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Abstract— Learning to recognize objects based on names is
a crucial capability for personal robots. Recent recognition
methods successfully learn to recognize objects in a train-once-
then-test setting. Yet, these methods do not apply readily to
robotic settings, where a robot might continuously encounter
new objects and new names. In this work, we present a
framework for Never-Ending Object Learning (NEOL). Our
framework automatically learns to organize object names into
a semantic hierarchy using crowdsourcing and background
knowledge bases. It then uses the hierarchy to improve the
consistency and efficiency of annotating objects. It also adapts
information from additional image datasets to learn object
classifiers from a very small number of training examples. We
present experiments to test the performance of the adaptation
method and demonstrate the full system in a never-ending
object learning experiment.

I. INTRODUCTION

Humans are capable of learning continuously: we can
learn to recognize new objects and to associate new names
to existing objects. To be useful in long term, open ended
deployments, personal robots must be able to do the same.
But the predominate approach to object recognition is to train
object classifiers on a predetermined set of objects with a
predetermined set of names and then to test their performance
on new instances of the same set of objects and names [1],
[2], [3]. This train-once-then-test approach is inadequate for
personal robots, as it is infeasible to assume that all objects
and all possible names that people refer to them by are known
in advance. So for these robots to be useful, they require the
ability to learn not only new objects, but also new names to
existing objects over time [4].

To see the potential problem of not learning new object
names, we asked workers on Amazon Mechanical Turk
(AMT) to name objects in a popular RGB-D dataset [2].
This dataset contains objects that are organized according
to WordNet categories (a pre-specified set of names). We
found that only 75% of the names given by the workers are
included in WordNet. Thus even if a robot correctly labels
100% of the objects to their WordNet categories, it would only
correctly name 75% of the objects to their AMT worker names
simply because it lacked the ability to associate new names to
existing ones. This is important, because people do not only
use category names to refer to objects [5]. For instance, a can
of “Pepsi Cola” might be referred to as “Pepsi”, “pop”, “soda”,
“can”, or “Pepsi can”. To deal with the challenge of learning
novel objects and names, we introduce NEOL, a framework
for Never-Ending Object Learning. NEOL learns objects and
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their names continuously, adding and improving classifiers
after every object encounter—rather than learn everything in a
single training session with the train-once-then-test approach.

There are two main challenges to developing a framework
for never-ending object learning. First, how should objects and
their corresponding names be organized? A naı̈ve approach
would be to train an independent classifier for every object
name, using instances with that name as positive examples
and instances of all other object names as negative examples.
However, this approach ignores the important relationships
between names. For instance as apples are also fruits, every
object named “apple” should also be a positive training
example for the name “fruit”. A lot of false positives will
happen if the naı̈ve approach is deployed, and could be
especially harmful for never-ending learning paradigm, where
training data are quite limited. We decide to organize names
and objects according to semantic hierarchies of concepts.
Semantic hierarchies of concepts have been shown to be useful
in building classifiers for object recognition, and improving
the recognition accuracy [1], [6], [7]. Most existing works use
existing hierarchies, which may not be optimal for their tasks.
To deal with this challenge, NEOL automatically learns a
hierarchy over object names using crowdsourcing—inserting
new names as they occur.

The second challenge for never-ending learning is to learn
object classifiers from a very small number of training
examples, which is particularly important when an object is
encountered for the first time. One approach is to use existing
annotated images collected for non-robotic applications [1],
[8]. However, these images may be very different from those
perceived by the robot (Figure 1). To understand how different
they are, we trained object recognition classifiers on ImageNet
dataset [1], and tested on the RGB-D object dataset [2]. We
found the average precision across all objects on the RGB-D
object dataset to be 33% lower than the average precision
across same type of objects on the ImageNet testset. This
drop in performance is not due to the difficulty of the RGB-
D dataset, but rather due to the fact that ImageNet images
have very different and diverse appearances. For example,
cereal boxes can be classified on the ImageNet testset with
more than 90% precision. However, the same classifier has
less than 50% precision on the “easier” cereal box images
in the RGB-D dataset. As we will see, NEOL uses domain
adaptation to leverage existing image datasets while avoiding
poor performance usually associated with domain transfer.

Our contributions: We introduce NEOL, a principled
framework for robots to learn new objects and new object
names over time. We extend our previous method for building
semantic hierarchies of names using existing knowledge bases.



(a) cereal box samples from Ima-
geNet (top) and RGB-D (bottom).

(b) Average precisions of ImageNet
classifiers tested on ImageNet vs
RGB-D.

(c) pear samples from ImageNet
(top) and RGBD (bottom).

Fig. 1: ImageNet images have very different appearance from the RGB-
D images. Recognition models built using the ImageNet dataset performs
poorly on the RGB-D dataset.

We design a novel method that uses both in-domain RGB-D
images and out-domain images to accurately recognize objects
by names. Extensive evaluations of the proposed method show
the robust results even under challenging settings.

The remainder of this paper is structured as follows: After
discussing related work in Section II, we present the NEOL
framework in Section III, the experiments in Section IV, and
the conclusion in Section V.

II. RELATED WORK

Object Recognition: The predominant approach to object
recognition is to learn classifiers based on labeled training data
and to test the classifiers on held out data [2], [1], [3]. Such
approaches, for example deep convolutional neural networks
(CNN) [3], have obtained state-of-the-art performance on
many large-scale classification tasks, including on RGB-D
recognition [9] and on the ImageNet challenge [3]. However,
CNNs require large amounts of training data to reach this
level of performance and they do not address the setting where
new objects and new names need to be added to the system.
Despite this limitation, CNNs can extract discriminative
features that are generic to all (even unseen) objects. For this
reason, we chose to use a CNN trained on ImageNet [10] as
a feature extractor.
Never-Ending Learning: Never-ending learning systems
have been of the latest interest because they can learn many
possible functions (i.e., different types of knowledge) in
a cumulative nature. The functions learned over years of
accumulation form an extensive background knowledge that
improves subsequent learning [11]. Early works have focused
on learning natural language (e.g. Never-Ending Language
Learning [12]), learning visual information (e.g. Never-Ending
Image Learning [13], [14]), autonomous control [15], and
others. In this work, we build a never-ending system to learn
to recognize objects through communicating with humans,
which is a new direction of never-ending learning. It also
worth noting that most never-ending learning work focus on
coverage of knowledge rather than accuracy, therefore cannot
satisfy the requirement of robotics applications. Our system
emphasizes both coverage and accuracy.

Name Hierarchies: Semantic hierarchies have been shown to
improve the scalability and efficiency of building recognition
algorithms. For example, Deng et al. [6] deploy a hierarchy
to efficiently annotate objects with multiple labels. Lai et
al. [7] organize objects into a semantic tree to enable scalable
recognition in real-time. The hierarchies in these works are
either taken from online knowledge bases [16], or are hand-
designed by domain experts [6]. However, the world we live
in is complex and cannot be fully specified in advance; for
a personal robot to interact with humans well it must be
able to continuously update its hierarchy. To address this
issue Blei et al. [17] propose a method to automatically build
hierarchies, while Sun et al. [4] propose a method to insert
new names into an existing hierarchy as leaf nodes. Both of
these methods have shortcomings; The method in [17] fails
to capture relationships between concepts as perceived by
people, while Sun et al. fails when a new name is an internal
node. A recent work by Sun et al. [18] propose building
concept hierarchies from scratch using crowdsourcing in a
principled way. This method can handle inserting new names
as both leaf and internal nodes. We extend the work by
combining the crowdsourcing and existing knowledge bases
to build hierarchies efficiently and cost-effectively.
Domain Adaptation: Many large-scale labeled image
datasets, such as ImageNet [1] and LabelMe [8] have
been established recently for evaluating computer vision
algorithms. These datasets are inherently biased to their
application domains [19] however, and models built using
these datasets do not generalize well to robotics applications
since it was not their intended application. To deal with
dataset bias, many visual domain adaptation methods have
been introduced; for example, unsupervised adaptation [20],
[21], supervised adaptation [22], deep architecture based
method [23]. However, these methods are only able to adapt
the visual data from source to target domains when the labels
from both domains are the same, which is not the case for
many robotics application scenarios.

III. APPROACH

Figure 2 shows the pipeline of NEOL. The input to NEOL
is a stream of object images and associated names. If an
image-name pair contains a new name, then NEOL inserts
the name into the hierarchy using crowdsourcing and a
background name hierarchy such as WordNet (see Section III-
B). The new object image is then added to the training
data, and the name annotation is propagated according to
the hierarchy. For instance, if NEOL has already incorporated
“apple” and “pear”, then the insertion of the new object name
“fruit” would automatically tag all previous “apple” and “pear”
images as positive examples for “fruit” (see Section III-A).
To improve the performance of the image classifiers, NEOL
uses annotated images from an existing dataset whenever
possible (Section III-C).

We use the following notations.N = {n1, . . . , nL} denotes
a set of names, and O = {o1, . . . , oM} a set of object images.
Each om is associated with at least one name in N . All names
in N are organized in a tree-structured hierarchy H . We use



Fig. 2: Pipeline of NEOL. At each time, the input consists of an object
image and an associated name. If the object name is new, then NEOL updates
the name hierarchy using crowdsourcing and information available from
an existing word hierarchy. The following step is to propagate the name
annotations of images using the updated hierarchy. In the final step, NEOL
updates all corresponding image classifiers, using background images to
improve generalization.

f1, . . . , fL to denote classifiers that take the image feature
xm of an object image om and predict fl(xm) indicating
whether om should be annotated with the name nl.

A. Hierarchies for Consistent Image Annotation

As we will show in our experiments, organizing object
names into a hierarchy significantly improves the training
of visual object classifiers. This is mostly due to the fact
that the same object might be referred to by multiple names,
causing sparsity of training data and even confusion for the
image annotation. For instance, imagine a pear is presented
to the robot along with the name pear. This image should
obviously become a positive training example for a pear
classifier. Unfortunately, it is not obvious how to use this
image for the other classifiers since it is not necessarily
a negative example for every other name. By knowing
the hierarchical organization over names, a system could
determine, for example, that the pear image should also
become a positive example for the fruit classifier, thereby
adding to that classifier’s training set and avoiding that it
becomes a negative example for the fruit classifier.
NEOL uses a hierarchical organization over object names

to keep its image annotations consistent (we assume that
all the names have already been inserted into the hierarchy
in this subsection, and will discusse how to generate the
hierarchy in the next subsection). If an object is labeled as a
positive example of a name nl, then the positive label will
be propagated up along the path between nl and the root
node of the hierarchy. At the same time, the object becomes
a negative example for all other nodes in the hierarchy except
the descendants of nl. This is due to the fact that, without
further annotation, it is not known which of nl’s descendants
the object belongs to. Figure 3 demonstrates label propagation
using a hierarchy.

Fig. 3: Label propagation using a hierarchy. The red sign is the label given
by a person. The green signs are propagated using the hierarchy. Since fruit
is a food in the hierarchy, the pear image should also be labeled as a positive
example of food. It can furthermore be inferred, for instance, that food is not
a container. Without additional information, it cannot be inferred whether
the new object should be a positive or negative example for pear or any of
the other descendants of fruit.

B. Building a Name Hierarchy via Crowdsourcing

As stated above, existing name hierarchies such as the
WordNet ontology do not contain all possible names people
might use to refer to objects. Furthermore, these hierarchies
are built by domain experts and do not necessarily conform
with people’s ideas of how object names relate to each other.
Therefore, we decided to incorporate an online hierarchy
learning approach into NEOL. Specifically, we adopt and
extend our previous method [18] to build name hierarchies.
We summarize the gist of the method in the following, and
more details can be found in [18].

Specifically, we want to build a hierarchy H over L
nodes (names) by asking crowdsourcing workers questions
regarding the hierarchy structure. Our goal is to find the
hierarchy that best matches workers’ answers, in a space
H = {H1, . . . ,HM} over all possible hierarchies with
L nodes. However, workers’ answers are inherently noisy.
Even if every worker gives his best possible answers, name
relationships might be ambiguous and there might not exist
a single hierarchy that consistently explains all the workers’
answers. To capture the uncertainty over semantic hierarchies
and worker noise, we use a Bayesian framework to estimate
probability distributions over hierarchies, rather than using a
single, best guess.

The key challenge here is the huge number of candidate
hierarchies, which is (L+1)L−1 for L+1 nodes (we add one
root node), resulting in 1,296 trees for 6 names, but already
2.3579e+09 trees for only 11 names. It is thus intractable to
directly model the distribution as a multinomial. We introduce
a compact model to represent the family of distributions over
hierarchies:

P (H|W ) =

∏
ei,j∈H Wi,j

Z(W )
, (1)

where Wi,j is a non-negative weight for the edge ei,j
representing whether node nj is an immediate descendent of
node ni, and Z(W ) =

∑
H′∈H

∏
ei,j∈H′ Wi,j is the partition

function.
Our method updates the model parameter W by asking

workers a sequence of questions q(1), . . . , q(t), . . . and getting
the corresponding answers a(1), . . . , a(t), . . .. Each question
q(t) is posed to determine whether a direct path pi,j exists in



the hierarchy from ni to nj .An example would be “Is apple
a type of fruit?”. The answer a(t) to the question is denoted
as ai,j ∈ {0, 1}, where ai,j = 1 means a worker believes
that there is a path from node ni to nj , and vice versa. The
method then updates the posterior P (H|W (t)) at the (t)-th
iteration using Bayes’ rule:

P (H|W (t)) ∝ P (H|W (t−1))f(a(t)|H), (2)

where f(a(t)|H) is the likelihood of getting answer a(t) given
the hierarchy H . It can be defined as follows

f(ai,j |H) =

{
(1− γ)ai,jγ1−ai,j , if pi,j ∈ H
γai,j (1− γ)1−ai,j , otherwise

.

Here pi,j ∈ H checks the existence of the path pi,j in H
and γ is the noise rate of workers.

Unfortunately, the likelihood is not conjugate to the
posterior. Hence, there is no analytical form for updating
the weights. Sun et al. [18] propose to update the weight
matrix by approximate inference. The optimal solution W ∗

is found by minimizing the KL-divergence [24] between
P (H|W ) and P (H|W (t))f(a(t+1)|H):

W ∗ = argmin
W

KL(P (H|W (t))f(a(t+1)|H)‖P (H|W )),

which can be solved efficiently using sampling method and
gradient descent.

Though using crowdsourcing to answer a single question
is inexpensive, answering all relevant questions via crowd-
sourcing is still very costly, especially for building large
hierarchies. To save questions, the approach from [18] selects
the sequence of path questions based on information gain,
thereby reducing the number of questions needed to be asked.

Additionally, due to the noise in workers’ answers, the
same question has to be answered by multiple workers to
improve confidence. Fortunately, we can avoid asking a lot
of questions using source domain semantic hierarchies, e.g.
the WordNet. To see, if both nodes ni and nj are in the
WordNet hierarchy, we can use WordNet to answer the path
question pi,j by checking whether ni is a hypernym of nj in
WordNet. Since WordNet is built by experts, the error rate γ
for that answer would be very small. On the RGB-D dataset,
we found that using WordNet for answering questions saves
about 40% of the queries, also resulting in a learned hierarchy
that is more consistent with WordNet if there are overlapping
nodes between the them.

After collecting sufficient information from workers and
WordNet, our approach produces a very concentrated prob-
ability distribution over a few hierarchies. NEOL uses the
Maximum A Posteriori (MAP) hierarchy for label propa-
gation. Finding the MAP tree of the distribution defined
in equation (1) can be accomplished efficiently using the
minimum-spanning tree algorithm [25].

C. Leveraging Background Datasets

We now show how to incorporate images and labels from a
background dataset to build classifiers that generalize well in
the robotics target domain. In what follows, we use the term

target domain to refer to the environment where the robot is
observing the objects, and source domain to refer to additional
background knowledge bases such as WordNet and ImageNet.
Following standard convention, we use superscript S to
indicate concepts from the source domain, and superscript T
for the target domain.

Using the hierarchy and a set of image-name pairs provided
by humans, the robot is able to annotate training images
xT
1 , . . . ,x

T
M with name labels yT

1 , . . . ,y
T
M from the target

domain. Each xT
m ∈ Rd has two components, xT

m,RGB ∈
RdRGB and xT

m,depth ∈ Rddepth , corresponding to features
extracted from an RGB image and a depth map, respectively.
(Though we assume a robot is using an RGB-D camera,
our method can be easily extended to other sensors. Feature
extraction methods are also flexible and can be changed for
different applications.) yT

m ∈ {0, 1}L are the annotations
of om, where y

(l)T
m = 1 indicates that the object om can

be referred to by the name nl. Some elements of y are
provided by humans by referring objects to the robot using
the corresponding names. The rest of y are inferred using
the label propagation method described in section III-A.

In the never-ending learning setting, a challenge is that
a robot might not be able to acquire a large number of
training examples for each label. For instance, it might
initially see only a single soda can, which makes it extremely
hard to generalize to other types of soda cans. To increase
generalization capabilities, NEOL uses additional training
images from an existing background, or source domain
dataset, such as ImageNet [1]. The source domain dataset
has a large amount of RGB images for a set of categories
N S = {nS1 , . . . , nS

N}. NEOL uses the same feature extraction
method applied to target domain RGB images to extract
features xS

1,RGB , . . . ,x
S
M,RGB from source domain images.

Note that some target domain names in N T might not
exist in the source domain N S . NEOL deploys the hierarchy
HT over the target domain to find source domain images
even when the name is not in N S . To see, if a name nTl
is also in N S , then the label of y(l)S for the name nTl will
be the direct copy from ImageNet. If a name nTl is not in
N S , but some of its descendant nodes nTl1 , . . . , n

T
ln

in the
hierarchy HT are in N T , then all images from ImageNet
with any labels in nTl1 , . . . , n

T
ln

will also be labeled as nTl . For
instance, the name “crockery” is not in ImageNet. However,
it is a parent of “saucer” and “dish” in the learned hierarchy.
Since these categories are in ImageNet, NEOL can use images
from these two categories and their descendants as positive
examples for “crockery”.

Even if the source domain and the target domain images
are from the same category, the images can be very different,
causing a significant performance drop when the classifiers
built on the source domain are applied directly to the target
domain (Figure 1 (b)). To deal with such a domain-mismatch,
our method is based on the observation that the source domain
dataset is often the combination of several distinct sub-groups,
each of which has its own characteristic [20], [26]. Some
groups are more similar to the target domain, while some



others are not. For example, the top row of Figure 1 (a)
shows images of cereal boxes from ImageNet. Some of them
are more similar to the cereal boxes in the RGB-D dataset
(bottom row), which are mostly single cereal box images.
Some are not, e.g., images with cereal boxes on a shelf. If we
model the source domain dataset using a single model, the
discriminative information from the different groups will be
mixed together, thereby diminishing the benefit of adding the
source domain. To avoid this, we group source domain images
into different sub-groups and a learn specific classifier for each
sub-group. For grouping, we have tried both sophisticated
methods [20] and simple clustering methods such as K-means.
The performance of the different methods was very similar
in our context, so we decided to use K-means to partition
the full source-domain dataset into K groups.

Next, we build one classifier for each sub-group by
combining all the target-domain RGB and depth images with
the source domain images from that sub-group. A classifier
for the k-th sub-group in the l-th category is learned by
optimizing the following objective:

wl(k) = argmin
w
‖w‖2 + C1

MT
k∑

m=1

h
(
w′RGBx

T
m,rgb, y

(l)
m

)

+ C1

MS∑
m=1

h
(
w′RGBx

T
m,rgb, y

(l)
m

)

+ C2

MS∑
m=1

h
(
w′depthx

T
m,depth, y

(l)
m

)
,∀l ∈ {1, . . . , L}

where w = [w′RGB ,w
′
depth]

′, h(·, ·) is the hinge loss, and
MT

k are the target domain images in the k-th cluster. C1 and
C2 balance the importance of RGB and depth channels. This
objective function incorporates RGB images from both the
source and the target domains, as well as depth information
that exists only for the target domain. When applying the
models to predict new images from class l, we average the
prediction scores given by all the K sub-group classifiers.

IV. EXPERIMENTS
We evaluate the quality of NEOL via two sets of exper-

iments. First, we evaluate the method used by NEOL to
leverage background image databases. Next, we evaluate the
full system of NEOL under the never-ending learning setting
in Section IV-B. The hierarchy building method described
in III-B has been demonstrated to be effective in [18], and
we refer readers to that paper for more details.

A. Leveraging Background Image Databases

We use the RGB-D dataset [2] as the target domain dataset,
and ImageNet [1] as the source domain to evaluate the domain-
adaptation method of NEOL. The RGB-D dataset contains
300 objects organized under 51 categories. The task is to
build classifiers for the 51 categories using training data, and
evaluate the average classification accuracy over all categories
on a testing set.

We compare our approach with several competing ap-
proaches (summarized in Table I). The Baseline method

TABLE I: Comparison of category level classification accuracies on the
RGB-D Object dataset. LOIO: Leave One Instance Out. 1I/C: 1 instance per
category. 1V/O: 1 view per object. Differences in accuracy relative to the
baseline method are marked by colors (red: improvement, blue: performance
decrease). All numbers are averaged over 10 random data splits.

Category Accuracy(%)

method LOIO 1I/C 1V/O
RGB/D RGB/D RGB/D

Baseline [9] 83.6/89.2 58.8/67.3 65.1/70.2
Baseline-S −58.7/−−− −33.9/−−− −40.2/−−−

Baseline-T+S −6.4/−5.3 −5.0/−3.9 −20.1/−17.9

GFK [21] −53.2/−−− −28.4/−−− −34.7/−−−
Fru [22] −1.1/−1.8 +1.4/−0.5 −6.4/−4.9
NEOL +1.3/+0.9 +5.5/+5.9 +4.6/+2.8

NEOL 84.9/90.1 64.3/73.2 69.7/73.0

is trained only on RGB-D data using CNN-features [9]
extracted via Caffe [10] (this method achieves state-of-
the-art performance on the RGB-D dataset, but any other
features could be used as well). Baseline-S uses classifiers
only trained on the source domain ImageNet, and GFK
uses a domain-adaptation method on ImageNet data [21].
We further compare with several methods using both the
target and the source domain images. Baseline-S+T simply
combines source-domain and target-domain images into a
larger-size training set. Frustratingly-easy domain-adaptation
is a supervised method [22] (Fru), which achieves state-of-
the-art performance in many domain-adaptation tasks. If a
method does not specify a classifier, linear SVM is used. For
all the comparison methods, we use the default parameters.
For the adaptation used in NEOL, the parameter K is set to be
10 across all the experiments (we tried larger Ks, but did not
observe a significant difference). The results are summarized
in Table I, where the first and last row give absolute accuracies,
and the other rows provide changes relative to the baseline.
Leave One Instance Out (LOIO) For the first experiment,
we conduct Leave-One-Instance-Out test following the proto-
col in [2]. Each object in both training and testing set has
90 views.

The target-domain baseline method achieves 89% accuracy.
But the other methods except for NEOL cause decreases in
performance. Methods using only source domain images do
not consider the target domain, therefore perform the worst.
Simply combining source-domain and target-domain data
without adaptation also harms the performance (Baseline-
T+S). Frustratingly-easy domain adaptation (Fru) builds a
single domain adaptation model using a feature replication
method to bridge the gap between domains. Although it
improves the performance over the naive combination, the
performance is still worse than the baseline method, which
uses only target domain data. Our approach outperforms the
baseline methods with 1.3% and 0.9% improvement on RGB
and RGB-D data, respectively. The improvement over the
baseline is statistically significant.

It is worth noting that the LOIO setting in the first
experiment has a large amount of target-domain training
instances and poses. Several methods in Table I perform well
with sufficient training examples. However, in never-ending
learning, training instances may be sparse. Therefore, we test
all the competing methods under the small-training-set setting



(a) Iterations vs Depth of the MAP Tree
and the number of unique names.

(b) AUC on new instances. (c) AUC on seen instances.

Fig. 4: Results of the Never-Ending-Object-Learning experiments. (a) shows growth of tree and number of unique names as objects are presented. (b,c):
Baseline uses classifiers that determine training sets only through direct name labels. Ada means Baseline plus adaptation, Tree is Baseline plus hierarchy
for label propagation. NEOL uses both adaptation and hierarchy.

in the following experiments.
One Instance per Category (1I/C) For the second experi-
ment, we give only one target-domain instance of each object
category for training. To compare with LOIO, we adopt the
same testing protocol and leave one instance out of each
category as testing set. The second column of Table I shows
the results. As the number of training instances decreases,
the performance of the baseline drops to 67.3% (RGB-D).
Baseline-T+S and Fru use source domain images, yet do not
manage to improve the performance over the baseline. On
the other hand, NEOL achieves a 5.9% improvement over
the baseline. NEOL gains more relative improvement when
only target-domain RGB images are used, compared with
using both RGB images and depths (RGB-D). This can be
explained by the fact that ImageNet has only RGB images.
One View per Object (1V/O) For the third experiment,
we evaluate how different methods handle variance between
object poses. We follow the leave-one-instance-out setting
in the first experiment, but only give 1 view for each
training instance (1V/O in Table I). NEOL obtains a 2.8%
improvement over the baseline methods, which shows the
advantage of using NEOL to cope with the variance between
object poses.

To summarize, the domain adaptation performed by NEOL
is the only one that can take advantage of additional image
data available in ImageNet. Furthermore, the improvements
are not drastic, since the CNN features already incorporate a
lot of stability with respect to features invariances.

B. Never-Ending Object Learning

We evaluate NEOL on the task of never-ending object
learning. The setting is as follows. A person is continuously
teaching a robot objects by showing it a few views and names
of the objects. The performance of the robot is evaluated on
both previously seen and unseen objects, and asking it to
recognize objects that can be referred to by any names known
to the robot. The task is a multi-label problem, therefore the
performance is measured by the average AUC over all labels.

We simulate the previous setting using the RGB-D dataset
by selecting 150 objects for sequencial training. At each

iteration, one of the objects is randomly picked and shown to
the robot. The robot is given 3 views of each object, and gets
one name of the new object from a worker at AMT (generated
by providing the worker images of the object). The iterative
process repeats for 2, 000 iterations in each trial. We repeated
10 random trials and report the average performance in this
section. The remaining 150 instances of the RGB-D dataset
are used only for testing the performance.

At each iteration, the robot uses NEOL (Figure 2) to
improve the classifiers: first, if the name is new, it inserts the
name into the hierarchy using the method described in III-B;
second, it updates training examples and annotations using
the hierarchy as described in III-A; finally, it updates the
classifiers of existing names using the domain adaptation
method following section III-C. We modify the second step
by treating all unknown labels (marked by “?” in Figure 3)
as negative rather than ignoring them during training. Even
though this modification might introduce a few false negative
examples, it gives improved results since it avoids ignoring
many training examples.

Figure 4 (a) plots some important statistics of the hierar-
chies built by the system. The red curve shows the number of
unique names used by workers to refer to objects. It increases
almost linearly for the first 200 iterations, because almost
all the objects are new to the robot, and new objects yield
new names. The number of names still grows between 200
and 1, 500 iterations due to the fact that different people
use different names to refer to the same object. After 1, 500
iterations, the number remains flat since new names are very
rare. The curve showing the depth ot the MAP hierarchy tree
has a similar trend. The hierarchy has about 4 levels after
about 50 iterations, and eventually grows to 7 levels.

Figure 4 (b) shows the performance of applying the learned
models to recognize new objects. We compare both NEOL
and the baseline [9] in this experiment, which does not take
advantage of the hierarchy or ImageNet data. To evaluate
how different components of NEOL contribute to the full
system, we also include two more baselines by adding the
hierarchy (Section III-B) and adaptation (Section III-C) to
baseline, denoted as Tree and Adaptation, respectively.



After the first iteration, NEOL attains an AUC of 0.5, while
the baseline only achieves 0.4. Since there is only one name,
using the hierarchy does not yield a lot of information. Ada
and NEOL thus perform almost identical. This suggests that at
the early stage, the gain of NEOL is mainly due to the domain
adaptation. The hierarchy starts showing its effectiveness after
50 iterations. As the hierarchy gets deeper, it is able to capture
meaningful semantic relations between names. As can be seen
in Figure 4 (b), Tree surpasses Ada at around 200 iterations.

After 1, 000 iterations, the marginal improvement of NEOL
compared with the baseline is still over 10%. As more objects
are shown to the robot, NEOL and the baseline converge, but
NEOL retains a 5% advantage until 2, 000 iterations. This
shows that NEOL is able to learn new objects and names
more efficiently than the state-of-the-art methods.

We also apply different methods to different views of the
instances that have already been shown to the robot. The
results are shown in Figure 4 (c). Note that the AUC initially
drops since as more objects are added, there is more chance
for confusion. Among all the competing methods, NEOL
performs the best. Since NEOL has seen some labels of these
objects during the training stage, it achieves much higher
AUC on these objects than unseen objects.

V. CONCLUSIONS

In this paper, we presented the never-ending learning
framework NEOL for a robot to learn new objects and names
over its lifetime. NEOL organizes the stream of object images
and names into a semantic hierarchy using crowdsourcing.
The number of queries for building the hierarchy can be
reduced by leveraging an existing knowledge base such as
WordNet. NEOL uses the hierarchy to organize the objects it
perceives and to ensure that image annotation is consistent.
NEOL also includes a domain adaptation method to combine
images from existing image databases with the images the
robot perceives in order to better generalize to unseen objects.

Our experiments on the RGB-D dataset using ImageNet and
WordNet as additional background information demonstrate
that NEOL is able to learn objects efficiently and effectively
under the setting of never-ending object learning. The exper-
iments also show that building and using a name hierarchy
for consistent image annotation significantly improves the
classification capabilities of NEOL. Using ImageNet as addi-
tional background knowledge further improves performance,
where the improvements due to domain adaptation are most
significant when only small sets of objects are perceived in
the environment.

In this work, NEOL uses the MAP hierarchy over names
to propagate annotations. However, there might not always
exist a unique, correct hierarchy. For example, some people
think “tomato” is a type of “fruit”, but others may think it is
a “vegetable”. Our hierarchy building algorithm [18] is able
to capture such uncertainty over hierarchies and it would be
interesting to consider uncertainty in building a recognition
system that is robust to “miscommunication” between humans
and robots.

Videos illustrating the learning process are available at
http://rse-lab.cs.washington.edu/projects/neol.
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