelope. The gondola houses two main
fans that pivot together to provide thrust in the longitudinal
(forwards-up) plane. A third motor located in the tail pro-
vides thrust to yaw the blimp about the body-fixed Z-axis.
There are a total of three control inputs: the power of the
gondola fans, the angle of the gondola fans, and the power
of the tail fan.

A necessary component of GP-BayesFilters is ground
truth data of the system. The system states, observations,
and control inputs are all required in order to learn the GP
prediction and observation models. For this experiment, ob-
servations for the filters come from two network cameras
mounted in the laboratory. These are Panasonic model KX-
HCM270 running at 1 Hertz each. Observations are formed
by background subtraction followed by the fitting of an el-
lipse to the remaining (foreground) pixels. The observations
are the parameters of the ellipse in image space, parame-
trized by the position, size, and orientation.

A VICON motion capture system captures the ground
truth states of the blimp as it flies. The system tracks reflec-
tive markers attached to the blimp as 3D points in space, and
uses a blimp model to convert marker positions to position
and orientation of the blimp at each timestep. The veloc-
ity and rotational velocity can be obtained via a smoothed

Fig. 2 The left image shows the
blimp used in our test
environment equipped with a
motion capture system. It has a
customized gondola (right
images) that includes an XScale
based computer with sensors,
two ducted fans that can be
rotated by 360 degrees, and a
webcam
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calculation of the slope between sample points. The system
runs at 120 Hz, but downsampled to 4 Hz to better match
the cyclic rate of our cameras. In addition, the downsampled
rate allows us to learn GPs that are capable of running in real
time.

The final component of the ground truth data is the con-
trol inputs which are obtained from a human controlled joy-
stick. These control inputs are then sent to the blimp. The
data collected is then used to train the GPs and paramet-
ric models, and to evaluate the tracking performance of the
various filtering algorithms. The data acquisition and inte-
gration code is written primarily in C++ whereas the nu-
merical calculations are performed almost exclusively in
MATLAB. Gaussian process code is from Neil Lawrence
(http://www.dcs.shef.ac.uk/~neil/fgplvm/). All experiments
were performed on an Intel® XeonTM running at 3.40 GHz.

6.1.2 Parametric prediction and observation models

The parametric motion model appropriate for the blimp was
described in detail in (Ko et al. 2007b). The state of the
blimp consists of position p, orientation ξ parametrized by
Euler angles, linear velocity v, and angular velocity ω. The
resulting model has the form

d

dt

⎡
⎢⎢⎣

p
ξ

v
ω

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R(ξ)ebv
H(ξ )ω

M−1(
∑

Forces − ω × Mv)

J−1(
∑

Torques − ω × Jω)

⎤
⎥⎥⎦ . (30)

Here, M is the mass matrix, J is the inertia matrix, Re
b is

the rotation matrix from body-fixed to inertial reference, and
H is the Euler kinematical matrix. The sum of forces and
torques accounts for thrust produced by each motor, drag ef-
fects, and gravity. This parametric model is an ODE which
must be solved in order to produce a function f which pre-
dicts the next state given the current state and control input.
f is then a function that is discrete in time and of the same
form as the GP prediction model mean function.

There are 16 parameters to the model which are learned
by minimizing point-wise squared differences between sim-
ulated states and ground truth. Ground truth states for blimp
motion comes from the VICON system. This parameter es-
timation is done in two stages. First, we perform maneuvers
with the blimp in order to isolate and get approximate val-
ues for particular parameters. For example, to get an approx-
imate value for the center of mass, the blimp can be rotated
about the X and Y axes and released. Due to the blimp’s self
stabilizing feature, the point that moves the least is therefore
a good approximation for the center of mass. Next, the para-
meters can then be optimized together in order to minimize
the error between prediction and the training data using nu-
merical techniques like conjugate gradient descent. This two
step procedure alleviates problems with local minima.

Table 5 Prediction model quality

Propagation p (mm) ξ (deg) v (mm/s) ω (deg/s)

method

Param 3.3 ± 0.003 0.5 ± 0.0004 14.6 ± 0.01 1.5 ± 0.001

GP 1.8 ± 0.004 0.2 ± 0.0004 9.8 ± 0.02 1.1 ± 0.002

EGP 1.6 ± 0.004 0.2 ± 0.0005 9.6 ± 0.02 1.3 ± 0.003

The model provides a thorough approximation of the true
dynamics of the blimp, and has the same form as other
models of rigid body dynamics (Gomes and Ramos 1998;
Stevens and Lewis 1992). However, there are several ap-
proximations and simplifications that are made with this
model. For example, the drag terms are linear, which may be
appropriate for objects moving at low speeds, but unlikely to
be fully accurate. Also, the is no attempt to model lift. The
blimp can generate lift not only from the fixed stabilizer fins,
but also from the body of the blimp itself. These effects can
be added to the model, but would add to the complexity, and
may require additional facilities to model, i.e. wind tunnel,
etc. The lesson here is that learning a highly accurate para-
metric model is difficult even with expert domain knowl-
edge. The GP model can and does show better performance
in modeling blimp dynamics as can be seen in the next sec-
tion.

The parametric observation model takes as input the six-
dimensional pose of the blimp within the camera’s coordi-
nate system. Using computer vision techniques, the blimp
axes are then projected into image space. Geometric calcu-
lations are used to find the parameters of an ellipse based
on these projected axes. This observation model is only an
approximation as it does not consider several factors, such
as the barrel distortion of the camera. This model, however,
does works well in practice.

6.2 Comparison of prediction and observation models

This first experiment is designed to test the quality of mo-
tion and observation models, which are the crucial compo-
nents for Bayesian filtering. In total, three different ways of
modeling the blimp motion and the camera observations are
compared: parametric models (Param), GP only (GP), and
Enhanced-GP (EGP). The training data for the blimp mo-
tion model was collected by flying the blimp manually via
remote-control. To ensure even coverage of the state space,
the training data for the observation model was collected by
moving the blimp manually through the room. Both the GP
prediction and observation model use roughly 900 training
samples each.

The results for the prediction models are summarized in
Table 5. The results are obtained as follows: start with a
ground truth state, predict using the model, take the differ-
ence between the predicted state and the next ground truth

http://www.dcs.shef.ac.uk/~neil/fgplvm/
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Table 6 Observation model prediction quality

Propagation position width height orientation

method (px) (px) (px) (rad)

Param 7.1 ± 0.0021 2.9 ± 0.0016 5.6 ± 0.0030 9.2 ± 0.0100

GP 4.7 ± 0.0022 3.2 ± 0.0019 1.9 ± 0.0012 9.1 ± 0.0088

EGP 3.9 ± 0.0021 2.4 ± 0.0018 1.9 ± 0.0014 9.4 ± 0.0099

Table 7 Aggregate RMS percentage improvement over baseline para-
metric filter (higher values are better)

GP EGP hetGP sparseGP

UKF 30.75 ± 1.41 34.10 ± 1.76 35.76 ± 1.61 32.05 ± 2.02

EKF 27.66 ± 1.04 31.44 ± 2.43 33.70 ± 2.09 29.72 ± 1.90

PF 33.93 ± 7.24 35.95 ± 6.91 na 38.92 ± 2.17

state. Quality here is measured in terms of the average norm
prediction error in position, p, orientation, ξ , forward ve-
locity, v, and angular velocity, ω. As can be seen, both GP-
based models produce very similar results that are signifi-
cantly better than the parametric approach.

The results for the observation models are summarized
in Table 6. The results are obtained by comparing the dif-
ference between the ground truth observations with those
found using the model. Quality is measured in mean norm
error in ellipse position, width, height, and orientation. Here
again, both GP and EGP outperform the parametric model.
Note that the EGP error in orientation is surprisingly high.
A further investigation showed that this result is not a due to
a weakness of the EGP approach but rather an artifact of the
Euler angle representation chosen in this experiment.

6.3 Tracking performance

Experimental results for tracking were obtained via 4-fold
cross-validation. The data was broken up into 4 equally
sized sections covering approximately 5 minutes of blimp
flight each. The flight data consists of the blimp exhibiting
standard blimp maneuvers. Slow and fast forward motion
and turns are captured, as well as starts and stops which ex-
ercises the main thrusters’ full range of motion. The tracking
algorithms were tested on each section with the remaining
sections used for learning of the GP models and parameters
for the physics-based models. The GP models are learned
with approximately 900 points by subsampling of the full
data set. For the prediction model, we use every third point
from the full training data. The particle filters were run with
2000 particles. Hyperparameter estimation for the all GP
models is done offline, and the term K−1y precomputed and
cached. All other computations are done online under real
time conditions.

Table 8 Tracking mean log likelihood (MLL, higher values are better)

Param GP EGP hetGP sparseGP

UKF 10.1 ± 0.6 14.9 ± 0.5 16.2 ± 0.3 16.9 ± 0.3 14.3 ± 0.6

EKF 8.4 ± 1.0 13.0 ± 0.2 14.4 ± 0.9 15.1 ± 0.8 12.8 ± 0.6

PF –4.5 ± 4.2 9.4 ± 1.9 10.7 ± 2.1 na 9.2 ± 1.8

Table 9 Run time (s) per filter iteration

Param GP EGP hetGP sparseGP

UKF 0.33 ± 0.1 1.28 ± 0.3 1.45 ± 0.2 2.02 ± 0.34 0.48 ± 0.11

EKF 0.21 ± 0.1 0.29 ± 0.1 0.53 ± 0.2 0.66 ± 0.15 0.06 ± 0.03

PF 31 ± 6 449 ± 21 492 ± 34 na 106 ± 16

The results are broken up into three charts. First, Ta-
ble 7 shows the percentage improvement of tracking qual-
ity with various combinations of Bayes filters and models
over the baseline filters using parametric models (hetGP and
sparseGP will be discussed in Sect. 6.3.2). Specifically, the
percentage improvement of RMS tracking error in position,
rotation, velocity, and rotational velocity are averaged to
get an aggregate improvement. The results show that GP-
BayesFilters are clearly superior to their parametric Bayes
filter counterparts. Enhanced-GP filters are consistently bet-
ter than filters using zero-mean GP models (third column
vs. second column), and UKF versions of all filters outper-
form their EKF counterparts (first row vs. second row).

Table 8 shows the mean log likelihood of the ground truth
state given the estimated state distribution. The closer the es-
timated state is to the ground truth state, and the smaller the
uncertainty of the state estimate, the higher the log likeli-
hood. This table can be used to compare the tracking perfor-
mance across different filter algorithms. The UKF has the
best performance. It improves when using the GP predic-
tion and observation models, and is even better when using
enhanced-GP models. Particle filter tracking performance
is surprisingly poor, this is likely caused by an insufficient
number of particles for the size of the state space and the
tracking uncertainty. Also, the distributions of the particles
are converted into a Gaussian in order to compute the log
likelihood.

Finally, Table 9 shows the run-time per iteration of the
filter. The GP-EKF is more than four times faster than the
GP-UKF, and GP-PFs have prohibitively large computation
times for this application. Notice that GP-PF run-times are
proportionately much slower than their parametric counter-
part. Computation for GP-PF is much more extensive since
prediction uncertainty needs to be calculated for each point
per step, whereas the parametric PF uses a static uncertainty.
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Fig. 3 Tracking performance
for different numbers of training
points/active points. Dashed
lines provide results when
randomly choosing subsets of
training points, solid lines give
results when using sparse GP
techniques. GP-UKF shows
better accuracy and robustness
compared to GP-EKF as the
number of training points for the
GP is reduced for both normal
and sparse GPs. Sparse GP-UKF
and GP-EKF show very high
accuracy even as the number of
active points approaches zero

6.3.1 Training data sparsity

The next experiment tests how the tracking accuracy of GP-
EKFs and GP-UKFs changes when only smaller amounts
of training data are available. For each level of data sparse-
ness, we perform cross validation by selecting 16 sets con-
taining the corresponding number of training points. These
sets were then tested on hold out data, just as in the four-
fold cross validation structure from the previous experi-
ment. These experiments are evaluated using two measures,
as shown in Fig. 3 (sparse GP results will be discussed in
Sect. 6.3.2). The first measure is the percentage of runs that
failed to accurately track the blimp. A run is considered a
failure if the ground truth state goes beyond three sigma
bounds of the estimated state. In such cases, the filter has
completely lost track of the blimp and is unlikely to recover.
The other measure is the MLL of the remaining successful
runs. As illustrated by the dashed lines in the figure, there
is a fairly smooth degradation of accuracy for both meth-
ods. The tracking only experiences drastic reduction in ac-
curacy with less than about 130 training points. This result
also shows GP-UKF to be more accurate and more robust
than GP-EKF at all levels of training data.

In an additional experiment we investigate how the GP-
UKF technique behaves when the system transits through
a section of the state space that was not observed during
training. To do so, we removed data for specific motor com-
mands, in this case left turns with the tail motor, from the
GP training set. This reduced GP is then used by a GP-UKF
for tracking. The results, available in Fig. 4, show the ground
truth data along with the GP-UKF state estimate for both full
and reduced training data sets. The blue (gray) lines indicate

the three-σ uncertainty bounds. The shaded region indicates
the frames in which the tail motor was pushing left. The un-
certainty of the tracking prediction increases precisely in the
region where there is less training data. This covariance in-
crease keeps the ground truth within three-σ of the mean
estimate even though the mean error increases. Note that the
uncertainty of the reduced data GP-UKF reverts to that of
the full data GP-UKF soon after this test period.

6.3.2 Heteroscedastic and sparse GPs

The next experiments test the use of sparse and het-
eroscedastic GP models for blimp tracking. As stated ear-
lier, GP-BayesFilters can naturally incorporate modified or
sparse GPs in order to improve accuracy or increase effi-
ciency.

We first test heteroscedastic GP models. As noted in
Sect. 3.1.4, standard GPs assume that the noise of the
process is the same for all states. Different uncertainties
are only due to different data sparsity. Heteroscedastic GPs
overcome this limitation by learning state dependent noise
models. The tracking results for GP-BayesFilters with het-
eroscedastic GPs (hetGP) are shown in Tables 7 through 9.
As can be seen, the tracking quality is consistently better
than with regular GPs. In fact, hetGP obtains the best re-
sults of the different GP models examined. However there
is a speed penalty due to the increased complexity of het-
eroscedastic GPs. This current implementation of hetGP is
about twice as slow as the regular GP models.

Figure 5 illustrates the key difference between het-
eroscedastic and regular GPs during tracking. The shaded
regions indicate the times in which the tail motor is active.
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Fig. 4 The figure shows the
effect of eliminating training
data associated with a left turn.
Along the x-axis, the top plot
shows the temporal evolution of
ground truth yaw (black line)
along with the GP-UKF yaw
estimate (red dashed line) using
all available training data. The
tail motor is active within the
shaded region. The bottom plot
shows the same command
sequence with all left turn
training data eliminated. Notice
how the GP-UKF automatically
increases the estimate error
covariance (blue/gray lines) due
to increased model uncertainty
(due to limited training data, see
also Fig. 1)

Fig. 5 Tracking uncertainties
of different state components
when using heteroscedastic GP
(top) and regular GP (bottom).
The intensity of shading
indicates tail motor power.
Heteroscedastic GP has higher
and more variable uncertainty
compared to regular GP when
the tail motor is active (shaded
region)

The upper plot shows uncertainties in different state compo-
nents when using heteroscedastic GPs and the lower shows
uncertainties with regular GPs. As can be seen, the uncer-
tainty of the heteroscedastic GP tracker increases whenever
the tail motor transitions between different power levels. The
uncertainty is also correlated with the overall yaw velocity
of the blimp, since the yaw velocity increases the longer the
motor is active. The faster the blimp is rotating, the more un-
certain different dimensions of the state estimates become.
The uncertainties that are most affected are the ones gov-
erning sideways velocity, and the rotational velocities of the

blimp. This makes sense since the tail motor also causes
a sideways movement as well as rotation. These changes
in uncertainty are not seen when using regular GPs. This
shows that heteroscedastic GPs do a better job at modeling
the uncertainty in the blimp system.

Even when large amounts of training data are available,
it might be advantageous to reduce the number of GP points
in order to increase efficiency of the GP-BayesFilter. As
demonstrated in Sect. 6.3.1, the quality of the filter de-
creases when subsets of training points are chosen ran-
domly. Here we demonstrate that sparse GP techniques can



Auton Robot

be applied to significantly speed up GP-BayesFilters without
sacrificing accuracy. Tracking results for GP-BayesFilters
with the sparse GP technique introduced by Snelson and
Ghahramani (2006) are shown in the last column of Ta-
bles 7 through 9. These results are based on 50 active points.
The sparse GP-BayesFilters show similar accuracy to regu-
lar GP-BayesFilters, however, with much lower run-times.

The next experiment is related to the earlier data sparsity
experiment with the results shown in Fig. 3. Instead of vary-
ing the number of training points, we vary the number of ac-
tive points used by the sparse GP. The sparse GP-UKF and
GP-EKF show very high accuracy even when the number
of active points are greatly reduced (solid lines). There are
two interesting observations in this result. First, the tracking
accuracy decreases slightly as the number of active points
used increases. As the number of active points increases, the
number of parameters in the optimization increases. We hy-
pothesize that the GPs with more active points need even
more optimization iterations than we used in our experi-
ments. Right now, the number of optimization iterations for
all the sparse GPs are fixed. Another observation is that al-
though the sparse GP seem to have lower MLLs than the
regular GPs when using more data, this may not be the case
since failed runs from the regular GPs are excluded from the
MLL calculation.

6.4 Synthetic experiment

The previous experiment showed that GP-UKFs and GP-
EKFs have very similar behavior. Here, we demonstrate the
somewhat surprising result that GP-EKFs can handle certain
sparseness conditions better than GP-UKFs.

The experimental setup is illustrated in Fig. 6. The filters
use range observations to known landmarks to track a ro-
bot moving in a square circuit. The robot uses the following
motion model:

p(t + 1) = p(t) + v(t) + εp, (31)

v(t + 1) = v(t) + u(t) + εv, (32)

where p denotes position, v velocity of the robot, and u the
control input. εp and εv are zero mean Gaussian noise for
position and velocity, respectively. The robot receives as an
observation the range to one of the landmarks. Observations
are made for each landmark in a cyclic fashion.

The training data for the GPs is obtained from a typical
run of the robot. The GPs for the motion model learn the
change in position and velocity from one time step to the
next. This is similar to the modeling of the blimp dynamics.
The observation model uses as training data range informa-
tion and positions from the robot during the training run.
That is, observation training data only comes from locations
visited during the training run.

Fig. 6 The robot is indicated by the square and the landmarks by
the circles. The dashed line represents the trajectory of the robot. The
(green/grey) shaded region indicates the density of training data. The
five crosses indicate sigma points of the GP-UKF during a tracking
run. Notice that the four outer points are in areas of low training data
density

Table 10 Tracking error for synthetic test

position velocity

GP-UKF 74.6 ± 0.34 8.0 ± 0.003

GP-EKF 48.2 ± 0.08 7.2 ± 0.005

GP-PF 43.8 ± 0.07 6.0 ± 0.003

As can be seen in Table 10, the tracking performance of
GP-UKF is significantly worse than that of GP-EKF and
GP-PF. This is a result of the sigma points being spread
out around the mean prediction of the filter. In this exper-
iment, however, the training data only covers a small enve-
lope around the robot trajectory. Therefore, it can happen
that sigma points are outside the training data and thus re-
ceive poor GP estimates. The GP-EKF does not suffer from
this problem since all GP predictions are made from the
mean point which is well within the coverage of the train-
ing data. GP-PFs handle such problems by assigning very
low weights to samples with inaccurate GP models.

This experiment indicates that one must be careful when
using GP-UKFs to select training points that ensure broad
enough coverage of the operational space of the system. An-
other way to alleviate this problem could be to use differ-
ent parameters for the UKF. These UKF parameters specify
the weights given to each sigma point when reconstructing
the Gaussian. In this work we used UKF parameter values
of α = 1e−3, β = 2, and κ = 0. These values are optimal
if the underlying distribution is indeed Gaussian, however
different values can be used to force the weight of the cen-
tral/mean sigma point to be higher. This will give the outer
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sigma points with low training data density lower weights
thereby achieving higher propagation accuracy.

7 Conclusions and future work

Recently, several researchers have demonstrated that Gaus-
sian process regression models are well suited as compo-
nents of Bayesian filters. GPs are non-parametric models
that can be learned from training data and that provide esti-
mates that take both sensor noise and model uncertainty due
to data sparsity into account. In this paper, we introduced
GP-BayesFilters, the integration of Gaussian process predic-
tion and observation models into generic Bayesian filtering
techniques. Specifically, we developed GP-PFs, which com-
bine GP models with particle filtering; GP-UKFs, which in-
corporate GP models into unscented Kalman filters; and we
showed how GP models can be linearized and incorporated
into extended Kalman filters. In addition to developing the
algorithms, we provide a complexity analysis of the differ-
ent instances of GP-BayesFilters.

In our experiments, all versions of GP-BayesFilters
outperform their parametric counterparts. Typically, GP-
UKFs perform slightly superior to GP-EKFs, at the cost of
higher computational complexity. However, one experiment
demonstrates that GP-EKFs can outperform GP-UKFs when
training data is sparse and thus does not cover all sigma
points generated during tracking. We additionally demon-
strate how the accuracy and efficiency of GP-BayesFilters
can be increased by applying heteroscedastic and sparse GP
techniques. The combination with parametric models can
result in additional improvements by reducing the need for
extensive training data.

In general, however, the increased accuracy of GP-
BayesFilters comes at the cost of increased computational
complexity and the need for training data that covers the
complete operational space of the dynamical system. We
thus conjecture that GP-BayesFilters are most useful when
high accuracy is needed or for difficult to model dynami-
cal systems. Furthermore, an enhanced GP should be used
whenever a reasonable, parametric model is available.

A further disadvantage of GP-BayesFilters is the need for
accurate ground truth data for learning the GP models. In
many applications, ground truth data is either unavailable,
or can only be determined approximately. GP latent variable
models (Lawrence 2004; Wang et al. 2006) were developed
to handle cases in which no ground truth is available for
GP input values. They are thus well suited for cases with
uncertain training data, and their extension to learning GP-
BayesFilters has recently been investigated with extremely
promising results (Ko and Fox 2009). Finally, the predictive
uncertainty of the GPs used in this paper assumed diagonal
error covariance matrices. An interesting direction for future
work is learning fully correlated matrices.
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