
Building Hierarchies of Concepts via Crowdsourcing
Yuyin Sun

University of Washington
sunyuyin@cs.washington.edu

Adish Singla
ETH Zurich

adish.singla@inf.ethz.ch

Dieter Fox
University of Washington

fox@cs.washington.edu

Andreas Krause
ETH Zurich

krausea@ethz.ch

Abstract
Hierarchies of concepts are useful in many appli-
cations from navigation to organization of objects.
Usually, a hierarchy is created in a centralized man-
ner by employing a group of domain experts, a
time-consuming and expensive process. The ex-
perts often design one single hierarchy to best ex-
plain the semantic relationships among the con-
cepts, and ignore the natural uncertainty that may
exist in the process. In this paper, we propose a
crowdsourcing system to build a hierarchy and fur-
thermore capture the underlying uncertainty. Our
system maintains a distribution over possible hi-
erarchies and actively selects questions to ask us-
ing an information gain criterion. We evaluate our
methodology on simulated data and on a set of real
world application domains. Experimental results
show that our system is robust to noise, efficient
in picking questions, cost-effective, and builds high
quality hierarchies.

1 Introduction
Hierarchies of concepts and objects are useful across many
real-world applications and scientific domains. Online shop-
ping portals such as [Amazon, 2015] use product catalogs to
organize their products into a hierarchy, aiming to simplify
the task of search and navigation for their customers. Sharing
the goal of organizing objects and information, hierarchies
are prevalent in many other domains such as in libraries to or-
ganize books [Dewey, 1876] or web portals to organize doc-
uments by topics. Concept hierarchies also serve as a natural
semantic prior over concepts, helpful in a wide range of Arti-
ficial Intelligence (AI) domains, such as natural language pro-
cessing [Bloehdorn et al., 2005] and computer vision [Deng
et al., 2009; Lai et al., 2011b].

Task-dependent hierarchies, as in product catalogs, are ex-
pensive and time-consuming to construct. They are usually
built in a centralized manner by a group of domain experts.
This process makes it infeasible to create separate hierar-
chies for each specific domain. On the other hand, in the
absence of such specific hierarchies, many applications use
a general-purpose pre-built hierarchy (for example, Word-
Net [Fellbaum, 1998]) that may be too abstract or inappro-

priate for specific needs. An important question in this con-
text is thus How can we cost-efficiently build task-dependent
hierarchies without requiring domain experts?

Attempts to build hierarchies using fully automatic meth-
ods [Blei et al., 2003] have failed to capture the relationships
between concepts as perceived by people. The resulting hier-
archies perform poorly when deployed in real-world systems.
With the recent popularity of crowdsourcing platforms, such
as Amazon Mechanical Turk (AMT), efforts have been made
in employing non-expert workers (the crowd) at scale and
low cost, to build hierarchies guided by human knowledge.
Chilton et al. [2013] propose the CASCADE workflow that
converts the process of building a hierarchy into the task of
multi-label annotation for objects. However, acquiring multi-
label annotations for objects is expensive and might be unin-
formative for creating hierarchies. This leads to the second
question How can we actively select simple and useful ques-
tions that are most informative to the system while minimizing
the cost?

Most existing methods (including CASCADE) as well as
methods employing domain experts usually generate only a
single hierarchy aiming to best explain the data or the seman-
tic relationships among the concepts. This ignores the natural
ambiguity and uncertainty that may exist in the semantic re-
lationships, leading to the third question How can we develop
probabilistic methods that can account for this uncertainty in
the process of building the hierarchy?

Our Contributions. In this paper, we propose a novel
crowdsourcing system for inferring hierarchies of concepts,
tackling the questions posed above. We develop a principled
algorithm powered by the crowd, which is robust to noise,
efficient in picking questions, cost-effective, and builds high
quality hierarchies. We evaluate our proposed approach on
synthetic problems, as well as on real-world domains with
data collected from AMT workers, demonstrating the broad
applicability of our system.

The remainder of this paper is structured as follows: Af-
ter discussing related work in Section 2, we will present our
method in Section 3, continue with experiments in Section 4,
and conclude in Section 5.

2 Related Work
Concept hierarchies have been helpful in solving natural lan-
guage processing tasks, for example, disambiguating word

sense in text retrieval [Voorhees, 1993], information ex-
traction [Bloehdorn et al., 2005], and machine transla-
tion [Knight, 1993]. Hierarchies between object classes have
also been deployed in the computer vision community to im-
prove object categorization with thousands of classes and lim-
ited training images [Rohrbach et al., 2011], scalable image
classification [Deng et al., 2009; 2013; Lai et al., 2011b],
and image annotation efficiency [Deng et al., 2014]. In these
methods, it is usually assumed that the hierarchies have al-
ready been built, and the quality of the hierarchies can influ-
ence the performance of these methods significantly.

The traditional way of hierarchy creation is to hire a small
group of experts to build the hierarchy in a centralized man-
ner [Fellbaum, 1998], which is expensive and time consum-
ing. Therefore, people develop automatic or semi-automatic
methods to build hierarchies. For instance, vision based
methods, such as Sivic et al. [2008] and Bart et al. [2008],
build an object hierarchy using visual feature similarities.
However, visually similar concepts are not necessarily sim-
ilar in semantics.

Another type of methods for hierarchy creation is related
to ontology learning from text and the web [Buitelaar et al.,
2005; Wong et al., 2012; Carlson et al., 2010]. The goal
of ontology learning is to extract terms and relationships be-
tween these concepts. However, the focus of these techniques
is on coverage, rather than accuracy, and the hierarchies that
can be extracted from these approaches are typically not very
accurate. Since the taxonomy is the most important relation-
ship among ontologies, many works have been focusing on
building taxonomy hierarchies. For example, co-occurrence
based methods [Budanitsky, 1999] use word co-occurrence to
define the similarity between words, and build hierarchies us-
ing clustering. These methods usually do not perform well
because they lack in common sense. On the other hand, tem-
plate based methods [Hippisley et al., 2005] deploy domain
knowledge and can achieve higher accuracy. Yet, it is hard
to adapt template based methods to new domains. Knowing
the fact that humans are good at common sense and domain
adaptation, involvement of humans in hierarchy learning is
highly necessary and desirable.

The popularity of crowdsourcing platforms has made
cheap human resources available for building hierarchies. For
example, CASCADE [Chilton et al., 2013] uses multi-label
annotations for items, and deploys label co-occurrence to
generate a hierarchy. DELUGE [Bragg et al., 2013] improves
the multi-label annotation step in CASCADE using decision
theory and machine learning to reduce the labeling effort.
However, for both pipelines, co-occurrence of labels does not
necessarily imply a connection in the hierarchy. Furthermore,
both methods can build only a single hierarchy, not consider-
ing the uncertainty naturally existing in hierarchies.

Orthogonal to building hierarchies, Mortensen et al.
[2006] use crowdsourcing to verify an existing ontology.
Their empirical results demonstrate that non-expert workers
are able to verify structures within a hierarchy built by do-
main experts. Inspired by their insights, it is possible to gather
information of the hierarchy structure by asking simple true-
or-false questions about the “ascendant-descendant” relation-
ship between two concepts. In this work, we propose a novel

method of hierarchy creation based on asking such questions,
and fusing the information together.

3 Approach
The goal of our approach is to learn a hierarchy over a do-
main of concepts, using input from non-expert crowdsourc-
ing workers. Estimating hierarchies through crowdsourcing
is challenging, since answers given by workers are inher-
ently noisy, and, even if every worker gives her/his best pos-
sible answer, concept relationships might be ambiguous and
there might not exist a single hierarchy that consistently ex-
plains all the workers’ answers. We deal with these problems
by using a Bayesian framework to estimate probability dis-
tributions over hierarchies, rather than determining a single,
best guess. This allows our approach to represent uncertainty
due to noisy, missing, and possibly inconsistent information.
Our system interacts with crowdsourcing workers iteratively
while estimating the distribution over hierarchies. At each it-
eration, the system picks a question related to the relationship
between two concepts in the hierarchy, presents it to multiple
workers on a crowdsourcing platform, and then uses the an-
swers to update the distribution. The system keeps asking
questions until a stopping criterion is reached. In this work
we set a threshold for the number of asked questions.

3.1 Modelling Distributions over Hierarchies
The key challenge for estimating distributions over hierar-
chies is the huge number of possible hierarchies, or trees,
making it intractable to directly represent the distribution as
a multinomial. Consider the number of possible hierarchies
of N concepts is (N + 1)N−1 (we add a fixed root node to
the concept set), which results in 1,296 trees for 5 concepts,
but already 2.3579e+ 09 trees for only 10 concepts. We will
now describe how to represent and estimate distributions over
such a large number of trees.

Assume that there are N concept nodes indexed from 1
to N , a fixed root node indexed by 0, and a set of possi-
ble directed edges E = {e0,1, . . . , ei,j , . . . , eN,N} indexed
by (i, j), where i 6= j. A hierarchy T ⊂ E is a set of N
edges, which form a valid tree rooted at the 0-th node (we use
the terms hierarchy and tree interchangeably). All valid hier-
archies form the sample space T = {T1, . . . , TM}. The prior
distribution π0 over T is set to be the uniform distribution.

Due to the intractable number of trees, we use a compact
model to represent distributions over trees:

P (T |W) =

∏
ei,j∈T Wi,j

Z(W)
, (1)

where Wi,j is a non-negative weight for the edge ei,j , and
Z(W) =

∑
T ′∈T

∏
ei,j∈T ′Wi,j is the partition function.

Given W , inference is very efficient. For example, Z(W)
can be analytically computed, utilizing the Matrix Theo-
rem [Tutte, 1984]. This way, we can also analytically com-
pute marginal probabilities over the edges, i.e., P (ei,j). The
tree with the highest probability can be found via the famous
algorithm of Chu and Liu [1965]. A uniform prior is incorpo-
rated by initially setting allWi,j to be the same positive value.

Our system maintains a posterior distribution over hierar-
chies. Given a sequence of questions regarding the structure
of the target hierarchy q1, . . . , q(t), . . . , along with the an-
swers a1, . . . , a(t), . . . the posterior P (T |W (t)) at time t is
obtained by Bayesian inference

P (T |W (t)) ∝ P (T |W (t−1))f(a(t)|T). (2)

Hereby, f(a(t)|T) is the likelihood of obtaining answer a(t)

given a tree T , specified below to simplify the notation.
So far, we have not made any assumptions about the form

of questions asked. Since our system works with non-expert
workers, the questions should be as simple as possible. As
discussed above, we resort to questions that only specify the
relationship between pairs of concepts. We will discuss dif-
ferent options in the following sections.

3.2 Edge Questions
Since a hierarchy is specified by a set of edges, one way
to ask questions could be to ask workers about immediate
parent-child relationships between concepts, which we call
edge questions. Answers to edge questions are highly infor-
mative, since they provide direct information about whether
there is an edge between two concepts in the target hierarchy.

Let ei,j denote the question of whether there is an edge
between node i and j, and ai,j ∈ {0, 1} denote the answer
for ei,j . ai,j = 1 indicates a worker believes there is an edge
from node i to j, otherwise there is no edge. The likelihood
function for edge questions is defined as follows:

f(ai,j |T) =

{
(1− γ)ai,jγ1−ai,j , if ei,j ∈ T
γai,j (1− γ)1−ai,j , otherwise

, (3)

where γ is the noise rate for wrong answers. Substituting (3)
into (2) leads to an analytic form to update edge weights:

W
(t)
i′,j′ =

{
W

(t−1)
i′,j′ (1−γ

γ)(2ai,j−1), if i′ = i ∧ j′ = j

W
(t−1)
i′,j′ , otherwise

.

(4)

An edge question will only affect weights for that edge.
Unfortunately, correctly answering such questions is difficult
and requires global knowledge of the complete set (and gran-
ularity) of concepts. For instance, while the statement “Is or-
ange a direct child of fruit in a food item hierarchy?” might
be true for some concept sets, it is not correct in a hierarchy
that also contains the more specific concept citrus fruit, since
it separates orange from fruit (see also Fig. 3).

3.3 Path Questions
To avoid the shortcomings of edge questions, our system re-
sorts to asking less informative questions relating to general,
ascendant-descendant relationships between concepts. These
path questions only provide information about the existence
of directed paths between two concepts and are thus, cru-
cially, independent of the set of available concepts. For in-
stance, the path question “Is orange a type of fruit?” is true
independent of the existence of the concept citrus fruit. While

such path questions are easier to answer, they are more chal-
lenging to use when estimating the distribution over hierar-
chies.

To see, let pi,j denote a path question and ai,j ∈ {0, 1} be
the answer for pi,j . ai,j = 1 indicates a worker believes there
is a path from node i to j. The likelihood function is

f(ai,j |T) =

{
(1− γ)ai,jγ1−ai,j , if pi,j ∈ T
γai,j (1− γ)1−ai,j , otherwise

, (5)

where pi,j ∈ T simply checks whether the path pi,j is con-
tained in the tree T .

Unfortunately, the likelihood function for path questions is
not conjugate of the prior. Therefore, there is no analytic form
to update weights. Instead, we update the weight matrix by
performing approximate inference. To be more specific, we
find a W ∗ by minimizing the KL-divergence [Kullback and
Leibler, 1951] between P (T |W ∗) and the true posterior:

W ∗ = arg min
W

KL(P (T |W (t))‖P (T |W)) (6)

It can be shown that minimizing the KL-divergence can be
achieved by minimizing the following loss function

L(W) = −
∑
T∈T

P (T |W (t)) logP (T |W). (7)

Directly computing (7) involves enumerating all trees in T ,
and is therefore intractable. Instead, we use a Monte Carlo
method to estimate (7), and minimize the estimated loss to
update W . To be more specific, we will generate i.i.d. sam-
ples T̃ = (T1, . . . , Tm) from P (T |W (t)), which defines an
empirical distribution π̃(t) of the samples,

Lπ̃(W) = −
∑
T∈T̃

π̃(T) logP (T |W), (8)

the negative log-likelihood of P (T |W) under the samples.

Sampling Hierarchies from the Posterior
If a weight matrix W is given, sampling hierarchies from the
distribution defined in (1) can be achieved efficiently, for ex-
ample, using a loop-avoiding random walk on a graph with
W as the adjacency matrix [Wilson, 1996]. Therefore, we
can sample hierarchies from the prior P (T |W (t−1)). Notic-
ing that the posterior defined in (2) is a weighted version of
P (T |W (t−1)), we can generate samples for the empirical dis-
tribution π̃ via importance sampling, that is, by reweighing
the samples from P (T |W (t−1)) with the likelihood function
f(a(t)|T) as importance weights.

Regularization
Since we only get samples from P (T |W (t)), the estimate
of (8) can be inaccurate. To avoid overfitting to the sample,
we add an `1-regularization term to the objective function.
We also optimize Λ = logW rather than W so as to simplify
notation. The final objective is as follows:

Lβ
π̃ (Λ(t))=−

∑
T∈T

π̃(t)(T) logP (T |Λ(t)) +
∑
i,j

β|λi,j |. (9)

Algorithm 1 Weight Updating Algorithm

Input: W (t−1), an answer a(t), thr for stopping criterion
Non-negative regularization parameters β
Output: W (t) that minimizes (9)
Generate samples T ′1, . . . , T

′
m from P (T |W (t−1))

Use importance sampling to get empirical distribution π̃
Initialize Λ0 = 0, l = 1.
repeat

For each (i, j), set δi,j = arg min (19);
Update Λ(l) = Λ(l−1) + ∆;
l = l + 1;

until |∆| ≤ thr
return W (t) = exp(Λ(l))

Optimization Algorithm
We iteratively adjust Λ to minimize (9). At each iteration, the
algorithm adds ∆ to the original Λ, resulting in Λ′ = Λ + ∆.
We optimize ∆ to minimize an upper bound on the change in
Lβπ̃ , given by

Lβ
π̃ (Λ′)−Lβ

π̃ (Λ)≤
∑
i,j

[−δi,jP̃ (ei,j) +
1

N
P (ei,j |Λ)(eNδi,j − 1)

+ β(|λ′i,j | − |λi,j |)] + C, (10)

where P̃ (ei,j) =
∑
T∈T :ei,j∈T π̃(T) is the empirical

marginal probability of ei,j , and C is a constant w.r.t. δi,j .
The derivation is presented in [Sun et al., 2015].

Minimizing the upper bound in (19) can be done by
analysing the sign of λi,j + δi,j . By some calculus, it can
be seen that the δi,j minimizing (19) must occur when δi,j =
−λi,j , or when δi,j is either

1

N
log

(P (ei,j)− β)

P (ei,j |Λ)
, if λi,j + δi,j ≥ 0, or

1

N
log

(P (ei,j) + β)

P (ei,j |Λ)
, if λi,j + δi,j ≤ 0.

This leaves three choices for each δi,j – we try out each and
pick the one leading to the best bound. This can be done
independently per δi,j since the objective in (19) is separable.
The full algorithm to optimize Λ based on a query answer is
given in Algorithm 1.

Theoretical Guarantee
Even though we only minimize a sequence of upper bounds,
we prove that (see [Sun et al., 2015]) Algorithm 1 in fact
convergences to the true maximum likelihood solution:

Theorem 1. Assume β is strictly positive. Then Algorithm 1
produces a sequences Λ(1),Λ(2), . . . such that

lim
`→∞

Lβπ̃(Λ(`)) = min
Λ
Lβπ̃(Λ).

Let Λ̂ be the solution of Algorithm 1. We next show that
if we generate enough samples m, the loss of the estimate
Λ̂ under the true posterior will not be much higher than that
obtained by any distribution of the form (1).

Theorem 2. Suppose m samples π̃ are obtained from any
tree distribution π. Let Λ̂ minimize the regularized log loss
Lβπ̃(Λ) with β =

√
log(N/δ)/(m). Then for every Λ it holds

with probability at least 1− δ that

Lπ(Λ̂) ≤ Lπ(Λ) + 2‖Λ‖1
√

log(N/δ)/m

Theorem 4 shows that the difference in performance be-
tween the density estimate computed by minimizing w.r.t. Lβπ̃
and w.r.t. the best approximation to the true posterior be-
comes small rapidly as the number of samples m increases.

3.4 Active Query Selection
At each interaction with workers, the system needs to pick a
question to ask. The naive approach would be to pick ques-
tions randomly. However random questions are usually not
very informative since they mostly get No answers, while Yes
answers are more informative about the structure. Instead, we
propose to select the question p∗ that maximizes information
gain over the current distribution π(t), i.e.

p∗ = arg max
pi,j

min(H(π̃
(t+1)
pi,j ,1

), H(π̃
(t+1)
pi,j ,0

)) (11)

where H(·) is the entropy and π̃(t+1)
pi,j ,ai,j is the posterior dis-

tribution over trees after knowing the answer for pi,j as ai,j .
Note that this criterion chooses the question with the highest
information gain using the less informative answer, which we
found to be more robust than using the expectation over an-
swers. Since we cannot compute the entropy exactly due to
the size of the sampling space, we reuse the trees from the
empirical distribution π̃ to estimate information gain.

3.5 Adding New Nodes to the Hierarchy
New concepts will sometimes be introduced to a domain. In
this case, how should the new concept be inserted into an ex-
isting hierarchy? A wasteful way would be to re-build the
whole hierarchy distribution from scratch using the pipeline
described in the previous sections. Alternatively, one might
consider adding a row and column to the current weight ma-
trix and initializing all new entries with the same value. Un-
fortunately, uniform weights do not result in uniform edge
probabilities and do thus not correctly represent the unin-
formed prior over the new node’s location.

We instead propose a method to estimate the weight matrix
W that correctly reflects uncertainty over the current tree and
the location of the new node. After building a hierarchy for
N+1 nodes, the learned weight matrix is denoted asWN . We
can sample a sequence of trees (T1, . . . , Tm) from the distri-
bution P (T |WN). Now we want to insert a new node into the
hierarchy. Since there is no prior information about the posi-
tion of the new node, we generate a new set of trees by insert-
ing this node into any location in each tree in (T1, . . . , Tm).
This new set represents a sample distribution that preserves
the information of the previous distribution while not assum-
ing anything about the new node. The weight matrix W (0)

N+1
that minimizes KL-divergence to this sample can then be es-
timated using the method described in Section 3.3.

Figure 1: Weight estimation performance for hierarchies with 20
nodes. X-axis is the number of samples given to the algorithm, and
β is the regularization coefficient.

4 Experiments
In our experiments, we evaluate four aspects of our approach:
(1) the performance of approximate inference to estimate
the weights representing distributions over trees; (2) the effi-
ciency of active vs. random query strategies in selecting ques-
tions; (3) comparison to existing work; and (4) the ability to
build hierarchies for diverse application domains.

4.1 Sample Based Weight Estimation
To evaluate the ability of Algorithm 1 to estimate a weight
matrix based on samples generated from a distribution over
trees we proceeded as follows. We first sample a “ground
truth” weight matrix W , then sample trees according to that
weight matrix, followed by estimating the weight matrix W ∗
using Algorithm 1, and finally evaluate the quality of the es-
timated matrix. To do so, we sample an additional test set of
trees from P (T |W) and compute the log-likelihood of these
trees given W ∗, where P (T |W ∗) is defined in (1). For cali-
bration purpose, we also compute the log-likelihood of these
trees under the ground truth specified by P (T |W).

Fig. 1 shows the performance forN = 20 nodes, using dif-
ferent values for the regularization coefficient β and sample
size m. Each data point is an average over 100 runs on dif-
ferent weights sampled from a Dirichlet distribution (to give
an intuition for the complexity of the investigated distribu-
tions, when sampling 1 Million trees according to one of the
weights, we typically get about 900, 000 distinct trees). The
red line on top is the ground truth log-likelihood. As can be
seen, the algorithm always converges to the ground truth as
the number of samples increases. With an appropriate setting
of β, the proposed method requires about 10, 000 samples to
achieve a log-likelihood that is close to the ground truth. We
also tested different tree sizes N , and got quite similar per-
formance. Overall, we found that β = 0.01 works robustly
across different N and use that value in all the following ex-
periments.

4.2 Active vs. Random Queries
To evaluate the ability of our technique to recover the correct
hierarchy, we artificially generate trees and test the perfor-
mance for different tree sizes, different noise rates for path

queries, and active vs. random path queries. To simulate
a worker’s response to a query, we first check whether the
query path is part of the ground truth tree, and then flip the
answer randomly using a pre-set noise rate γ. To evaluate
how well our approach estimates the ground truth tree, we
use the marginal likelihood of the tree edges and compute
the Area Under the Curve (AUC) using different thresholds
on the likelihood to predict the existence or absence of an
edge in the ground truth tree. The marginal likelihood of an
edge, P (ei,j |W) =

∑
T∈T ,ei,j∈T P (T |W), can be computed

in closed form based on the conclusion of the Matrix Theo-
rem [Tutte, 1984]. We also tested different evaluation mea-
sures, such as the similarity between the MAP tree and the
ground truth tree, and found them to all behave similarly.

Different sized trees of {5, 10, 15} nodes are tested to see
how the method performs as the problem gets larger. We also
test different noise rates, including 0%, 5%, and 10% to ver-
ify the robustness of the method. The number of samples for
updating the weight matrix is fixed to 10, 000 across all ex-
periments. For each setting, 10 different random ground truth
trees are generated. The average results are reported in Fig. 2.
The X-axis is the number of questions asked, and the Y-axis is
theAUC. AUC = 1 means that all edges of the ground truth
tree have higher probabilities than any other edges according
to the estimated distribution over trees.

As can be seen in the figures, active queries always recover
the hierarchy more efficiently than their random counterparts
(random queries are generated by randomly choosing a pair
of nodes). If there is no noise in the answers, our approach
always recovers the ground truth hierarchy, despite the sam-
ple based weight update. Note that, in the noise-free setting,
the exact hierarchy can be perfectly recovered by querying all
N2 pairs of concepts. While the random strategy typically re-
quires about twice that number to recover the hierarchy, our
proposed active query strategy always recovers the ground
truth tree using less than N2 samples.

AsN gets larger, the difference between active and random
queries becomes more significant. While our active strategy
always recovers the ground truth tree, the random query strat-
egy does not converge for trees of size 15 if the answers are
noisy. This is due to insufficient samples when updating the
weights, and because random queries are frequently answered
with No, which provides little information. The active ap-
proach, on the other hand, uses the current tree distribution
to determine the most informative query and generates more
peaked distributions over trees, which can be estimated more
robustly with our sampling technique. As an indication of
this, for trees of size 15 and noise-free answers, 141 out of
the 200 first active queries are answered with “yes”, while
this is the case for only 54 random queries.

4.3 Comparison to Existing Work
We compare our method with the most relevant systems DEL-
UGE [Bragg et al., 2013] and CASCADE [Chilton et al.,
2013], which also use crowdsourcing to build hierarchies.
CASCADE builds hierarchies based on multi-label catego-
rization, and DELUGE improves the multi-label classification
performance of CASCADE. We will thus compare to DEL-
UGE, using their evaluation dataset [Bragg et al., 2013]. This

Figure 2: Experimental results comparing active query (solid lines) and random query (dashed lines) strategies for tree sizes ranging from
(left) 5 nodes to (right) 15 nodes, using three different noise rates for answers to questions.

dataset has 33 labels that are part of the fine-grained entity
tags [Ling and Weild, 2012]. The WordNet hierarchy is used
as the ground truth hierarchy.

DELUGE queries many items for each label from a knowl-
edge base, randomly selects a subset of 100 items, labels
items with multiple labels using crowdsourcing, and then
builds a hierarchy using the label co-occurrence. To classify
items into multi-labels, it asks workers to vote for questions,
which are binary judgements about whether an item belongs
to a category. DELUGE does active query selection based on
the information gain, and considers the label correlation to
aggregate the votes and build a hierarchy. We use the code
and parameter settings provided by the authors of DELUGE.

We compare the performance of our method to DELUGE
using different amounts of votes. We compare the follow-
ing settings: 1) Both methods use 1,600 votes; 2) DELUGE
uses 49,500 votes and our method uses 6,000 votes. For the
first setting, we pick 1,600 votes for both, as suggested by the
authors because DELUGE’s performance saturates after that
many votes. In the second setting, we compute the results of
using all the votes collected in the dataset to see the best per-
formance of DELUGE. We choose 6,000 votes for our method
because its performance becomes flat after that.

We compare both methods using AUC as the evaluation
criterion. Using 1,600 votes, our method achieves a value of
0.82, which is slightly better than DELUGE with an AUC of
0.79. However, DELUGE does not improve significantly be-
yond that point, reaching an AUC of 0.82 after 49,500 votes.
Our approach, on the other hand, keeps on improving its ac-
curacy and reaches an AUC of 0.97 after only 6,000 queries.
This indicates that, using our approach, non-expert workers
can achieve performance very close to that achieved by ex-
perts (AUC = 1). Furthermore, in contrast to our method,
DELUGE does not represent uncertainty over hierarchies and
requires items for each label.

4.4 Real World Applications
In these experiments we provide examples demonstrating that
our method can be applied to different tasks using AMT. The
following pipeline is followed for all three application do-
mains: collect the set of concepts; design the “path question”
to ask; collect multiple answers for all possible “path ques-

tions”; estimate hierarchies using our approach. Collecting
answers for all possible questions enabled us to test different
settings and methods without collecting new data for each
experiment. AMT is used to gather answers for “path ques-
tions”. The process for different domains is almost identical:
We ask workers to answer “true-or-false” questions regarding
a path in a hierarchy. Our method is able to consider the noise
rate of workers. We estimate this by gathering answers from
8 workers for each question, then take the majority vote as
the answer, and use all answers to determine the noise ratio
for that question. Note that noise ratios not only capture the
inherent noise in using AMT, but also the uncertainty of peo-
ple about the relationship between concepts. 5 different path
questions are put into one Human Intelligence Task (HIT).
Each HIT costs $0.04. The average time for a worker to fin-
ish one HIT is about 4 seconds.

The process of building the hierarchies is divided into two
consecutive phases. In the first phase, a distribution is built
using a subset of the concepts. In the second phase, we use
the process of inserting new concepts into the hierarchy, until
all concepts are represented. For the body part dataset, we
randomly chose 10 concepts belonging to the first phase. For
online Amazon shopping and RGBD object data, the initial
set is decided by thresholding the frequency of the words used
by workers to tag images (15 nodes for Amazon objects and
23 nodes for RGBD objects). The learned MAP hierarchies
are shown in Fig. 3.

Representing Body Parts
Here, we want to build a hierarchy to visualize the “is a part
of” relationship between body parts. The set of body part
words are collected using Google search. An example path
question would be “Is ear part of upper body?”. The MAP
tree after asking 2,000 questions is shown in the left panel of
Fig. 3. As can be seen, the overall structure agrees very well
with people’s common sense of the human body structure.
Some of the nodes in the tree are shown in red, indicating
edges whose marginal probability is below 0.75. These edges
also reflect people’s uncertainty in the concept hierarchy. For
example, it is not obvious whether ear should be part of the
head or face, the second most likely placement. Similarly, it
is not clear for people whether ankle should be part of foot or
leg, and whether wrist should be part of arm or hand.

Figure 3: MAP hierarchies representing body parts, amazon kitchen products, and food items (left to right). Red nodes indicate items for
which the parent edge has high uncertainty (marginal probability below 0.75). Videos showing the whole process of hierarchy generation can
be found on our project page: http://rse-lab.cs.washington.edu/projects/learn-taxonomies.

An obvious mistake made by the system is that ring finger
and thumb are connected to the upper body rather than hand.
This is caused by questions such as “Is ring finger part of
arm?”, which only 1 out of 8 workers answered with yes.
Hence the concept of ring finger or thumb is not placed into
a position below arm.

Online Shopping Catalogue
The second task is to arrange kitchen products taken from
the Amazon website. There are some existing kitchen hi-
erarchies, for example, the Amazon hierarchy [Amazon,
2015]. However, the words used by Amazon, for exam-
ple, “Tools-and-Gadgets”, might be quite confusing for cus-
tomers. Therefore, we collected the set of words used by
workers in searching for products. We provide AMT work-
ers images of products, and ask them to write down words
they would like to see in navigating kitchen products. Some
basic preprocessing is done to merge plural and singular of
the same words, remove obviously wrong words, and remove
tags used less than 5 times by workers because they might
be some nicknames used by a particular person. We also re-
move the word “set”, because it is used by workers to refer
to a “collection of things” (e.g., pots set, knives set), but not
related to the type of products shown in the pictures. The path
questions have the form “Would you try to find pots under the
category of kitchenware?” The learned MAP tree is shown in
the middle panel of Fig. 3.

Food Item Names
This experiment investigates learning a hierarchy over food
items used in a robotics setting [Lai et al., 2011a], where the
goal is to learn names people use in a natural setting to refer
to objects. Here, AMT workers were shown images from the
RGBD object dataset [Lai et al., 2011a] and asked to provide
names they would use to refer to these objects. Some basic
pre-processing was done to remove noisy tags and highly in-
frequent words. The path questions for this domain are of the
form “Is it correct to say all apples are fruits?”.

The MAP tree is shown in the right panel of Fig. 3. Again,
while the tree captures the correct hierarchy mostly, high
uncertainty items provide interesting insights. For instance,

tomato is classified as fruit in the MAP tree, but also has a sig-
nificant probability of being a vegetable, indicating people’s
uncertainty, or disagreement, about this concept. Meanwhile,
the crowd of workers was able to uncover very non-obvious
relationships such as allium is a kind of bulb.

5 Conclusion
We introduced a novel approach for learning hierarchies over
concepts using crowdsourcing. Our approach incorporates
simple questions that can be answered by non-experts with-
out global knowledge of the concept domain. To deal with
the inherent noise in crowdsourced information, people’s
uncertainty, and possible disagreement about hierarchical re-
lationships, we develop a Bayesian framework for estimating
posterior distributions over hierarchies. When new answers
become available, these distributions are updated efficiently
using a sampling based approximation for the intractably
large set of possible hierarchies. The Bayesian treatment
also allows us to actively generate queries that are the most
informative given the current uncertainty. New concepts
can be added to the hierarchy at time point, automatically
triggering queries that enable the correct placement of these
concepts. It should also be noted that our approach lends
itself naturally to manual correction of errors in an estimated
hierarchy: by setting the weights inconsistent with a manual
annotation to zero, the posterior over trees automatically
adjusts to respect this constraint.

We investigated several aspects of our framework and
demonstrated that it is able to recover high-quality hierar-
chies for real world concepts using AMT. Importantly, by
reasoning about uncertainty over hierarchies, our approach is
able to unveil confusion of non-experts over concepts, such
as whether tomato is a fruit or vegetable, or whether the
wrist is part of a person’s arm or hand. We believe that these
abilities are extremely useful for applications where hierar-
chies should reflect the knowledge or expectations of regular
users, rather than domain experts. Example applications
could be search engines for products, restaurants, and robots
interacting with people who use various terms to relate to
the same objects in the world. Investigating such application

cases opens interesting avenue for future research. Other
possible future directions include explicit treatment of
synonyms and automatic detection of inconsistencies.

Acknowledgement
This work was funded in part by the Intel Science and
Technology Center for Pervasive Computing, ARO grant
W911NF-12-1-0197, ERC StG 307036 and the Nano-Tera.ch
program as part of the Opensense II project. We would like
to thank Jonathan Bragg for generously sharing the data and
code. We would also like to thank Tianyi Zhou for the helpful
discussion.

References
[Amazon, 2015] Amazon. http://www.amazon.com/gp/

site-directory/ref=nav_sad, 2015. [Online; accessed
07-Feb-2015].

[Bart et al., 2008] E. Bart, I. Porteous, P. Perona, and M. Welling.
Unsupervised learning of visual taxonomies. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2008.

[Blei et al., 2003] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[Bloehdorn et al., 2005] S. Bloehdorn, A. Hotho, and S. Staab. An
ontology-based framework for text mining. In LDV Forum-GLDV
Journal for computational linguistics and language technology,
2005, Vol.20, No.1, pages 87–112, 2005.

[Bragg et al., 2013] J. Bragg, Mausam, and D. Weld. Crowdsourc-
ing multi-label classification for taxonomy creation. In Pro-
ceedings of the First AAAI Conference on Human Computation
and Crowdsourcing, HCOMP 2013, November 7-9, 2013, Palm
Springs, CA, USA, 2013.

[Budanitsky, 1999] A. Budanitsky. Lexical semantic relatedness
and its application in natural language processing. Technical re-
port, University of Toronto, 1999.

[Buitelaar et al., 2005] P. Buitelaar, P. Cimiano, and B. Magnini.
Ontology Learning from Text: An Overview, pages 3–12. IOS
Press, 2005.

[Carlson et al., 2010] A. Carlson, J. Betteridge, B. Kisiel, B. Set-
tles, E.R. Hruschka, and T.M. Mitchell. Toward an architecture
for never-ending language learning. In In AAAI, 2010.

[Chilton et al., 2013] L. Chilton, G. Little, D. Edge, D. Weld, and
J. Landay. Cascade: Crowdsourcing taxonomy creation. In
CHI 2013 Conference on Human Factors in Information Systems,
2013.

[Chu and Liu, 1965] Y. Chu and T. Liu. On the shortest arbores-
cence of a directed graph. Science Sinica, 14, 1965.

[Deng et al., 2009] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li,
and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

[Deng et al., 2013] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained
crowdsourcing for fine-grained recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2013.

[Deng et al., 2014] J. Deng, O. Russakovsky, J. Krause, M. Bern-
stein, A. Berg, and L. Fei-Fei. Scalable multi-label annotation.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3099–3102, 2014.

[Dewey, 1876] M. Dewey. Classification and Subject Index for Cat-
aloguing and Arranging the Books and Pamphlets of a Library.
eBook, 1876.

[Fellbaum, 1998] C. Fellbaum. WordNet: An Electronic Lexical
Database. Bradford Books, 1998.

[Hippisley et al., 2005] A. Hippisley, D. Cheng, and K. Ahmad.
The head-modifier principle and multilingual term extraction.
Natural Language Engineering, 11(2):129–157, June 2005.

[Knight, 1993] K. Knight. Building a large ontology for machine
translation. In Proceedings of the Workshop on Human Language
Technology, pages 185–190, 1993.

[Kullback and Leibler, 1951] S. Kullback and R.A. Leibler. On in-
formation and sufficiency. Annals of Mathematical Statistics,
pages 49–86, 1951.

[Lai et al., 2011a] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale
hierarchical multi-view rgb-d object dataset. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2011.

[Lai et al., 2011b] K. Lai, L. Bo, X. Ren, and D. Fox. A scalable
tree-based approach for joint object and pose recognition. In
Twenty-Fifth Conference on Artificial Intelligence (AAAI), Au-
gust 2011.

[Ling and Weild, 2012] X. Ling and D.S. Weild. Fine-grained en-
tity resolution. In Proceedings of the Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence, 2012.

[Mortensen et al., 2006] J.M. Mortensen, M.A. Musen, and N.F.
Noy. Developing crowdsourced ontology engineering tasks: An
iterative process, 2006.

[Rohrbach et al., 2011] M. Rohrbach, M. Stark, and B. Schiele.
Evaluating knowledge transfer and zero-shot learning in a large-
scale setting. In Proceedings of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1641–1648,
2011.

[Sivic et al., 2008] J. Sivic, B. Russell, A. Zisserman, I. Ecole, and
N. Suprieure. Unsupervised discovery of visual object class hier-
archies. In In Proc. CVPR, 2008.

[Sun et al., 2015] Yuyin Sun, Adish Singla, Dieter Fox, and An-
dreas Krause. Building hierarchies of concepts via crowdsourc-
ing (extended version). http://arxiv.org/abs/1504.
07302, 2015.

[Tutte, 1984] W. Tutte. Graph Theory. Addison-Wesley, 1984.
[Voorhees, 1993] E. Voorhees. Using wordnet to disambiguate

word senses for text retrieval. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 1993.

[Wilson, 1996] D. B. Wilson. Generating random spanning trees
more quickly than the cover time. In Proceedings of the Twenty-
eighth Annual ACM Symposium on Theory of Computing, pages
296–303, 1996.

[Wong et al., 2012] W. Wong, W. Liu, and M. Bennamoun. Ontol-
ogy learning from text: A look back and into the future. ACM
Computing Surverys, 44(4):20:1–20:36, 2012.

A Derivation of the Objective Function

Lβπ̃(Λ′)− Lβπ̃(Λ) (12)

=
∑
T∈T

π̃(T) logP (T |Λ)−
∑
T∈T

π̃(T) logP (T |Λ′) +
∑
i,j

β(|λ′i,j | − |λi,j |) (13)

=
∑
T∈T

π̃(T) log
exp(

∑
ei,j∈T λi,j)

exp(
∑
ei,j∈T λi,j + δi,j)

+
∑
T∈T

π̃(T) log
Z(Λ′)

Z(Λ)
+

∑
i,j

β(|λ′i,j − |λi,j |) (14)

=
∑
T∈T

π̃(T)
∑
ei,j∈T

−δi,j + log
Z(Λ′)

Z(Λ′)
+

∑
i,j

β(|λ′i,j | − |λi,j |) (15)

=
∑
i,j

−δi,jP̃ (ei,j) + log

∑
T ′∈T exp(

∑
ei,j∈T ′ λi,j + δi,j)∑

T∈T exp(
∑
ei,j∈T λi,j)

+
∑
i,j

β(|λ′i,j | − |λi,j |) (16)

=
∑
i,j

−δi,jP̃ (ei,j) + log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

δi,j) +
∑
i,j

β(|λ′i,j | − |λi,j |) (17)

=
∑
i,j

−δi,jP̃ (ei,j) + log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

1

N
Nδi,j) +

∑
i,j

β(|λ′i,j | − |λi,j |) (18)

≤
∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + β(|λ′i,j | − |λi,j |) (19)

(2)→ (3) uses the definition of P (T |Λ).
(3)→ (4) uses the fact that ∑

T∈T

π̃(T)
∑
ei,j∈T

−δi,j =
∑
i,j

−δi,j
∑

T∈T :ei,j∈T

π̃(T) =
∑
i,j

−δi,jP̃ (ei,j),

where P̃ (ei,j) is the marginal likelihood of the edge ei,j .
To get (7)→ (8), we use an inequality that, if xj ∈ R and pj ≥ 0 with

∑
j pj ≤ 1, then

exp(
∑
j

pjxj)− 1 ≤
∑
j

pj(e
xj − 1).

Such that

exp(
∑
ei,j∈T

1

N
Nδi,j) ≤ 1 +

∑
ei,j∈T

1

N
(eNδi,j − 1).

The it follows

log
∑
T∈T

P (T |Λ) exp(
∑
ei,j∈T

1

N
Nδi,j) (20)

≤ log(1 +
∑
T∈T

P (T |Λ)
∑
ei,j∈T

1

N
(eNδi,j − 1)) (21)

= log(1 +
1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1)) (22)

≤ 1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1) (23)

(24)

(11)→ (12) is true because log(1 + x) ≤ x,∀x ≥ −1, and

1

N

∑
i,j

P (ei,j)(e
Nδi,j − 1) ≥ 1

N

∑
i,j

−P (ei,j) = −1.

B Minimization of (19)
Case 1: δi,j = −λi,j . Such that (19) becomes ∑

i,j

λi,jP̃ (ei,j) +
1

N
P (ei,j)(e

−Nλi,j − 1) (25)

Case 2: λi,j + δi,j ≥ 0. Such that (19) becomes∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + βδi,j (26)

Take derivative of (26), and set it to be 0:

−P̃ (ei,j) + P (ei,j)e
Nδi,j + β = 0,

the solution is

1

N
log

P̃ (ei,j)− β
P (ei,j)

.

Case 3: λi,j + δi,j < 0. Such that (19) becomes∑
i,j

−δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1)− βδi,j (27)

Take derivative of (27), and set it to be 0:

−P̃ (ei,j) + P (ei,j)e
Nδi,j − β = 0,

the solution is

1

N
log

P̃ (ei,j) + β

P (ei,j)
.

C Proof of Theorem 1
Theorem 3. Assume β is strictly positive. Then Algorithm 1 produces a sequences Λ(1),Λ(2), . . . such that

lim
`→∞

Lβπ̃(Λ(`)) = min
Λ
Lβπ̃(Λ).

Proof. First let us define Λ+ and Λ− in terms of Λ as follows: for each (i, j), if λi,j ≥ 0, then λ+
i,j = λi,j and λ−i,j = 0, and if λi,j ≤ 0,

then λ+
i,j = 0 and λ−i,j = −λi,j . Λ′+, Λ′−, Λ(`)+, Λ(`)−, etc. are defined analogously.

Let Fi,j denote the (i, j) component in (19), For any Λ and ∆, we have the following:

|λ+ δ| − |λ| = min{δ+ + δ−|δ+ ≥ −λ+, δ− ≥ −λ−, δ+ − δ− = δ} (28)

Plugging into the definition of Fi,j gives:

Fi,j(Λ,∆) =− δi,jP̃ (ei,j) +
1

N
P (ei,j)(e

Nδi,j − 1) + β(|λi,j + δi,j | − |λi,j |) (29)

= min{Gi,j(Λ,∆+,∆−)|δ+
i,j ≥ −λ

+
i,j , δ

−
i,j ≥ λ

−
i,j , δ

+
i,j − δ

−
i,j = δi,j}, (30)

where

Gi,j(Λ,∆
+,∆−) = (δ−i,j − δ

+
i,j)P̃ (ei,j) +

1

N
P (ei,j)(e

N(δ+i,j−δ
−
i,j) − 1) + β(δ+

i,j + δ−i,j) (31)

So, by (19),

Lβπ̃(Λ(`+1))− Lβπ̃(Λ(`)) ≤
∑
i,j

Fi,j(Λ
`,∆) (32)

=
∑
i,j

min
δi,j

Fi,j(Λ
`,∆) (33)

=
∑
i,j

min{Gi,j(Λ`,∆+,∆−)|δ+
i,j ≥ −λ

+
i,j , δ

−
i,j ≥ λ

−
i,j , δ

+
i,j − δ

−
i,j = δi,j}} (34)

Note that Gi,j(Λ,0,0) = 0, so none of the terms in this sum can be positive. So the Λ`’s have a convergent subsequence converging to
some Λ̂ such that ∑

i,j

min{Gi,j(Λ`,∆+,∆−)|δ+
i,j ≥ −λ

+
i,j , δ

−
i,j ≥ λ

−
i,j , δ

+
i,j − δ

−
i,j = δi,j}} = 0. (35)

It is easy to verify that minimizing Lβπ̃(Λ) is the dual problem of the following convex program:

max
p1,...,pN∈R+N

N∑
i=1

H(pi) (36)

s.t.

N∑
i=0

p(ei,j) = 1, ∀j (37)

P̃ (ei,j)− P (ei,j) ≤ β, ∀(i, j) (38)

P (ei,j)− P̃ (ei,j) ≤ β, ∀(i, j). (39)

We will show that Λ̂+ and Λ̂− together with P (T |Λ̂) satisfy the KKT condition of the previous convex program, and thus form a solution
to the prime problem as well as to the dual, the minimization of Lβπ̃ . For P (T |Λ̂), these conditions work out to be the following for all (i, j):

λ̂+
i,j ≥ 0, P̃ (ei,j)− P (ei,j) ≤ β, λ̂+

i,j(P̃ (ei,j)− P (ei,j)− β) = 0 (40)

λ̂−i,j ≥ 0, P (ei,j)− P̃ (ei,j) ≤ β, λ̂+
i,j(P (ei,j)− P̃ (ei,j)− β) = 0 (41)

Since Gi,j(Λ̂,0,0) = 0, by (35), if λ̂i,j > 0 then Gi,j(Λ,∆+,0) is nonnegative in a neighborhood of δ+
i,j = 0, and so has a local

minimum at this point. Such that

∂Gi,j(Λ,∆
+,0)

∂δ+
i,j

|
δ+i,j=0

= −P̃ (ei,j) + P (ei,j) + β = 0. (42)

If λ̂+
i,j = 0, then (35) gives that Gi,j(Λ̂,0,0) = 0 for δ+

i,j ≥ 0. Thus ∂Gi,j(Λ,∆+,0) cannot be decreasing at δ+
i,j = 0. Therefore, the

partial derivative above must be nonnegative. Altogether, these prove (40). (41) can be proved analogously.
As a whole, we proved that

lim
`→∞

Lβπ̃(Λ(`)) = Lβπ̃(Λ̂) = min
Λ
Lβπ̃(Λ).

D Proof of Theorem 2
Lemma 1. Suppose samples π̃ are obtained from any tree distribution π. Then

|Lπ̃(Λ)− Lπ(Λ)| ≤
N∑
i=0

N∑
j=1

|λi,j ||P̃ (ei,j)− P (ei,j)|,

where P (ei,j) =
∑
T∈T :ei,j∈T π(T) and P̃ (ei,j) =

∑
T∈T :ei,j∈T π̃(T).

Proof.

Lπ̃(Λ) =
∑
T∈T

π̃(T) log
exp

∑
ei,j∈T λi,j

Z(Λ)
(43)

Such that

|Lπ̃(Λ)− Lπ(Λ)| = |
∑
i,j

λi,j(P̃ (ei,j)− P (ei,j))| ≤
N∑
i=0

N∑
j=1

|λi,j ||P̃ (ei,j)− P (ei,j)|. (44)

Lemma 2. Suppose samples π̃ are obtained from any tree distribution π. Assume that |P (ei,j) − P̃ (ei,j)| ≤ βi,j ,∀(i, j), Let Λ̂ minimize
the regularized log loss Lβπ̃(Λ). The for every Λ it holds that

Lπ(Λ̂) ≤ Lπ(Λ) + 2

N∑
i=0

N∑
j=1

β|λi,j |.

Proof.

Lπ(Λ̂) ≤Lπ̃(Λ̂) +
∑
i,j

β|λ̂i,j | = Lβπ̃(Λ̂) (45)

≤Lβπ̃(Λ) = Lπ̃(Λ) +
∑
i,j

β|λi,j | (46)

≤Lπ(Λ) + 2
∑
i,j

β|λi,j |. (47)

(45) to (46) is tree because of the optimality of Λ̂. (46) to (47) follow from Lemma 1.

Theorem 4. Suppose m samples π̃ are obtained from any tree distribution π. Let Λ̂ minimize the regularized log loss Lβπ̃(Λ) with β =√
log(N/δ)/m. Then for every Λ it holds with probability at least 1− δ that

Lπ(Λ̂) ≤ Lπ(Λ) + 2‖Λ‖1
√

log(N/δ)/m

Proof. By Hoeffding’s inequality, for a fixed pair of (i, j), the probability that P (ei,j) − P̃ (ei,j) exceeds β is at most e−2β2m = δ
N2 . By

the union bound, the probability of this happening for any pair of (i, j) is at most δ. Then the theorem follows from Lemma 2.

