
Graph-Based Inverse Optimal Control for Robot Manipulation

Arunkumar Byravan1, Mathew Monfort2, Brian Ziebart2, Byron Boots3 and Dieter Fox1∗

Abstract
Inverse optimal control (IOC) is a powerful
approach for learning robotic controllers from
demonstration that estimates a cost function which
rationalizes demonstrated control trajectories. Un-
fortunately, its applicability is difficult in settings
where optimal control can only be solved approx-
imately. While local IOC approaches have been
shown to successfully learn cost functions in such
settings, they rely on the availability of good ref-
erence trajectories, which might not be available at
test time. We address the problem of using IOC
to find appropriate reference trajectories in these
computationally challenging control tasks. Our ap-
proach uses a graph-based discretization of the tra-
jectory space and projects continuous demonstra-
tions into this graph, where a cost function can
be tractably learned via IOC. Discrete control tra-
jectories from the graph are then projected back
to the original space and locally optimized using
the learned cost function. We demonstrate the ef-
fectiveness of the approach with experiments con-
ducted on two 7-degree of freedom robotic arms.

1 Introduction
Robotic manipulation in environments shared with humans
is difficult. Robots must not only succeed with their well-
specified task objectives, such as grasping and placing ob-
jects, but they must also produce motion trajectories that
satisfy criteria that are difficult to specify. For example,
one might want a robot to hold a cup as upright as possi-
ble while avoiding collisions with other objects or to avoid
moving the cup above an expensive electronic item such
as a laptop (see Fig. 1). Despite being able to easily rec-
ognize and demonstrate such trajectories, specifying eval-
uation criteria that produce them might be difficult for the
roboticist. Recent advances in planning [Zucker et al., 2013;
Schulman et al., 2013] have proven to be very successful at

∗1Department of Computer Science & Engineering, University
of Washington, 2Department of Computer Science, University of
Illinois at Chicago, 3School of Interactive Computing, Georgia In-
stitute of Technology

Figure 1: PR2 robot and Barrett WAM arm used in our experi-
ments. The manipulators have 7 degrees of freedom, posing a chal-
lenge for learning cost functions for trajectory planners.

fulfilling objectives such as being collision-free or generat-
ing smooth motion, but often these trajectories tend to ignore
human preferences.

Inverse optimal control (IOC) [Abbeel and Ng, 2004;
Ziebart et al., 2008; Ng and Russell, 2000; Ratliff et al., 2009;
Levine and Koltun, 2012] provides an attractive option for
learning motion trajectory criteria that are difficult for the
roboticist to specify. IOC estimates a cost function for a deci-
sion process that (partially) rationalizes manipulation trajec-
tories demonstrated via teleoperation by making them (near)
optimal. The key advantage of IOC—as opposed to directly
estimating a control policy—is that this estimated cost func-
tion generalizes to new situations. For example, if obsta-
cles are re-arranged, a low-cost trajectory will avoid colli-
sions while replaying a previous trajectory will not. IOC has
been employed to construct controllers and planners for simu-
lated humanoid control [Levine and Koltun, 2012], field robot
navigation [Ratliff et al., 2009], navigation through crowds
[Henry et al., 2010], and goal prediction for robotic manipu-
lation [Dragan et al., 2011].

The many degrees of freedom (DoF) of typical robotic
arms pose significant challenges for using inverse optimal
control on manipulation tasks. IOC relies on solving the op-
timal control problem, but this is generally intractable and
state-of-the-art planning methods provide no optimality guar-
antees. Furthermore, to robustly learn cost functions from
non-optimal demonstrations requires the ability to reason
about distributions over paths, rather than only computing the
optimal one [Ziebart et al., 2008]. For the specific case of sys-

tems with linear dynamics and quadratic cost functions, effi-
cient inverse optimal control methods have been developed
[Levine and Koltun, 2012; Ziebart et al., 2012]. However,
these assumptions rarely hold in manipulation tasks. The
desirable space of manipulation trajectories is often multi-
modal and non-linear due to collision avoidance with dis-
crete obstacles. Despite this, IOC methods have leveraged the
special case of linear-quadratic systems by locally rational-
izing demonstrated trajectories using a linear-quadratic ap-
proximation centered around the demonstrated trajectory it-
self [Levine and Koltun, 2012]. Unfortunately, when a con-
troller applies the resulting cost function to a new situation,
the correct reference trajectory for linear-quadratic approxi-
mation is unknown. Other reference trajectories may produce
inherently non-human-acceptable manipulation trajectories.

Motivated by the weaknesses of existing IOC methods for
handling higher-dimensional control tasks, we propose an
IOC approach that is more complementary to the strengths
of recent robotic trajectory planners. Our key observation is
that trajectories produced by planners often fail to be human-
acceptable due to their coarse characteristics (e.g., the direc-
tion of approach or choice of paths weaving between obsta-
cles) rather than their fine-scale characteristics (e.g., smooth-
ness, obstacle avoidance). Our approach uses IOC to learn
preferences for trajectories through a coarse, discrete, graph-
based approximation of the trajectory space and then uses a
trajectory optimizer to fine-tune the resulting coarse trajec-
tory based on the learned cost function. We demonstrate the
effectiveness of this approach with several experiments con-
ducted on a 7-DOF robotic arm.

2 Background and Related Work
2.1 Trajectory planning
Motion planning based on trajectory optimization has re-
cently been very successful in solving hard, high dimen-
sional planning problems. Algorithms like CHOMP [Zucker
et al., 2013] and STOMP [Kalakrishnan et al., 2011] gener-
ate collision-free paths by minimizing a cost function based
on trajectory smoothness and distance, while TrajOpt [Schul-
man et al., 2013] uses sequential convex optimization with
collision avoidance constraints.

Due to the inherent computational difficulties of optimiza-
tion over the space of trajectories, these methods have some
drawbacks. They compute locally optimal trajectories with
no bounds on the global sub-optimality of the resulting so-
lution. Further, they often produce trajectories that, while
smooth and able to accomplish the specified objective, dif-
fer substantially from human-produced trajectories.

2.2 Maximum entropy inverse optimal control
Maximum entropy inverse optimal control (MaxEnt IOC)
[Ziebart et al., 2008] combines reward-based guarantees of
inverse reinforcement learning [Abbeel and Ng, 2004] with
predictive guarantees of robust estimation [Topsøe, 1979;
Grünwald and Dawid, 2004]. It obtains the stochastic pol-
icy that is least biased while still matching feature counts
[Abbeel and Ng, 2004]. Its resulting predictive policy esti-
mate, P (at|st) ∝ eQ(st,at), is recursively defined using a

softened version of the Bellman equation:

Q(st, at) , EP (st+1|at,st)[softmax
at+1

Q(St+1, at+1)] (1)

− costθ,f (st, at)

where costθ,f (st, at) , θTf(at, st), softmaxx f(x) =

log
∑
x e

f(x) and f(at, st) is a vector of features character-
izing the state-action pair. The term θTf(at, st) is analogous
to the cost function of optimal control. Parameters θ are esti-
mated by maximizing the training data likelihood under the
MaxEnt distribution, which for deterministic planning set-
tings are Boltzmann distributions over state sequences:

P (s1:T ,a1:T) =
e−θ

T ∑T
t=1 f(st,at)∑

s′1:T ,a
′
1:T

e−θ
T
∑T
t=1 f(s′t,a

′
t)

(2)

∝ e−costθ(s1:T ,a1:T).

MaxEnt IOC has been developed for both discrete and con-
tinuous state and action settings. We detail both settings here.
Discrete: Discrete state-action representations can incor-
porate arbitrary dynamics and features, but are limited by
the O(|S||A|T) complexity of dynamic programming algo-
rithms that compute Eqn.1. This limits the approach to low-
dimensional settings.
Continuous: Eqn. 1 can be analytically solved for con-
tinuous state-action representations with linear dynamics,
~st+1 = A~st + B~at, and quadratic features, cost(~s1:T) =∑T

t=1 ~s
T
t Θ~st, with parameter matrix Θ, [Ziebart, 2010;

Ziebart et al., 2012; Levine and Koltun, 2012].

2.3 Learning from robotic motion trajectories
Ideally one would learn cost functions for state-of-the-art tra-
jectory planning algorithms to generate human-like trajec-
tories that generalize sufficiently well across tasks. Unfor-
tunately, the non-convexity and discontinuity of the trajec-
tory planner’s solutions’ costs as a function of cost parame-
ters poses significant theoretical challenges for IOC. Standard
gradient-based optimization methods cannot be reliably em-
ployed to optimize the cost parameters of such functions since
local optima created by these discontinuities lead to inappro-
priate parameter estimates in both theory and practice.

One approach is to locally approximate the dynamics and
cost function as a linear-quadratic model around a refer-
ence trajectory [Levine and Koltun, 2012] and use continu-
ous MaxEnt IOC. Path integral methods for imitation learning
[Aghasadeghi and Bretl, 2011; Kalakrishnan et al., 2013] take
a similar form, but impose a cost on controls that is inverse to
the amount of control noise. In each case, locally optimizing
by approximating around the demonstrated trajectory makes
learning possible. However, finding an appropriate reference
trajectory when needing to produce a trajectory for a new sit-
uation is difficult and remains an open problem. Though co-
active learning methods for trajectory imitation [Jain et al.,
2013] learn from trajectory refinements rather than full tra-
jectory demonstrations, they suffer from similar local opti-
mization limitations. We avoid these concerns by learning at
a coarse granularity for which optimal control and reasoning
about distributions of discrete paths remains tractable.

3 Approach
To create a trajectory planner capable of producing trajecto-
ries that are more acceptable to people, we begin by sepa-
rating the manipulation trajectory planning task into two dis-
tinct problems: (1) coarsely choosing a natural motion for
the trajectory based on relational and topological properties
with objects and obstacles; and (2) refining the coarse tra-
jectory to be smooth and precise near obstacles. This par-
titions the desirable properties of manipulation trajectories
that are difficult to specify—the topological “naturalness”
of the trajectory—from the desirable obstacle avoidance and
smoothness properties that are well-specified and solved by
recent trajectory planning methods.

We coarsely approximate the space of manipulation trajec-
tories using a discrete graph representation and employ Max-
Ent IOC [Ziebart et al., 2008] to learn complex cost functions
that partially rationalize demonstrated manipulation trajecto-
ries that we project into this graph. A generalizable para-
metric probability distribution over paths through the graph
is also produced by the MaxEnt IOC approach. We employ
local trajectory optimization on samples from this graph dis-
tribution to produce smooth, obstacle avoiding trajectories us-
ing criteria that do not need to be learned. The simplifications
of our discrete representation intentionally ignore important
aspects of the manipulation task that are computationally dif-
ficult to fully incorporate; for instance, it does not employ
strict collision detection with certain obstacles. Key then is
finding a representation of the manipulation task that balances
computational tractability against the realizable similarity be-
tween demonstrated trajectories and the estimated trajectory
distribution. We now present details on the two major compo-
nents of our approach: the discrete IOC model and the local
trajectory optimization of sampled discrete paths.

3.1 Discrete IOC in a coarse path space
We construct a sparse discrete space to tractably approximate
our continuous trajectory space. This discrete space is rep-
resented as a graph in the robot’s configuration space (Q).
We project the demonstrations onto this graph and use dis-
crete MaxEnt IOC to learn a distribution over graph paths
that matches the projections.

A key consideration in our approach is the ability to gen-
eralize to new situations. For this reason, shaping the con-
struction of the graph based on the demonstrations must be
avoided as those trajectories will not be available when gen-
erating trajectories for new situations. More specifically, to
avoid the problems that arise from locally-optimized inverse
optimal control methods [Levine and Koltun, 2012], we con-
struct our graph representation of the trajectory space inde-
pendently from the specific trajectories used for training.
Graph generation: Algorithm 1 explains the procedure for
generating the sparse discrete graph. Initially, we compute a
diagonal co-variance Σ based on the range of motion (ξe) of
the robot’s DOF, restricting the maximum range to 2π. The
DOF with the maximum range is assigned a unit variance.
To avoid sampling uniformly over the robot’s configuration
space, we make an assumption that the demonstrations tend
to lie close to the straight line trajectory. Given a start and a
goal (ξs, ξg ∈ Q) configuration, we discretize the straight line

Algorithm 1 Generating a graph G
Inputs: ξs, ξg , m, M, k, ξhigh, ξlow, σ
Output: Graph, G = (V,E)
V = {}, E = {}
ξe = min(|ξhigh − ξlow|, 2π) . Compute joint extents
Σ = diag(ξe

max(ξe)
) . Diagonal co-variance

for i = 0 : m− 1 do
ξi = ξs + i

m−1
(ξg − ξs) . Linear interpolation

ni ≈M ∗ N (i|m−1
2
, σ) .

m−1∑
j=0

ni = M

Σi ≈ Σ ∗ N (i|m−1
2
, σ) . Scale co-variance

for j = 1 : ni do
ξj ∈ N (ξi,Σi) . Sample robot configuration
V = V + ξj . Add to vertex set

E = NN(V, k) . k-Nearest Neighbour set

trajectory (ξs → ξg) into m waypoints. We generate samples
from Gaussians centered around these m waypoints.
While the demonstrations are close to the straight line near
the endpoints, the uncertainty increases as we traverse along
the trajectory. Our graph construction handles this in two
ways: First, we increase the co-variance of the Gaussians near
the center and proportionally make the Gaussians near the
endpoints tight (Fig. 2). Second, proportional to the increase
in co-variance, we also sample more points from the Gaus-
sians near the center. The scaling factor is defined by a one-
dimensional Gaussian kernel centered around the midpoint
m−1
2 , with a variance σ. In total, we sample M points from

the Gaussians. Each node is then connected to its k-Nearest
Neighbors (NN) to form an undirected graph G (Fig. 3).
Projecting demonstrations to the graph: We project trajec-
tories into the space of paths through our coarse graph (G)
by computing the path through the graph that most closely
matches the demonstrated trajectory where we define close-
ness via Euclidean distance inQ. We accomplish this using a
modified version of Dijkstra’s algorithm that finds the short-
est path on the graph that is close to the demonstrated tra-
jectory. At each parent vertex in the graph Vp, the algorithm
tries to create a path through a neighbor Vj that is close to the
demonstration and minimizes the transition cost:

Vn = arg min
Vj∈E(Vp)

γ||Vj − Vp||2 + min
k=[p,...,g]

(||Vj − ξk||2) (3)

The first term in Eqn. 3 is the transition cost between ver-
tices - Euclidean distance between configurations. The sec-
ond term is the distance between the candidate vertex Vj and
its closest point on the remaining part of the demo [ξp, ..., ξg],
where ξp is the closest point on the trajectory to the parent
vertex (Vp). At the start vertex Vs, this is ξs. The algorithm
continues until it finds a path to the goal vertex Vg . Fig.3
shows the demonstration and its projection for a 2D example.
Discrete MaxEnt IOC: Given our coarse graph, we estimate
a distribution over paths through the graph that has maxi-
mum entropy while matching certain properties of the pro-
jected demonstrations. These properties are characterized by
task-dependent features,

∑
t f(ξt), which, for computational

reasons, are based solely on the states of the graph (i.e., joint
configurations). Equivalently, this distribution results from

Figure 2: Gaussian ellipses around waypoints on a straight line
path (Blue) between two points in 2D. Demonstrated trajectory
shown in green. Larger ellipses (darker) near center have larger
covariances.

Figure 3: Sampled graph with 1000 nodes and 5NN edges (blue)
with the projection (black) of demonstrated trajectory (green).

maximizing the likelihood of the demonstrated trajectory pro-
jections under the MaxEnt distribution (Eqn. 2):

θ?= arg max
θ

L(ξdemo1:T) = arg max
θ

e−θ
T ∑T

t=1 f(ξdemot)∑
ξ′1:T

e−θ
T
∑T
t=1 f(ξ′t)

.

(4)

We estimate parameters as linear weights (θ) for the feature
vectors (f). The resulting potentials (θT f) can be interpreted
as analogs to state “costs.” As (2) is concave in terms of θ, the
optimal weights (θ?) are found using standard gradient based
optimizers, making use of efficient softmax inference (Eqn.
1) via an optimized value iteration algorithm for gradient and
likelihood computation.

An important property of the MaxEnt IOC approach is its
unbiasedness. Beyond the learned cost function, its predic-
tions are as agnostic as possible. Thus, if additional trajectory
properties are important, but not captured by the coarse ap-
proximation of the trajectory space, samples from the MaxEnt
IOC distribution will often provide coverage—though many
samples may need to be taken depending on the complexity
of the additional properties.
Sampling paths from discrete graph: We sample paths from
our discrete graph in two ways. First, motivated by MaxEnt
IOC’s unbiasedness to preferences over unknown features,
we probabilistically sample goal-directed paths directly from
our learned path distribution. Alternatively, we deterministi-

cally find the most probable path, which minimizes the cost
of traversal through the graph.

3.2 Local Trajectory Optimization
The paths sampled from the discrete graph based on the
learned cost typically avoid obstacles and match the desirable
properties of the human demonstrations. However, due to
the sparsity of sampling in the high-dimensional space, these
paths are not sufficiently smooth to be executed by the manip-
ulator, and they might not completely match the properties of
the demonstrations. For instance, when learning to hold a
cup upright, the discrete graph might not contain nodes that
correspond exactly to upright poses of the end effector. For-
tunately, we can resort to a Local Trajectory Optimizer (LTO)
to generate smooth, continuous trajectories from the discrete
paths. Our approach locally optimizes around a sampled path
using the learned cost function while enforcing smoothness.

The trajectory optimizer is inspired by the CHOMP
[Zucker et al., 2013] motion planner. We represent a trajec-
tory ξ ∈ Ξ as a set of n waypoints in the robot’s configu-
ration space (ξ = [ξ1, ξ2, ...ξn]; ξi ∈ Q) and define a cost
function U : U(ξ) ∈ R that assigns a cost to each trajectory
ξ: U(ξ) = ηUsmooth(ξ) + Ulearned(ξ). The smoothness cost
(Usmooth) measures the shape of the trajectory and is defined
as an integral over squared tangent norms (we use squared ac-
celeration). The second term in the cost function (Ulearned)
corresponds to the cost function learned via discrete IOC:
Ulearned =

∑n
i=1 θ

?T f(ξi). By minimizing the combined
cost U , LTO tries to find a smooth trajectory that has low cost
under the learned cost function, i.e., one that captures the user
preferences as highlighted by the demonstrations. LTO opti-
mizes the cost via gradient descent. At each iteration of the
optimization, it computes a first-order Taylor series expansion
of the cost around the current trajectory (ξt):

U(ξ) = U(ξt) +∇U(ξt)
T

(ξ − ξt) + λ||ξ − ξt||A (5)

where the regularization is with respect to an admissible
norm. In our work, the norm A measures squared acceler-
ations, constraining consequent iterates to have similar ac-
celeration profiles. The update rule is given by: ξt+1 =
ξt − 1

λA
−1∇U(ξt). This update requires the gradient of the

combined cost function U . The gradient of the smoothness
cost ∇Usmooth can be computed analytically, as shown for
CHOMP. However, while CHOMP has been developed for
analytically differentiable cost functions, our learned cost
functions Ulearned are significantly more complex and typ-
ically non-differentiable, depending on the features. We thus
have to resort to finite differencing to compute the gradient
∇Ulearned of the learned cost. To ensure that the optimization
is well conditioned, we reduce the gradient descent step-size
(1λ) and set a high weight (η) for the smoothness cost. The
final trajectory ξ? at the end of the optimization is smooth,
continuous, and has low cost under the learned cost function.

In summary, our approach generates discrete graphs to
learn complex cost functions from multiple demonstrations
using IOC. During testing, the approach first generates a dis-
crete graph connecting a pair of given start and goal points in
the high-dimensional joint space of the manipulator. It then

(a) Demonstration (b) Right-Approach (c) Left-Approach (d) Laptop

Figure 4: Experiments with the PR2 robot. (a) Demonstrations for training and testing were generated by moving the robot’s arm given a
task description. (b,c) Typical pose on a trajectory when tasked to approach the target object from right or left side, respectively. (d) Example
when holding the cup upright while not moving it above the laptop.

computes the feature values and resulting cost for all points
on the graph, followed by running Dijkstra’s algorithm to de-
termine the lowest cost path or to sample multiple paths ac-
cording to the corresponding path distribution. These paths
are then used to initialize the local trajectory optimizer, which
generates smooth paths while also considering the learned
cost function. From the possibly multiple paths, the robot
executes the one that has the lowest overall cost.

4 Evaluation
4.1 Setup
We evaluate our approach on three manipulation tasks using
the 7-DoF manipulators Barrett WAM and PR2 (Fig. 1).
L/R Approach: Approach an object from either the right (Fig.
4b) or left (Fig. 4c).
Move-can: Carry a can to a goal while holding it upright.
Laptop : Carry a cup of water upright, while not moving it
over electronic objects (Fig. 4d).
For each task, we collected demonstrations from multiple
users via kinesthetic teaching (Fig. 4a). We record the
joint angles and the various object positions (segmented point
clouds and bounding boxes) for each of the demonstrations.
On average, we collected 50 demonstrations for each task
from four different users.
Features: We learn using the following state-dependent, bi-
nary feature functions (≈100 total),f(ξi):
Collision: Most of the features are related to distances from
objects in the environment. We segment the point cloud from
a Kinect mounted on the robot to generate clusters. For
fast distance computation, we represent the robot as a col-
lection of spheres, approximate the object clusters by bound-
ing boxes and compute object-centric signed distance func-
tions [Curless, 1997] to represent obstacles. We compute
the minimum distance to any obstacle, the minimum distance
from the end-effector to task-dependent target objects, and
the average distances from obstacles for the end-effector and
other parts of the robot. We use histograms of all these dis-
tances as our features. We also measure self-collision dis-
tances and use histograms of these as features.
Elbow clearance: We use histograms of elbow clearance
from the table-top to capture elbow-up/down preferences.
End-Effector orientation: We use histograms of the devia-
tion of the end-effector’s normal vector from the vertical, and

histograms of the last two joint angle differences to capture
constraints based on the end-effector orientation.
Approach direction: To capture the target object approach di-
rection, we compute histograms of the difference between the
end effector’s position and the center of the target object.
Laptop feature: We detect any electronic objects (laptop, re-
mote) in the scene by matching the object clusters against
pre-computed models. We add a feature indicating the end-
effector is above electronic objects and one for the end-
effector being above any other object in the scene.
Constant feature: Finally, we add a constant feature to match
the path length of the demonstrations.
Algorithms: We evaluate the properties and advantages of
our algorithm using comparisons on held out test data:
Human: Evaluation metrics applied to the human demonstra-
tions for the held out scenes.
CHOMP+Obstacle avoidance: Path generated by running
the CHOMP motion planner. This only serves as a baseline
that measures the difficulty of the learning problem.
Least Cost graph path: Least cost graph path using the
learned cost function on the test scene. We typically inter-
polate it by 10x before testing.
LTO+Random paths: Our Local Trajectory Optimizer (LTO)
initialized with a straight line and smooth paths randomly
generated from a gaussian around the straight line path.
LTO+Least Cost graph path: LTO initialized with the least
cost discrete path from the graph.
LTO+Sampled graph paths: LTO initialized with multiple
discrete graph paths sampled using the learned cost function.
Additionally, we tested a locally-optimal IOC algorithm that
learns the cost function by matching the features of the
locally-optimal continuous trajectory (computed directly us-
ing LTO without any graph) with that of the demonstrations,
similar to an MMP-like setting [Ratliff et al., 2009].

4.2 Parameters
We split the demonstrations into a training set (70%) for
learning the cost function and a held out test set (30%) to
measure performance. We discretize the straight line path
into m = 21 points and generate a graph with M = 210000
nodes and k = 15. We initialize the weights (θ) randomly and
iterate until convergence. We use two sets of parameters for
the Local Trajectory Optimizer. For tasks with constrained
motions, we set η = 10 and step-size 1

λ = 0.01 and for larger

Left/Right Approach Move-Can Laptop

In Coll. (%) Wrong side (%) In Coll. (%) Norm. Dev (deg) In Coll. (%) Norm. Dev (deg) Above Laptop (%)

Human 0.5 33 ± 2.1 1.9 9.4 ± 0.6 2.7 7.4 ± 0.5 2.1 ± 0.9

CHOMP + Obstacle avoidance 0.4 57 ± 2.9 0.1 13.0 ± 0.8 12.9 18.2 ± 1.7 17.3 ± 3.3

Least Cost graph path 5.1 45 ± 2.9 8.9 10.8 ± 0.6 12.8 9.9 ± 0.5 11.1 ± 2.3

LTO + Random paths 1.4 27 ± 1.9 4.7 8.9 ± 0.2 4.5 5.5 ± 0.4 3.1 ± 1.0

LTO + Least Cost graph path 2.4 29 ± 2.2 1.9 8.8 ± 0.2 6.1 5.4 ± 0.4 4.3 ± 1.5

LTO + Sampled graph paths 1.2 25 ± 1.6 0.5 8.6 ± 0.2 4.0 5.3 ± 0.4 1.2 ± 0.5

Table 1: Learning performance on the withheld test set. Error bars indicate standard error, and best results are highlighted in bold font.
Metrics are: a) In Coll: Percentage of trajectory points in collision, b) Wrong side: Percentage of points where the robot’s end-effector is
to the wrong side of the target object, c) Norm Dev: Average deviation of the end-effector’s normal from the vertical and d) Above Laptop:
Percentage of points where end-effector passes above electronic objects.

motions, we set η = 4 and 1
λ = 0.025 for aggressive opti-

mization. We run LTO for 100 iterations. For initialization,
we use the least cost discrete path and 25 discrete path sam-
ples (interpolated 10x) from the graph, based on the learned
cost. For CHOMP, we use a fixed step-size (0.005), 0.1m
collision threshold, unit smoothness and obstacle weights and
200 iterations. Both CHOMP and LTO+Random are initial-
ized with the same random Gaussian samples.

4.3 Results
Table 1 summarizes the results on the three tasks.
L/R Approach: The first column for this task presents the
overall percentage of trajectory points where the robot is in
collision with objects or itself. As can be seen, all techniques
achieve very low percentages. Not surprisingly, CHOMP
has the lowest collision percentage since its only goal is to
smoothly get to the target while avoiding obstacles. Our ap-
proach, on the other hand, is not given explicit obstacle avoid-
ance constraints and has to learn to avoid obstacles from the
demonstrations. The least cost graph path has highest colli-
sion percentage since we simply interpolate linearly between
points on the graph, which often produces additional points
in collision. The second column measures the percentage of
trajectory points that are on the wrong side (left or right) of
the target object. Here, we only investigate trajectories that
start on the wrong side, that is, if the end-effector has to ap-
proach the object from the right side, it is started on the left
side of the target. Thus, none of the approaches can achieve
close to zero percentage. As can be seen, all LTO versions of
our approach achieve excellent results, even outperforming
the human demonstrations. Furthermore, the high percentage
of CHOMP illustrates that the task does require reasoning be-
yond obstacle avoidance.
Move-Can: On this task, the trend in collision avoidance per-
formance is similar to the one on the previous task. The end-
effector’s deviation from the vertical equally confirms our
finding that simply using points on the discrete graph outper-
forms CHOMP on the task specific measure, but can be sig-
nificantly improved via local trajectory optimization. Again,
all locally optimized trajectories using our learned cost func-
tion are able to outperform the human demonstration, holding
the cup more consistently upright than the person.
Laptop: In the most complex task, which requires holding a

cup upright and not moving it above electronic devices, the
human and the LTO approaches still achieve excellent obsta-
cle avoidance, while the discrete graph and CHOMP gener-
ate more collisions due to the complexity of the scenes. As
in the Move-Can task, our learned trajectories outperform the
human in the ability to hold the cup upright during motion.
Furthermore, the large normal deviation of CHOMP indicates
that the good performance of our approach is not only due
to the setup of the task, but due to specific aspects of the
cost function learned from demonstrations. The third column
of the Laptop experiment shows the percentage of trajectory
points above the laptop. Even here, the best version of our ap-
proach slightly outperforms the human and significantly im-
proves on the discrete graph paths. Again, the large values
for CHOMP show that the laptop had to be explicitly avoided
through a learned cost function. A video showing our results
with the PR2 can be found at [Byravan, 2015].
Locally-optimal IOC: To investigate whether local tech-
niques are able to learn cost functions in our setting, we ran
IOC directly on two versions of LTO, initializing LTO with a
single straight line path and with multiple randomly sampled
paths. For the latter, we averaged the feature expectations
of the LTO outputs to compute the gradient. Both these al-
gorithms failed to converge, resulting in poor cost function
estimates. Another version of the algorithm that tried to re-
fine the cost function learned from our graph-based method
also failed to converge. This confirms our belief that local
trajectory optimization techniques are not capable of learning
generalizable cost functions in our problem setting, which in-
volves complex cost functions and requires reasoning over
multiple trajectories among obstacles. We thus expect similar
issues with applying other locally-optimal methods such as
[Levine and Koltun, 2012; Jain et al., 2013].

4.4 Discussion
The key findings from our experiments are: (1) Our approach
is able to learn complex cost functions from demonstrations,
learning to trade off multiple objectives such as not collid-
ing with objects while holding a cup upright and not moving
above a laptop. (2) The weaker performance of CHOMP on
the task specific metrics indicates that our test tasks do indeed
require cost functions beyond obstacle avoidance. (3) While
paths sampled from the discrete graph are too coarse to pro-

vide very good test performance, the graph representation is
sufficient for learning cost functions that provide excellent
results when used in combination with our local trajectory
optimizer (LTO). (4) LTO achieves the overall best results
when initialized with multiple paths sampled from the dis-
crete graph according to the learned cost, often outperforming
the human demonstrator on task specific measures. (5) LTO
achieves almost equally good results when initialized with
random paths, highlighting the strength and generalizability
of our learned cost function, which provides good basins of
attraction for trajectory optimization. This is an advantage, as
we can cheaply generate random paths at test time, enabling
near real-time operation. (6) Locally-optimal IOC using LTO
fails to converge, indicating that purely local approaches are
limited in their capacity to learn expressive cost functions and
integration of more global information is necessary.

5 Conclusion
We presented an approach for Inverse Optimal Control that
is able to learn cost functions for manipulation tasks. Our
approach performs IOC in a discrete, graph-based state space
and further refines trajectories using local trajectory optimiza-
tion on the learned cost function. The discrete graph repre-
sentation has several advantages, including the ability to rea-
son about arbitrary distributions over paths, flexibility in the
feature representation, and better theoretical learning guaran-
tees. We showed results from testing the approach on three
manipulation tasks with two 7DoF robots. By comparing the
approach with human demonstrations on held out data, we
showed that the algorithm is able to learn meaningful behav-
iors that match or exceed those from the demonstrations.

Despite these very promising results, there are several ar-
eas that warrant further research. One limitation of our cur-
rent approach is due to the sampling strategy, which requires
re-generation of the graph for every task and might not scale
to even higher dimensional planning problems. Learning bet-
ter sampling strategies from training experiences might en-
able the use of smaller graphs, or graphs that don’t have to be
re-generated for each task. A hierarchical sampling approach
might further increase the efficiency of the graph represen-
tation. We already started investigating the use of optimized
GPU implementations for efficient feature computation, and
we believe that it will be possible to scale the approach to
dynamic settings, where the manipulator has to constantly re-
plan its path among moving obstacles and people. Such an
extension would enable our learning technique to be deployed
in scenarios involving real-time interactions with people.

6 Acknowledgments
This work was funded in part by the National Science Foun-
dation under contract NSR-NRI 1227234 and Grant No:
1227495, Purposeful Prediction: Co-robot Interaction via
Understanding Intent and Goals.

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y Ng. Appren-

ticeship learning via inverse reinforcement learning. In ICML,
2004.

[Aghasadeghi and Bretl, 2011] Navid Aghasadeghi and Timothy
Bretl. Maximum entropy inverse reinforcement learning in con-
tinuous state spaces with path integrals. In IROS, 2011.

[Byravan, 2015] Arunkumar Byravan. Project website: Graph-
based IOC. http://rse-lab.cs.washington.edu/
projects/graph-based-ioc, 2015.

[Curless, 1997] Brian Curless. New Methods for Surface Recon-
struction from Range Images. PhD thesis, Stanford University,
1997.

[Dragan et al., 2011] Anca Dragan, Geoffrey J Gordon, and Sid-
dhartha Srinivasa. Learning from experience in manipulation
planning: Setting the right goals. In ISRR, 2011.

[Grünwald and Dawid, 2004] Peter D. Grünwald and A. Phillip
Dawid. Game theory, maximum entropy, minimum discrepancy,
and robust Bayesian decision theory. Annals of Statistics, 2004.

[Henry et al., 2010] Peter Henry, Christian Vollmer, Brian Ferris,
and Dieter Fox. Learning to navigate through crowded environ-
ments. In ICRA, 2010.

[Jain et al., 2013] Ashesh Jain, Brian Wojcik, Thorsten Joachims,
and Ashutosh Saxena. Learning trajectory preferences for ma-
nipulators via iterative improvement. In NIPS, 2013.

[Kalakrishnan et al., 2011] Mrinal Kalakrishnan, Sachin Chitta,
Evangelos Theodorou, Peter Pastor, and Stefan Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In ICRA,
2011.

[Kalakrishnan et al., 2013] Mrinal Kalakrishnan, Peter Pastor, Lu-
dovic Righetti, and Stefan Schaal. Learning objective functions
for manipulation. In ICRA, 2013.

[Levine and Koltun, 2012] Sergey Levine and Vladlen Koltun.
Continuous inverse optimal control with locally optimal exam-
ples. In ICML, 2012.

[Ng and Russell, 2000] Andrew Y Ng and Stuart J Russell. Algo-
rithms for inverse reinforcement learning. In ICML, 2000.

[Ratliff et al., 2009] Nathan D Ratliff, David Silver, and J Andrew
Bagnell. Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 2009.

[Schulman et al., 2013] John Schulman, Alex Lee, Ibrahim Awwal,
Henry Bradlow, and Pieter Abbeel. Finding locally optimal,
collision-free trajectories with sequential convex optimization.
RSS, 2013.

[Topsøe, 1979] Flemming Topsøe. Information theoretical opti-
mization techniques. Kybernetika, 1979.

[Ziebart et al., 2008] Brian D Ziebart, Andrew L Maas, J Andrew
Bagnell, and Anind K Dey. Maximum entropy inverse reinforce-
ment learning. In AAAI, 2008.

[Ziebart et al., 2012] Brian Ziebart, Anind Dey, and J Andrew Bag-
nell. Probabilistic pointing target prediction via inverse optimal
control. In IUI, 2012.

[Ziebart, 2010] Brian D Ziebart. Modeling purposeful adaptive be-
havior with the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

[Zucker et al., 2013] Matt Zucker, Nathan Ratliff, Anca D Dragan,
Mihail Pivtoraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, and Siddhartha S Srinivasa. Chomp: Covari-
ant hamiltonian optimization for motion planning. IJRR, 2013.

