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Abstract— This paper presents an approach for labeling
objects in 3D scenes. We introduce HMP3D, a hierarchical
sparse coding technique for learning features from 3D point
cloud data. HMP3D classifiers are trained using a synthetic
dataset of virtual scenes generated using CAD models from an
online database. Our scene labeling system combines features
learned from raw RGB-D images and 3D point clouds directly,
without any hand-designed features, to assign an object label to
every 3D point in the scene. Experiments on the RGB-D Scenes
Dataset v.2 demonstrate that the proposed approach can be used
to label indoor scenes containing both small tabletop objects
and large furniture pieces.

I. INTRODUCTION

As robots move from the factory floor into our homes and
offices, they will need increasingly sophisticated tools for
analyzing and understanding the environment around them.
Semantic scene understanding is one important capability
that robots must master if they are to execute commands like
“fetch me the can of soda from the coffee table”. In such
applications, the robot must not only be able to recognize
soda cans and coffee tables, but also to accurately infer their
positions and spatial extent in 3D space. RGB-D cameras like
the Microsoft Kinect have enabled rapid progress in robot
perception. In this work, we study scene labeling of RGB-D
videos.

There is a large body of literature on 3D scene labeling in
indoor environments ([1], [2], [3], [4], [5]). Like approaches
designed for outdoor environments ([6], [7]), many of these
operate on a 3D point cloud, often obtained using a laser
rangefinder. 3D point clouds contain very important shape
and spatial information, which allows for models that take
advantage of context and spatial relationships between ob-
jects [8], [9]. However, using an RGB-D camera it is possible
to also collect data from a completely different modality. Not
only can we now get the color of each 3D point, but we
also have access to a set of RGB and depth image pairs.
Existing works have shown that RGB-D images can be used
to recognize objects to a high degree of accuracy [10], [11],
[12], [13].

Another recent trend that has shown promising progress
is unsupervised learning of feature representations directly
from sensor data. Sparse coding and convolutional neural
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networks have shown promising results on image classi-
fication [14], [15], object detection [16], and scene un-
derstanding [17]. Unlike hand-designed features which are
implicitly limited by the design choices of their creators,
these algorithms are fully data-driven and can learn sophis-
ticated representations that capture statistical patterns and
relationships in the data.

In previous work [18], we presented a technique for 3D
scene labeling of tabletop objects using RGB-D videos as
input data. Sliding window object detectors were used to
assign a class probability distribution to every pixel in every
RGB-D video frame. A probabilistic Markov Random Field
(MRF) over a voxel representation of the 3D scene was used
to combine evidence from the whole video sequence. We
demonstrated that it achieves excellent results on the RGB-
D Scenes Dataset, which consists of 8 scenes with tabletop
objects in kitchen and office environments.

This work builds on our previous work by modifying
the MRF framework to integrate classifier responses from
both the constituent RGB-D video frames and also responses
from a classifier using features extracted from the 3D
scene point cloud itself. We introduce HMP3D, a novel
hierarchical sparse coding technique for learning features
over 3D point cloud data. HMP3D adapts the hierarchical
matching pursuit (HMP) algorithm [13], a state-of-the-art
sparse coding technique for image data, for use in learning
features for 3D point clouds. We also use HMP to learn
sparse coding features for RGB-D image detectors [16]. The
resulting system learns feature representations on both RGB-
D images and 3D point clouds, and does not use any hand-
designed features. HMP3D is trained using data generated
from synthetic 3D scenes created using CAD models from
an online database. We show excellent results on both the
original RGB-D Scenes Dataset and the new RGB-D Scenes
Dataset v.2, a new dataset of 14 indoor scenes containing
tabletop objects and large furniture pieces.

II. 3D SCENE LABELING FROM RGB-D VIDEOS

Given a 3D point cloud of a scene, the scene labeling task
is to assign an object class label to every point. We tackle
the problem of labeling point clouds created by aligning a
contiguous sequence of images from RGB-D videos, i.e.
the output of 3D reconstructions techniques like Kinect
Fusion [19] and RGB-D Mapping [20], [21]. Fig. 1 presents
an overview of the proposed system. The system learns
and extracts features on both the constituent RGB-D video
frames, and on a voxel representation of the scene. The
classifier responses from these two feature representations
are combined using an MRF to produce a labeling of



Fig. 1. System Overview: Given a scene (left), the system extracts learned features from its constituent RGB-D video frames and the voxel representation
obtained from the 3D scene point cloud. Classifiers are evaluated separately on these sensor modalities, and their responses are combined using a Markov
Random Field to produce the scene labeling (right).

the scene. Images, being two-dimensional, capture objects
situated in front of a background, which often provides useful
context. On the other hand, 3D point clouds provide spatial
information that is possible, but difficult, to estimate from
images [22]. As we will demonstrate, it can be beneficial
to learn and extract features from both. Another advantage
of our system is that it does not require point/pixel-level
labeling of scenes as training data, which is expensive to
obtain. Instead, the proposed approach only requires images
containing views of each objects in isolation and synthetic
3D models downloaded from an online database on the Web.

We use the Patch Volumes 3D reconstruction algorithm
of Henry et al. [21] to estimate the six-dimensional camera
poses of each RGB-D video frame and create the scene
reconstruction. The system creates a voxel representation of
the resulting 3D point cloud by discretizing it into a regular
grid structure. The individual cells in this grid structure are
called a voxel. Let each voxel v be associated with a label
yv ∈ {1, ..., C, cB}, where 1, ..., C are object classes and cB
is the background class. As was done in [18], we model the
joint distribution of voxel labels using a Markov Random
Field with pairwise interactions. The optimal labeling of the
scene minimizes the following energy:

E(y1, · · · , y|V|) =
∑
v∈V

ψv(yv) +
∑

{i,j}∈N

φi,j(yi, yj) (1)

where N is the set of all pairs of neighboring voxels. We
connect each voxel to its 26 adjacent voxels (9 below, 8 at
the same height, 9 above). The data term (first sum) measures
how well the assigned label fits the observed data and the
pairwise term (second sum) models interactions between
adjacent voxels.

In [18], the data term ψv(yv) in eq. 1 was computed using
responses from sliding window detectors on RGB-D video
frames. In this work, we also integrate responses from a

classifier over the 3D voxel data into this term.
Voxel Classification: There is a voxel classifier for each

object class we wish to label. Each voxel classifier assigns a
likelihood of each voxel belonging to its class by extracting
features from a rectangular prism shaped region around
that voxel based on the expected true size of the object,
which is estimated from training data. For example, in our
experiments a coffee mug voxel classifier extracts features
from a 16.2cm×16.8cm×14.4cm window. We describe the
feature extraction process in Section III and the training
process in Section IV. The voxel classifiers yield pvox(yv|x)
for each 3D point x falling inside the voxel v.

RGB-D Image Classification: We learn a single-layer
dictionary by sampling 5 × 5 patches from grayscale and
depth images and extract sparse coding features [23]. These
features are then used to train object detectors [16]. For our
experiments we only use a root template so we do not need to
use HOG features to first learn a deformable parts structure.
We train sliding window detectors for each object class. Each
pixel in an RGB-D frame has a corresponding 3D point x,
and as was done in [18], the detectors are used to compute a
class distribution pim(yv|x) for every pixel in every frame,
where a higher probability means it is more likely that an
object of that class is present at that pixel location.

The data term is computed as

ψv(yv) = − ln p(yv|Ωv) =

− 1

|Ωv|
∑
x∈Ωv

α ln pvox(yv|x) + (1− α) ln pim(yv|x) (2)

In other words, the log likelihood of a voxel v is the arith-
metic mean of the log likelihoods of its constituent points Ωv .
The probabilities from voxel classifiers and image classifiers
are multiplied (summed in log-space), with 0 ≤ α ≤ 1
being the tradeoff parameter for balancing their respective
influence.



Fig. 2. HMP over voxel data: To learn the first-layer dictionary, 5× 5× 5
voxel patches are randomly sampled from the entire dataset of objects.

The pairwise term between voxels in eq. 1 is defined to
be

φi,j(yi, yj) = λ ·
1yi 6=yj

d(ni, nj)
(I(ni, nj) + ε) (3)

where λ and ε are balancing parameters and 1yi 6=yj evaluates
to 1 when yi 6= yj and 0 otherwise. This term, first proposed
in [18], captures two aspects of 3D shape information that
improve segmentation of objects. First, d(ni, nj) measures
the l2 distance between surface normals ni and nj of voxels i
and j. This captures the intuition that objects tend to contain
smooth surfaces, so adjacent voxels with smooth surfaces
should tend to share the same label. Second, I(ni, nj) is an
indicator variable expressing whether i and j are part of a
convex surface or a concave one. This captures the intuition
that objects are often convex in shape, while transitions
between objects and the surface on which it sits tends to
be concave. ε determines the ratio between the penalty of
assigning adjacent voxels different labels when the surface
is convex or concave. We compute the term I(ni, nj) =
[(ni − nj) · (i− j) > 0] as proposed in [24].

The energy (eq. 1) of the multiclass MRF is efficiently
minimized using graph cuts [25], which completes the pro-
cess in less than 500 ms for a 5m×5m×5m scene.

III. FEATURE LEARNING FOR 3D POINT CLOUD DATA

The problem of learning feature representations has been
studied extensively in the computer vision and machine
learning communities ([26], [27], [23], [15]). In particular,
Hierarchical Matching Pursuit (HMP) is an unsupervised
learning algorithm for learning multiple levels of feature
representation in a bottom-up fashion that has been applied
to RGB-D images and achieves state-of-the-art performance
on object recognition [13] and attribute learning [28].

In this section we propose HMP3D, a method for learning
hierarchical feature representations over 3D point clouds that
uses the hierarchical matching pursuit algorithm. Given a 3D
point cloud of an object, we first discretize the point cloud
to create a voxel representation. Each voxel is described by a
set of attributes computed from the 3D points falling inside
the voxel, such as RGB value and surface normal vector.
In the context of scene labeling, we wish to learn a feature
representation over a dataset of objects stored in this voxel
representation such that the features can be used for effective
object recognition.

A. Dictionary Learning

The goal of dictionary learning is to compute a set of
vectors (codes) such that the data can be represented using
the linear combination of a sparse set of codes. Bo et al. [23]

Fig. 3. HMP3D: Hierarchical matching pursuit for 3D voxel data. In the
first layer, sparse codes are learned over 5×5×5 patches of voxel attributes.
These sparse codes are pooled into features representing 20 × 20 × 20
patches using spatial pyramid max pooling. A second layer of sparse codes
are learned for encoding these features using a dictionary from sampled
first-layer features. The HMP3D feature representing the whole object is a
concatenation of the spatial pyramid pooled and contrast normalized sparse
codes from both the first and second layers.

presented a method for learning features over RGB-D pixel
data using the K-SVD algorithm [29]. For HMP3D, we apply
the same technique on voxel data. For example, consider the
case where each 3D voxel stores a surface normal vector
computed from its local neighborhood. HMP3D learns a
dictionary over this data by sampling 5 × 5 × 5 voxels
(i.e. 5 × 5 × 5 × 3 = 375-dimensional patches) to create
a set of code words that can accurately reconstruct local
geometry 5 voxels across each dimension (see Fig. 2).
HMP3D applies the same technique to learn features over
other voxel attributes, such as color and binary occupancy.

B. HMP3D: Hierarchical Matching Pursuit for 3D voxel
data

HMP3D uses the hierarchical matching pursuit algo-
rithm [23] to build a two-layer feature hierarchy by learning
dictionaries and applying the orthogonal matching pursuit
encoder recursively (Fig. 3).

1) First Layer: The first layer generates features for
5 × 5 × 5 voxel patches. Orthogonal matching pursuit is
used to compute M -dimensional sparse codes representing
each patch. Spatial pyramid max pooling is then applied
to these sparse codes to generate patch level features. The
voxel representation of the object is partitioned into several
levels of spatial cells. The component-wise maximum over
all sparse codes in a cell is taken to generate the sparse
code of that cell. For example, consider a 3 level spatial
pyramid pooling where the first layer divides the voxel grid
into 3 × 3 × 3 cells, the second layer into 2 × 2 × 2
cells, and the final layer into 1 cell (see Fig. 4). The
resulting feature vector describing the whole object would
be (27 + 8 + 1)M -dimensional, where M is the size of the
dictionary. Spatial pyramid pooling adds multiple levels of
invariance to local deformation. The spatial nature of the
pooling process increases the discriminative power of the



Fig. 4. 3D spatial pyramid max pooling divides voxels into several levels of
cells. Sparse codes within each cell are combined by taking component-wise
maximum.

resulting feature. Finally, feature vectors are normalized by
their L2 norm. This makes the features robust to changes in
magnitude, which can happen, for example, due to changes
in illumination in the case of grayscale intensity and RGB
values.

2) Second Layer: The second layer of HMP3D computes
a higher-level representation over larger regions of the object.
The dictionary for the second layer is learned by sampling
patches over the first-layer features. For example, when
sampling 4×4×4 first-layer patches, each of which is an M -
dimensional sparse code vector, the second layer dictionary
would be learned over regions spanning 20×20×20 voxels
and the sampled patches would be 4×4×4×M -dimensional.
Similar to the first layer, spatial pyramid pooling and contrast
normalization is used to generate a fixed-length feature
vector describing the entire object.

The final feature representation of the object is the con-
catenation of the spatial pyramid pooled features from the
first and second layers. Note that Hierarchical Matching
Pursuit is an unsupervised learning algorithm. These feature
vectors are used in conjunction with class labels to train
linear Support Vector Machine (SVM) classifiers.

IV. SYNTHETIC DATA GENERATION

Given a large set of real scenes with ground truth labels,
HMP3D features and classifiers can be learned by sampling
from the dataset. However, ground truth real data is very
expensive and time consuming to obtain, especially for scene
labeling where every 3D point must be annotated with its
label. In this work, we explore the use of synthetic data to
learn HMP3D features and train voxel classifiers that we
then apply to real data. A key difficulty of using synthetic
data is ensuring that classifiers learned using it remains
effective when applied to real sensor data. Inspired by the
success of virtual training data synthesis for human pose
estimation from depth images [30], we generate a large
synthetic training dataset using 3D models downloaded from
Trimble 3D Warehouse [31], a large Internet repository of
CAD models created by hobbyists and professionals.

To closely model real-world environments as seen from
videos recorded using an RGB-D camera, synthetic object
models are placed in automatically generated virtual scenes
where they all lie on the same plane and may be very close
to and/or occlude each other. Training data is generated
by sampling rectangular prism shaped regions centered on

objects in these virtual scenes. For each sampled object,
raycasting is used to generate a 3D point cloud of the object
aggregated from a randomly selected number of viewpoints
between three to eight. Gaussian noise is added to simulate
sensor noise in real data. While the sensor noise of RGB-
D cameras like the Kinect increases with distance from the
sensor and is thus non-Gaussian, our approximation worked
well in practice because each object is imaged multiple
times from a variety of distances in the videos we use for
evaluation. The sampled object is scaled uniformly at random
to be between 0.85 to 1 unit in length along its longest
dimension (for a small amount of scale variance) and rotated
by a random amount. A voxel representation for the object is
obtained such that a unit length contains a constant number
of voxels (80 in our experiments), yielding a representation
that captures the same level of detail regardless of true object
size. In our experiments, we compute as voxel attributes
grayscale intensity, RGB value, binary occupancy, and sur-
face normal vector. Objects are sampled this way until the
desired training set size is reached.

Separate datasets are generated using the above procedure
for each object class because the number of voxels along
each dimension is dependent on the true size of the object.
Positive examples are generated by sampling objects of the
target class from the virtual scenes. Negative examples are
generated by sampling objects from other classes, as well
as regions that contain objects from the target class but
where the object is positioned sufficiently off-center. As
our experiments will demonstrate, the resulting training data
sufficiently captures variance that may be encountered in
real-world data: intra-class appearance and shape variation
is captured by differences in the object models downloaded
from Trimble 3D Warehouse, while scale, orientation, clutter,
and occlusion variation is captured via the virtual environ-
ment generation and object sampling procedure.

V. EXPERIMENTS

In this section, we evaluate the proposed system on a 3D
scene labeling task and the HMP3D feature representation
for 3D object recognition.

A. 3D Scene Labeling

To investigate the proposed scene labeling approach, we
evaluate it on the task of detecting small tabletop objects
and large furniture in typical home and office environments.
We collected a new dataset containing 14 such scenes:
the RGB-D Scenes Dataset v.2, which is publicly available at
http://www.cs.washington.edu/rgbd-dataset.
The original RGB-D Scenes Dataset [10] contains 8 scenes
recorded in office and kitchen environments. Each scene
contains between three to twelve objects placed on a
flat surface, including bowls, caps, cereal boxes, coffee
mugs, and soda cans. The new RGB-D Scenes Dataset v.2
augments these eight existing scenes with 14 new scenes
recorded from a lounge, a coffee room, a meeting area, and
an office desk. Each scene may contain furniture including
chairs, coffee tables, sofas, and tables. Three to five objects



Technique Precision / Recall
Bowl Cap Cereal Coffee Soda Coffee Chair Sofa Table Background Overall

Box Mug Can Table
Det3DMRF 65.4 / 62.9 / 64.2 / 48.1 / 61.1 / 12.7 / 18.4 / 25.1 / 14.6 / 43.9 / 41.6 /

84.7 98.7 96.3 84.7 95.1 15.8 20.8 30.9 22.1 99.5 64.9
HMP2D 74.4 / 74.9 / 79.9 / 64.4 / 78.2 / 11.9 / 17.7 / 29.3 / 16.4 / 42.9 / 49.0 /

85.0 98.6 98.6 87.8 98.1 17.9 17.2 39.8 23.3 99.6 66.6
HMP3D 100.0 / 91.3 / 85.1 / 90.0 / 100.0 / 96.1 / 57.6 / 82.7 / 95.3 / 99.9 / 89.8 /

96.2 98.2 100.0 93.9 81.9 100.0 100.0 100.0 98.7 80.0 94.9
HMP2D+3D 97.0 / 82.7 / 96.2 / 81.0 / 97.7 / 98.7 / 89.7 / 92.5 / 97.6 / 95.8 / 92.8 /

89.1 99.0 99.3 92.6 98.0 98.0 94.5 92.0 96.0 95.0 95.3

TABLE I
PER-CATEGORY AND OVERALL (MACRO-AVERAGED ACROSS CATEGORIES) PRECISION AND RECALL ON THE RGB-D SCENES DATASET V.2.

from the same 5 categories as the original dataset are placed
on each coffee table or table.

1) Experiment Setup: To train voxel classifiers, we down-
loaded models of objects from all nine classes from the
Trimble 3D Warehouse. In addition, we also downloaded
models of other objects commonly found in office and home
environments for use as negative data. We then use the
procedure for generating synthetic training data described
in Section IV to generate approximately 100, 000 training
examples. In this procedure, each virtual scene contains
only either tabletop objects or furniture. The real-world
dimensions of the voxel representations of each object class
were computed from training data. Images from the RGB-D
Object Dataset [10] are used to train RGB-D image sliding
window detectors for the tabletop objects.

Often a robot can accurately estimate the location of
the ground plane and objects are often placed on top of
furniture. Taking advantage of such prior knowledge about
the environment often improves both labeling accuracy and
computational efficiency. In our experiments, we assume that
furniture is always placed on the ground and tabletop objects
are always placed on tables and the ground plane is known,
which is true for RGB-D Scenes Dataset v.2. The ground
plane is removed and a region growing technique is used to
segment out isolated blobs of voxels. The system then applies
furniture classifiers on each blob and classifier responses are
applied to every voxel in the blob. When the system detects
a coffee table or a table, it uses the same region growing
algorithm to segment isolated blobs on top of the table and
evaluates the tabletop object voxel classifiers on them.

We compare the performance of the detection-based scene
labeling technique of [18] (Det3DMRF), using HMP over
RGB-D images with the scene labeling MRF (HMP2D), us-
ing HMP3D with the scene labeling MRF (HMP3D), and the
combination of both as proposed in Section II (HMP2D+3D).
HMP2D is very similar to Det3DMRF, except that Histogram
of Oriented Gradients (HOG) features have been replaced by
sparse coding features learned from RGB and depth image
data, an idea first proposed in [16].

For HMP2D, we use a one-layer architecture with a dictio-
nary of size M = 100 for both grayscale and depth attributes
and is learned from 5 × 5 image patches. For HMP3D, we
use M = 150 for the first layer dictionary and M = 1000
for the second layer. The first-layer patch size is 5×5×5 and
for second-layer it is 4×4×4 first-layer patches. The three-

level spatial pyramid pooling in Fig. 4 is used. SVM training
was performed using LIBLINEAR [32] and the outputs are
transformed by a sigmoid to yield probabilities for the scene
labeling MRF. The MRF parameters were α = 1/6, ε = 1/4,
and λ = 50.

2) Results: Table I shows the precision and recall of
scene labeling for each object category as well as the overall
performance, with each category given equal weight. The
precision and recall is computed on a per-point basis. For
example the recall of bowl is the proportion of 3D points
actually belonging to the bowl class successfully labeled by
the system as bowl, while its precision is the proportion of
3D points labeled as bowl that actually belong in the bowl
class.

We found that RGB-D image detectors did not perform
well on furniture. While there are many images of such
objects on the Internet, RGB-D data from many different
viewpoints is scarce. Also, furniture is categorized by func-
tion rather than form, so there can be a lot of intraclass
variation in shape and appearance. Finally, furniture pieces
are large objects which are often only partially visible due
to occlusion or from being cut off by the camera view cone.
This makes detecting them using RGB-D image detectors
difficult. On the other hand, HMP3D can handle objects of
any size since it operates on the 3D scene reconstruction
built from aggregating many video frames. Det3DMRF and
HMP2D both achieve similar accuracy. As was the case
in [16], using sparse coding features learned from image
data is usually slightly better than using HOG features. The
new RGB-D Scenes Dataset v.2 is more challenging than the
original RGB-D Scenes Dataset for RGB-D image detectors
because each video is only one rotation around the table,
while in the RGB-D Scenes Dataset objects are often seen
from similar viewpoints multiple times. The shorter videos
make it harder to prune out false positives, as objects are
not detected repeatedly as often. HMP3D performs well on
most objects, but sometimes confuses bowls as being coffee
mugs. Often HMP2D and HMP3D do not make mistakes
on the same objects, and hence the combination of the two
yields the best scene labeling accuracy.

Fig. 5 shows scene labeling results from six of the fourteen
scenes in RGB-D Scenes Dataset v.2. The scene labeling
in Fig. 1 is also an actual result produced by the system.
The figures show that the proposed approach is able to
correctly identify most tabletop and furniture objects and



Fig. 5. 3D scene labeling results for six of the fourteen scenes in RGB-D Scenes Dataset v.2. 3D reconstruction (top) and our results using a combination
of HMP on RGB-D images and HMP over voxel data (bottom). Objects are colored by their category: bowl (red), cap (green), cereal box (blue), coffee
mug (yellow), soda can (cyan), chair (pink), coffee table (purple), sofa (brown), table (navy blue). Best viewed in color.

object boundaries are very clean. Notice that the system
is able to correctly distinguish between coffee tables and
tables, which are two object categories with similar shape
and appearance, but different height. Since our approach
estimates the true size of objects from training data, the
voxel classifiers use features computed from different sized
regions for each class. The region used for the coffee table
classifier is shorter, and thus only the legs of a table would
be visible. On the other hand, a coffee table would only
occupy the lower portion of the region used by a table
classifier. Hence, the features after 3D spatial pooling look
very different for coffee table and table. This ability is unique
to HMP over voxel data and cannot be achieved by previous
feature learning methods applied to RGB-D images, which
perform spatial pooling over the 2D grid structure of images
as opposed to pooling in 3D space.

There were a few failure cases on this dataset. For exam-
ple, the system confused two computer workstations placed
side by side underneath an office desk as being a coffee
table (top right of Fig. 5). A more comprehensive training
dataset may have prevented this. When the region-growing
segmentation algorithm fails, the system will also fail to
segment out the exact extents of large furniture objects, such
as the sofa in the coffee room (top middle of Fig. 5). Finally,
when there are errors in the 3D scene reconstruction, the
system may also fail to correctly classify an object (e.g. bowl
in the bottom right of Fig. 5).

We also evaluated HMP2D on the original RGB-D Scenes

Dataset containing 8 video sequences in which tabletop
objects from the same five categories are annotated. We
found that the system performs similarly to the detection-
based object labeling approach of [18]. The overall precision
and recall of HMP2D was 89.8% and 89.1% respectively,
which is within 2% of the results reported in [18] (91.0%
precision, 88.8% recall). It appears that in the case of the
RGB-D Scenes Dataset, HOG features already work very
well and there is no improvement from using HMP2D
features instead.

3) Running Time: The running time of the proposed
approach is dominated by the time it takes to run sliding
window object detectors on the video frames. Our current
single-threaded MATLAB implementation requires four sec-
onds per image to extract features and run sliding window
object detectors. In future work, we plan to run sliding
window detectors in parallel and also take advantage of
GPU computation, which on a multi-core machine should
bring the running time down to one second. Since the
scene does not change significantly in one second, running
sliding window detectors at this rate should yield sufficient
accuracy for real-time scene labeling. Voxel classification
is run once per video sequence, and the speed of HMP3D
feature extraction depends on the voxel resolution. In our
experiments we use a voxel resolution of around 80 voxels
along the longest dimension and HMP3D feature extraction
took around ten seconds per object on a single-threaded
MATLAB implementation. We extract HMP3D features from



all objects in the scene in parallel. Once HMP3D features
have been extracted, voxel classification took less than one
second for the entire scene. Finally, MRF inference takes
less than 500 ms per scene for the environments in the two
RGB-D Scenes Datasets.

B. 3D Object Recognition on the Princeton Shape Bench-
mark

We also evaluated the HMP3D feature representation
independent of the overall scene labeling approach. One
large and commonly used database for 3D object recognition
is the Princeton Shape Benchmark (PSB) [33]. The PSB
contains 1, 814 3D polygonal models of objects collected
from the World Wide Web. The models are split into training
and testing databases of 907 models each. We evaluate
the usefulness of HMP3D in distinguishing between the 92
base categories in the PSB testing database. Following the
procedure of [34], we learn HMP3D features using all 907
models in the training database, and then use the learned
dictionaries to compute features for the 907 models in
the testing database. We perform leave-one-out linear SVM
classification and report overall accuracy averaged over 907
runs, each run using a different object model as test data and
the other 906 as training data.

We first convert each 3D polygonal model into a 3D point
cloud by randomly sampling points from each polygonal
surface with constant density. The resulting point cloud is
rescaled and voxelized so that the longest edge has unit
length and a resolution of 80 voxels. A two-layer feature
hierarchy is learned over surface normals as the voxel
attribute. The first-layer dictionary is learned over 5× 5× 5
voxel patches and contains 144 codewords. The second-layer
dictionary is learned over 4×4×4 pooled first-layer patches
and contains 2000 codewords. Three-level spatial pyramid
max pooling is used with 1, 8, and 27 cells in each level
respectively.

We compare the performance of HMP3D with the spher-
ical harmonic descriptor (SHD) [35] and Harmonic Shape
Histograms (HSH) [34]. Table II shows the classification
accuracy on the Princeton Shape Benchmark testing database
of the various approaches. Each feature is paired with
either a nearest neighbor (NN) classifier or a support vector
machine (SVM) classifier. The results for SHD and HSH
were reported in [34]. The results show that HMP3D is
very powerful feature for 3D data, outperforming the alter-
native 3D shape descriptors when paired with a linear SVM
classifier. Since HMP3D is a very high dimensional feature
(403, 776 dimensions in this experiment), it is not surprising
that it perform less well when paired with a nearest neighbor
classifier. Nevertheless, HMP3D still outperforms SHD, HSH
and their combination when these features are also paired
with a nearest neighbor classifier. Only the combination
of both HSH and SHD features with SVM classification
outperforms using HMP3D alone.

Feature Accuracy (NN) Accuracy (SVM)
SHD 55.6 55.4
HSH 59.8 68.4

HSH+SHD 63.5 72.9
HMP 65.4 71.0

TABLE II
COMPARISON OF HMP3D WITH ALTERNATIVE SHAPE DESCRIPTORS ON

BASE CATEGORY CLASSIFICATION ON THE PRINCETON SHAPE

BENCHMARK TESTING DATABASE. EACH FEATURE IS PAIRED WITH

EITHER A NEAREST NEIGHBOR (NN) CLASSIFIER OR A SUPPORT

VECTOR MACHINE (SVM) CLASSIFIER.

Feature Category
RGB only Depth only RGB-D

HMP2D [13] 82.4± 3.1 81.2± 2.3 87.5± 2.9
HMP3D 77.8± 2.5 76.5± 2.2 82.1± 3.5

TABLE III
ACCURACY OF HMP OVER RGB-D IMAGES (HMP2D) AND HMP OVER

3D VOXELS (HMP3D). IN BOTH CASES, FEATURES ARE LEARNED OVER

GRAYSCALE INTENSITIES AND RGB VALUES FOR RGB-ONLY, DEPTH

VALUES AND SURFACE NORMAL VECTORS FOR DEPTH-ONLY, AND ALL

FOUR ATTRIBUTES FOR RGB-D.

C. RGB-D Object Recognition

HMP3D is designed for 3D point clouds of objects
generated from multiple views, while many RGB-D object
recognition datasets are captured using a Kinect from a single
view[10], [36]. In such data, the point cloud may not capture
the entire object because it is constructed from only one
image. HMP3D is intended for learning feature representa-
tions on point clouds created from RGB-D videos, where
there is coverage of objects from multiple viewpoints so
that the object model is relatively complete. Nevertheless, we
wanted to evaluate HMP3D on an existing, extensive, object
recognition dataset to see how HMP3D will perform single-
view RGB-D images, even though that is not its intended
use case. For this, we conducted a category recognition
experiment on the RGB-D Object Dataset [10]. We use the
evaluation set and the same ten train/test splits from [10].

We compared HMP over voxel data (HMP3D) and HMP
over RGB-D images (HMP2D). Both approaches use the
same pixel/voxel attributes: grayscale and RGB value from
RGB images, and depth and surface normals from depth
images. Two-layer dictionaries were learned on each attribute
independently. HMP2D used a patch size of 5 × 5 pixels
and HMP3D used a patch size of 5 × 5 × 5 voxels. Both
features used a first-layer dictionary size of 150, second-
layer dictionary size of 1000, and three-level spatial pyramid
pooling. The difference is that HMP2D sparse codes are
pooled over cells on an image plane, while HMP3D pools
sparse codes over cells in 3D space.

The results in Table III show that while HMP2D and
HMP3D both achieve good performance on the RGB-D
Object Dataset, HMP2D is still better. This is due to several
factors. First, the RGB-D Object Dataset contains many dark,
shiny, and thin objects (e.g. stapler, battery, cell phone)
with many missing depth values. While HMP2D can still
extract features over RGB images in such cases, HMP3D



must operate on a point cloud that does not fully capture
the object. Even when using RGB and grayscale attributes,
they are only available to HMP3D for pixels that have
valid depth values. Secondly, the depth image contains large
depth discontinuities between the object the background, and
HMP2D is able to capture the object’s silhouette, which
is a very informative cue. On the other hand, HMP3D
works only on the points on the object itself, so it does not
capture information about the shape of the object against
the background. HMP3D has performed well on this dataset
considering that it was designed for 3D point clouds created
from RGB-D videos rather than single RGB-D images where
missing depth values is a big problem.

VI. DISCUSSION

This paper presented an approach for labeling 3D scenes
reconstructed from RGB-D videos. We introduced HMP3D,
a hierarchical sparse coding technique for learning features
from 3D point cloud data. HMP3D classifiers are trained
using a synthetic dataset of virtual scenes generated using
CAD models from an online database. Our scene labeling
system combines features learned from RGB-D images and
3D point clouds to assign a object class label to every
3D point in the scene. Experiments on the RGB-D Scenes
Dataset v.2 demonstrate that the proposed approach can be
used to label indoor scenes containing both small table-
top objects and large furniture pieces. We also showed
that HMP3D achieves excellent object retrieval performance
on the Princeton Shape Benchmark. Finally, HMP3D also
achieves good category recognition results on the RGB-D
Object Dataset even though it is designed for 3D point clouds
from RGB-D videos rather than single-view RGB-D images.
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