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Abstract— Identifying objects based on language descriptions
is an important capability for robots interacting with people
in everyday environments. People naturally use attributes and
names to refer to objects of interest. Due to the complexity
of indoor environments and the fact that people use various
ways to refer to objects, a robot frequently encounters new
objects or object names. To deal with such situations, a robot
must be able to continuously grow its object knowledge base.
In this work we introduce a system that organizes objects and
names in a semantic hierarchy. Similarity between name words
is learned via a hierarchy embedded vector representation. The
hierarchy enables reasoning about unknown objects and names.
Novel objects are inserted automatically into the knowledge
base, where the exact location in the hierarchy is determined
by asking a user questions. The questions are informed by the
current hierarchy and the appearance of the object. Exper-
iments demonstrate that the learned representation captures
the meaning of names and is helpful for object identification
with new names.

I. INTRODUCTION

Identifying objects specified by a person enables an
autonomous robot to do many real world tasks. People
refer to objects using natural language describing object
attributes. For example, “red” is a color attribute and “Chex
box” is a name attribute. Attributes have been used in the
context of various computer vision tasks, such as object
recognition [25], “zero-shot” learning [14] and generating
descriptions of unfamiliar objects [5]. Using object names is
a powerful way to refer to objects in identification tasks [22].
Previous techniques using attributes assume that all attribute
values are known beforehand. However, due to the complex-
ity of indoor environments and since there are many different
names that can refer to objects, a robot will inevitablely
encounter unknown objects and names. The goal of our work
is to enable robots to identify and learn object names in such
a challenging setting.

Object names are semantically related and naturally orga-
nized in a hierarchy, as illustrated in Fig. 1. Making use of
the semantic structure has been shown to outperform building
classifiers for each name independently in various learn-
ing problems, such as learning many object categories [7],
[13] and understanding new words in language [26]. The
hierarchical organization of object names is also useful
for identifying novel objects. For example, given the name
hierarchy shown in Fig. 1, even if a system has never seen a
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Fig. 1: Part of an object name hierarchy.

Fig. 2: Using the name hierarchy in Fig. 1, the correct object in
“Pick up the Chex” can be identified through the “Cereal Box”
classifier, even without having observed a Chex box before.

Chex box when a person says “Pick up the Chex” (Fig. 2),
the system can identify the correct object using its “Cereal
Box” classifier, since “Chex” is known to be a type of cereal.

Yet not all names encountered by a robotic system are
included in an existing hierarchy. While popular semantic
hierarchies such as WordNet [6] cover many category names
like “Cereal box”, people often refer to objects by their
instance names (e.g., “Chex”), which are not included in the
hierarchy. People may also use different words for the same
concept, e.g., people might call a “mug” a “cup”. It is thus
important for an autonomous system to automatically extend
the hierarchy by inserting new instance names into the right
place and associating synonyms with existing words in the
hierarchy.

To insert an unknown name into the hierarchy, we need to
find a path of words in the hierarchy such that all words are
hypernyms of and semantically similar to the target word. A
traditional way of measuring the similarity between words is
by representing each word using a vector and computing the
distance between vectors to find words that are close to each
other. Earlier studies represented a word with binary vector
representation, of which each element is a bit indicating
whether a word exists in a document [15]. More sophisticated
semantic vector space models use continuous feature vectors
computed from the frequency of context words [24]. This
representation has been proven to have good correlation with
human judgment of word similarity [8] and is used widely



in practice.
In this paper, we propose a method to learn a vector space

representation of words which captures hierarchy informa-
tion. In the new space the distance between words is coherent
with the distance within the name hierarchy, such that the
system can find a path containing hypernyms of the new
word from the existing hierarchy more accurately. We also
propose to interact with a user to find the exact meaning of
a name in order to extend the name hierarchy.

This paper is organized as follows. After discussing related
work in Section II, we introduce the identification system in
Section III. We then propose a name learning method in
Section IV followed by Section V discussing how to interact
with a user for finding the exact meaning of names. We show
the effectiveness and efficiency of the proposed system in
Section VI. Finally we conclude in Section VII.

II. RELATED WORK

A. Learning Attributes

Visual attributes have been successfully used in many
computer vision applications. Farhadi et al. [5] describe
unfamiliar objects by their attributes and show that at-
tributes are generalizable to new categories. Lampert et
al. [14] use attributes for doing “zero-shot” learning and
show attributes are useful to detect unseen object categories.
Parikh et al. [18] model relative attributes and show the
advantages over binary attributes in solving tasks such as
image retrieval. Sun et al. [22] use attributes to identify
objects. Besides appearance attributes, like color, shape and
material, names are also treated as attributes. Most attribute
works [5][14][18][22] assume that all attribute values are
known beforehand in order to train corresponding classifiers.
In practice, however, a robot is likely to face new names since
people may use various names to refer to both known and
unknown objects.

B. Learning Word Meaning

Many efforts have been made to learn the meaning of
new words. One way is using domain experts’ knowledge. A
popular example is the WordNet database [6] that organizes
words in a hierarchy based on semantic meaning of words.
It relates words by synonymy and hypernymy relationship.
This relationship is useful for understanding words since if
a word is included in WordNet, its meaning can be inferred
from its ancestors in the word hierarchy. WordNet covers a
large amount of words which are mostly category names.

Another direction is to learn the meaning of words from
documents. A word can be represented as a vector [4]
generated from a large corpus of documents. The vector is
computed based on the word frequency within the context
of the target word, where context could be documents,
paragraphs or other small windows within documents. This
vector representation has been used to solve many useful
natural language applications such as search query expan-
sion [10], information retrieval [19] and automatic annotation
of text [20]. However, it does not consider structured se-
mantic meaning such as synonym or hypernym relationship.

Attribute Types Attribute Values
Color black, blue, brown, gray, green, orange, pink, red,

transparent, white, yellow
Shape bag, bowl, circular, cuboid, cylinder, ellipsoid,

rectangle
Material ceramic, foam, glass, metal, natural, paper, plastic

TABLE I: Appearance attribute values used by our system.

Here, we want to learn a vector representation embedding the
structured relationship and make the representation coherent
with experts’ knowledge such as WordNet.

In the computer vision community, many efforts have
been made to ground the meaning of words using perceptual
information. ImageNet [3] is a large-scale ontology of images
built upon WordNet. Each category word is grounded with
many images of that category. Matuszek et al. [16] combine
perception with language to ground attribute words. Their
system focuses on grounding words into color and shape
attributes. Lai et al. [13] organize objects as a semantic tree
for learning many categories. They assume the system knows
all object names and is not able to handle new objects and
names. In this work we focus on understanding new names,
to be more specific, inserting new names into the right place
in an existing hierarchy using an embedding vector space
representation of words.

III. IDENTIFICATION SYSTEM

In this paper, our goal is to build an identification system
for RGB-D scenes, so that a human can interact with
the system by natural language. In the training stage, we
learn a set of attribute classifiers and name classifiers from
segmented RGB-D objects and the corresponding labels. In
the test stage, a user refers to a target object using natural
language describing object attributes and names, for example
“Give me my coffee mug. It is blue”. Given a scene with N
objects {o1, · · · , oN} and a sentence, the system first extracts
appearance attribute values {a1, · · · , aK} and a name w
from the sentence, and then identifies the target object by

o∗ = arg max
o∈{o1,··· ,oN}

P (w|o) ΠK
k=1P (ak|o) (1)

where K is the number of attributes used in the sentence.
Here, we assume that attributes and name are independent
given an object o. Next we will discuss how to estimate the
likelihoods P .

A. Appearance Attributes

Our system handles 3 types of appearance attributes: color,
shape, and material, as shown in Table I. For each attribute
type we model the probability using a multinomial logistic
regression model as

P (akt |o) =
exp(F k

t Io))∑T
t̄=1 exp(F k

t̄ Io)
, (2)

where T is the number of attribute values for the k-th
attribute type, F k

t is the parameter vector of the linear
discriminative function, and Io is the RGB-D feature vector
of object o extracted using hierarchical matching pursuit,



a feature learning method proposed by Bo et al. [1]. We
learn the parameters {F k

1 , · · · , F k
T } by maximizing the log-

likelihood over labeled objects.

B. Names

We organize object names as a tree hierarchy H. Each
node in the tree is a category like “Fruit”, “Container” or
“Cereal Box”. Each node is associated with all synonyms
corresponding to that category. For example, “Cereal Box”
may be associated with “Food Boxes” and “Cereal Box”.
For every non-leaf node with more than one direct child, we
learn a multinomial classifier over the objects in the different
children of the node. Here, we use the same hierarchical
matching pursuit features as for attributes.

If a person uses a name w that is already contained in
a node nw of the tree H, then we compute the probability
P (w|o) for an object o using the path from the root of the
tree to that node. Let pw = [nw1 → · · ·nw(L−1) → nwL ] with
nwL = nw denote such a path. Then

P (w|o) =

L−1∏
l=1

Pnw
l

(nwl+1|o) . (3)

Here, each Pnw
l

(nwl+1|o) is the probability of node nwl+1 given
the RGB-D feature of object o evaluated via the classifier
trained for node nwl .

If a person uses a name that is new to the system, it is
more challenging to find the correct path. We will handle
this case in the next section.

IV. NAME LEARNING

To handle new names, our identification system needs to
associate new names with existing ones so as to find a path.
Here, we propose a name learning approach. Our system
starts with a set of names, organized in a tree-structured name
hierarchyH. Each node inH contains at least one name word
wi. Given a new name w, the goal is to find a name path
starting from the root node, such that: 1) if the new word is
a synonym of an existing word, the new word will be added
to the node of its synonym; 2) if the new word is a hyponym
(specialization) of a leaf node, then a new node is added as
a child of that leaf node and the name is associated with
that node. In this work, we assume that the system knows
all object categories, therefore don’t consider adding new
categories.

A. New Name Inference

Motivated by the success of Socher et al.’s previous
work [21], we represent a new name word w as a d-
dimensional vector vw ∈ Rd using a vector space model.
vw is given by the co-occurence with other words within a
large document corpus [21]. Each node n in H is associated
with M names represented as {vn1

w , · · · ,vnM
w }. We use the

average vn = 1
M

∑M
m=1 v

nm
w as the vector representation

for that name node. Given a word w and a hierarchy H, we
want to infer the path p = [n1 → · · ·nl · · · → nL] that leads
to a node nL with words that correspond to w. Specifically,
we define a decision function ψ : (w,H,p)→ R to measure

the match score between a path p and a word w given the
hierarchy H, such that

pw = arg max
p

ψ(w,H,p), (4)

where pw is the correct path. In the following, we replace
a word with its vector representation vw, and omit w for
simplicity. For vnl , we use vl when there is no confusion.

For a path p with L words, we compute the decision score
of the path as the sum of scores of all nodes in it:

ψ(v,H,p) =

L∑
l=1

φ(v,vl)

L
, (5)

where φ(v,vl) measures the match score between words v
and vl. The intuition behind (5) is that if p is the real path,
v is semantically close to all vl within the path, resulting
in a high score for each φ(v,vl). The resulting total score
ψ(v,H,p) for the path will then be high as well. The length
of the path L is used to normalize the score so as to remove
the bias toward long paths.

A natural choice of φ(v,vl) is the negative distance
between v and vl as

φ(v,vl) = −(v − vl)
T (v − vl).

However, the original vector space does not explicitly con-
sider the structural semantic information embedded in the
name hierarchy. The correct path might thus not maximize
the score function (5).

B. New Name Learning

To embed hierarchy information into the score function,
we parameterize the score function as

ψA(v,H,p) =

L∑
l=1

φA(v,vl)

L
, (6)

where

φA(v,vl) = −(v − vl)
TATA(v − vl). (7)

Here A ∈ Rd×d is a linear transformation mapping v into
a new space. ATv is a new representation of word w.
φA(v,vl) measures the negative distance between words in
the new vector space. Let W = ATA, We can rewrite (7)
as:

φW (v,vl) = −(v − vl)
TW (v − vl), (8)

W uniquely defines the new space and is usually called
metric.

Learning the parameterized score function can be formu-
lated as a structure prediction problem [23]. To be consistent
with the hierarchy information, the parameterized score
function has to satisfy the following constraints:

ψW (v,H,pw) ≥ ψW (v,H,p),∀v,p

where pw is the ground truth path for v provided for
the training data. Thus, the correct path should have a
higher score than any other path p. We define a shorthand



δWψ(v,p) ≡ ψW (v,H,pw) − ψW (v,H,p), giving us the
set of constraints as

δWψ(v,p) ≥ 0,∀v,p. (9)

If the set of constraints in (9) is feasible, there typically
will be more than one solution W . To make the solution
unique and avoid overfitting [23], we generalize the idea of
max margin and select a low ranking W by minimizing its
trace:

minW tr(W )

s.t. δWψ(v,p) ≥ 1,∀v,p
W � 0.

The condition W � 0 enforces W to be Positive Semi-
Definite (PSD) so as to be a valid metric and decomposable
as ATA.

Different predictions, or paths, p for pw should be penal-
ized with different loss: if two paths diverge at the higher
level of the tree, the loss should be high since two concepts
are too far away from each other. We need a loss function
∆(pw,p) to measure the loss of mis-predicting the real
path pw as p satisfying ∆(pw,p) > 0 for p 6= pw and
∆(p,p) = 0. We use the tree loss, which is the deepest
level in a tree such that p and pw are the same, to capture
the mis-prediction error. Using this loss, the constraint set
becomes

δWψ(v,p) ≥ ∆(pw,p),∀v,p

We determine the parameter of the path score function via
the following convex optimization problem:

minW tr(W ) + C

N∑
i=1

ξi, (10)

s.t. δWψ(vi,p) ≥ ∆(pi,p)− ξi,∀i,p
W � 0, ξi ≥ 0

where ξi are slack variables and i indexes all training
examples.

We gather training examples from the known hierarchy
H. For each non-root word in H, we can find a unique path
from the root. The pair of a node and its path is one training
example. In total, we collect N = |H|−1 training pairs from
the hierarchy.

C. Optimization

The number of constraints in (10) grows quadratically as
|H| increases. Efficiency will thus be an important issue to
handle the large set of constraints. Fortunately, only part of
the constraints define the feasible set of solutions for the
constraint optimization problem, and we can use the cutting-
plane method [9] which efficiently solves constraint problems
because it uses only active constraints.

We adapt the 1-Slack cutting plane algorithm used by
McFee and Lanckriet [17] to our problem. In the original
optimization problem (10), there are N -Slack variables.
The 1-Slack method combines a batch of active constraints

Input: Words representation {v1, · · · ,vN}; rankings
{p1, · · · ,pN }; Slack trade-off C; Convergence
tolerance ε

Output: Metric W
1: W ← ∅, ξ ← 0
2: do
3: update metric

W = arg min
W

tr(W ) + Cξ

s.t.
1

N

N∑
i=1

δWψ(vi,pi
b) ≥

1

N

N∑
i=1

∆(pi,pi
b)− ξ (11)

∀ (p1
b , · · · ,pN

b ) ∈ W

4: for 1 → N do
5: pi

b = arg maxp ∆(pi,p)− δWψ(vi,p)
6: end for
7: W ←W ∪ {(p1

b , · · · ,pN
b )}

8: while ε+ 1
N

∑N
i=1 δWψ(vi,pi

b) ≥ 1
N

∑N
i=1 ∆(pi,pi

b)− ξ

Algorithm 1: Algorithm for learning hierarchy embedded vector
space.

specified as (p1
b , · · · ,pN

b ) into one single constraint. All new
constraints share the same slack variable ξ. It thereby reduces
the number of constraints and slack variables and makes very
large optimization problems solvable.

The algorithm is summarized in Algorithm 1. The algo-
rithm alternates between updating W and updating the active
constraint set W . Line 3 of Algorithm 1 updates W with
constraints specified byW by gradient descent. The gradient
of the function (10) over W is computed as:

∂f

∂W
= I − C

N

N∑
i=1

δWψ(vi,pi
∗),

where ∗ indicates the single batch of constraints
(p1

b , · · · ,pN
b ) with the largest gap between

1
N

∑N
i=1 ψ(vi,pi

b) and 1
N

∑N
i=1 ∆(pi,pi

b). After the
gradient descent update of W , the algorithm projects W
back onto the set of PSD matrices by spectral decomposition.

After updating W , the algorithm finds the pi
b maximizing

the gap between ∆(pi,pi) and δWψ(vi,pi) for the i-th word
(Line 5). (p1

b , · · · ,pN
b ) are put together as the b-th new batch,

which will be added into the active constraint set W .
The cutting-plane method converges when the gap be-

tween 1
N

∑N
i=1 ψ(vi,pi

b) and 1
N

∑N
i=1 ∆(pi,pi

b) is smaller
than a given threshold ε (line 8). Theoretical results guarantee
that it converges quickly [9]. In practice (see Section VI)
we also found that it converges after only few iterations.
Algorithm 1 returns the metric W parametrizing the path
score function given as input.

V. ASKING IDENTIFICATION QUESTIONS

During application of the system, the path p = [n1 →
· · ·nL] determined for a new word w is not always correct.
Inserting w into the hierarchy solely based on the most likely
path p would introduce substantial noise. To avoid this, our
system interacts with a human by asking questions to find
the correct place for w. The best place here means either
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Fig. 3: Hierarchy used in this paper. The numbers in parentheses represent the number of different object instances within each leaf node.

w is a synonym of nL or w is a hyponym of nL and nL
is a leaf node in H. The second case indicates w is a new
instance name.

A. Interaction with Humans

Our system interacts with people by asking questions.
After finding the most likely path p = [n1 → · · ·nL], the
system asks a question for the last node nL to determine
its relationship with the new word. There are three possible
relationships between w and nL: w is a synonym, hyponym
or neither of both. If w is a synonym of nL, it will be
associated with the corresponding node in the tree. If w is
a hyponym of a leaf node nL, w will be inserted into the
hierarchy as a new instance name of nL. If nL is neither
case of w, nL should not be part of the correct path pw. The
system then finds the next best path and repeats the same
procedure. The correct path will eventually be found since
we assume a name is either a synonym of an existing word
or a new instance name.

B. Incorporating Perception

In a real setting, a user uses an object name together with
several appearance attributes in order to uniquely specify the
target object. An intuitive way of deciding which node to
ask about could thus be based on information gain, using
the posterior uncertainty over the objects in the scene, i.e.

n∗ = arg min
n
H[P (o|n, a1, · · · , ak)], (12)

where H[·] is the entropy. Unfortunately, due to the hierar-
chical structure of the tree, (12) cannot be estimated robustly.
Our system estimates P (n, a1, · · · , ak|o) instead. Since a
person attempts to uniquely specify an object in the scene,
we know that only the target object has a high overall score
of

P (w|o)ΠK
k=1P (ak|o), (13)

while the rest of the objects have far lower scores. Base on
this fact, we can infer the relationship between nL and w:
we replace w in (13) with nL to compute the score of (13)
for each object in the scene. If no object has a high score, the
system infers that w is neither a synonym nor a hyponym for

(a) A scene given to student 1. The
student says “Pick up the yellow
clipper.”

(b) A scene given to student 2. The
student says “Pick up the Pepsi.”

Fig. 4: Two example scenes.

nL and rejects the hypothesis nL without asking a question.
If there are several objects with high scores, it implies that
nL cannot make the target object unique, which implies that
w might be a hyponym of nL, where several objects of the
type corresponding to nL are in the scene. We use a threshold
on the score to distinguish these cases.

VI. EXPERIMENTS
We evaluated our name learning and object identification

system with three experiments on our new object attribute
dataset. Our results suggest that, (A), name learning sig-
nificantly outperforms baselines, in terms of accuracy of
associating new names with the existing name hierarchy
(Section VI-B); (B), name learning significantly boosts the
object identification system accuracy, particularly when new
names are being used (Section VI-C); and, (C), name
learning significantly reduces the human effort required to
correctly insert new names into the existing identification
system (Section VI-D).

A. Data Set
We use all 300 objects from the RGB-D object dataset [12]

in our experiments. 150 objects were used to train attribute
and name classifiers. We demonstrate our system is able to
generalize to new instances by testing on all 300 objects.
Name and appearance attribute labels for these objects were
collected using Amazon Mechanical Turk. These attribute
labels are available online at our project website1. Fig. 3

1http://www.cs.washington.edu/rgbd-object-attributes-dataset/
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Fig. 5: Convergence rate of the cutting plane method.

shows the full name hierarchy used by our identification
system. Leaf names are in blue, with number of object
instances in each leaf node given in parantheses. We ex-
tracted features to represent object images using Multi-Path
Hierarchical Matching Pursuit, a feature learning approach
proposed in [1]. Using these features, our system learned
attribute classifiers for color, shape, and material, and an
object name classifier for each node in the hierarchy using
multinomial logistic regression implemented in LibSVM [2].

We generated 600 “scenes”, each containing 6 randomly
picked objects arranged in image panels. On average, half of
the objects have never appeared in the training set. For each
scene, we marked one target object by a red rectangle. Two
example scenes are shown in Fig. 4. The yellow “pliers” is
the target object in Fig. 4 (a), and the “Pepsi” can is the target
object in Fig. 4 (b). We asked 2 students at the University of
Washington to identify the target object using one sentence
for each scene. Each student took charge of 300 scenes.

B. Name Learning

We first examined the convergence rate of the cutting-
plane method for learning the tree-based word representation.
For a name hierarchy with 72 words, there are O(722)
constraints in total. Fig. 5 shows that the proposed cutting-
plane algorithm converges to the given tolerance ε (set to be
1e−5 in our experiment) after only 8 iterations. This indicates
that our learning technique is highly efficient and can be
scaled to even larger data sets.

We next illustrate that the proposed name learning method
captures name hierarchy information. Recall that each word
is originally represented by a vector v extracted from a
large corpus of web documents. Fig. 6(a) shows the 2D
projection (via PCA) of the original 72 word vectors. All
words belonging to the class of natural objects are plotted as
red squares and words belonging to the class of artifacts as
blue diamonds. The words “Artifact” and “Natural Object”
are highlighted using a purple cross and a green triangle,
so that one can see how other words are related to their
ancestors using the original feature representation.

Our approach learns a metric W capturing hierarchy
information. After learning, each v is transformed to a new
vector Av, where A is found via Cholesky factorization
(W = ATA). The learned feature vectors are visualized in
Fig. 6(b).

As shown in Fig. 6(a), Artifact words and Natural Object
Words are not well separated, and the word “Natural Object”

Artifact Words Natural Object Words Artifact Natural Object 

(a) Word vector representation without name learning.

Artifact Words Natural Object Words Artifact Natural Object 

(b) Word vector representation after name learning.

Fig. 6: 2-D projection of all 72 word vectors.

Methods IGNORE VEC ORI VEC HIE

Accuracy(%)
Student 1 70.67 68.00 73.67
Student 2 63.67 66.70 75.00

AVE 67.17 67.35 74.34

TABLE II: Identification accuracy on 600 scenes with 6 objects.

is far away from other Natural Object words. This implies
that using the original representation will result in various
mistakes when reasoning about novel words, even at the
highest level of the hierarchy. Yet in Fig. 6 (b) the two
different subcategories are separated from each other and
within each category, the name of the category is located
right at the center of all words of the same category. This
enables our approach to identify nodes for new words more
accurately.

C. Object Identification

Since our system can associate an unknown name with an
existing name in the hierarchy, it can do identification based
on new object names. We tested if understanding a new name
boosts the identification accuracy.

Each identification task included a scene and a command,
such as the example in Fig. 4 (a). We first extracted name and
appearance attributes using the Stanford parser [11]. For the
name, we used the learned models to determine a name path
p = (wp1

, · · · , wpL
) and computed scores of the objects in

the scene using that name path. The system estimated the
target object using Eq.(1).

We compared the identification accuracy under 3 different
settings: 1) An unknown name used to describe the target
object was ignored. Only appearance attributes were used
for identification (IGNORE); 2) a new name was mapped
to a name path (VEC ORI) using the original vector repre-
sentation; 3) a new name was mapped using our hierarchy
adapted word vectors (VEC HIE).

The results are summarized in Table II. As can be seen,
using the original word vectors to map new names did not
achieve higher identification accuracy than simply ignoring
unknown names. Adapting the word vectors to the name
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Fig. 7: Scatter plot of number of questions asked until the correct
location of an unknown name is determined.

hierarchy, however, significantly improved the identification
accuracy by a margin of 7% on average. When we evalu-
ated only identification tasks in which a new object name
was used, this improvement was about 11%. Overall, our
system achieved 74% accuracy using name learning, which
is remarkable since 50% of the objects in each scene were
not in the training set, including many cases in which even
the object of interest and the name used by the person were
novel.

As a side note, the improvements for Student 2 were
more significant than for Student 1. An inspection of the
annotations revealed that Student 2 used more names than
appearance attributes to refer to objects, thereby providing
more opportunities for our hierarchy to help with the iden-
tification task.

D. Locating New Names via Questions

Our name learning method can map a new name into an
existing node in the name hierarchy. Yet it still generates
various false mappings. Here, we evaluate the performance of
our approach to interact with a human by asking clarification
questions. Each unique name used by the two students was
used for testing on a hierarchy that did not contain that name.
As evaluation criterion, we count the number of questions
asked to find the correct path for the new name. Three
methods were compared: Both Method1 and Method2 were
described in Section V-A; Method1 used the original word
vector representation while Method2 used the learned vector
representation. Method3 was the same as Method2 with extra
perception information, as described in Section V-B.

The comparison between Method1 and Method2 is shown
in the scatter plot in Fig. 7 (a). For most names, the
identification system with learned representation asked fewer
questions than the one without name learning. This again
suggests that our name learning captures important hierarchy
information and is helpful for understanding new names.

We also checked whether perception information helps to
further reduce the number of questions. Fig. 7 (b) shows
the scatter plot comparing Method2 and Method3 for hard
name tasks, which require more than 1 question by Method2.
As can be seen, using perceptual information dramatically
decreases the number of necessary questions.

To further shed light on the difference between the 3 meth-
ods, we intensively examined which questions each method

Method1 Method2 Method3
1 food cup food can grocery
2 grocery grocery pliers
3 artifact artifact
4 vessel home product
5 kitchen supply lightbulb
6 flashlight electric lamp
7 electric lamp tool
8 tool scissors
9 scissors pliers
10 pliers

Example 1: Questions asked for the new name clipper.

Method1 Method2 Method3
1 potato onion grocery
2 vegetable vegetable instant noodles
3 natural object natural object
4 kleenex food can
5 home product grocery
6 artifact instant noodles
7 coffee mug soda can
8 kitchen supply
9 instant noodles
10 grocery
11 cereal box
12 food cup
13 food box
14 soda can

Example 2: Questions asked for the new name pepsi.

asked for two hard examples. In Example 1, Student 1 was
given the scene in Fig. 4 (a). She said “Give me the yellow
clipper”. The new name “clipper” was a synonym of “pliers”
in this identification context. 10 questions were asked in
Method1 in total, while 9 questions in Method2. “food can”
was asked in Method2 because clipper was used to open
food cans such that they appear in a similar document context
frequently, resulting in similar word frequency vectors. Using
perception information, Method3 is able to detect that there
is no food can, lightbulb, electric lamp or scissors. Only 2
questions were asked before finding out that “clipper” is a
synonym for “pliers”.

The second example scene is shown in Fig. 4 (b). The
student given the task said, “Pick up the Pepsi.” The new
name “Pepsi” is a new instance name of “soda can”. Ex-
ample 2 shows the behavior of the different methods. The
identification system asked 14 questions to find out the
right path for “Pepsi” using Method1. Method1 asked many
unrelated names such as “kleenex” and “home product”,
while Method2 quickly found out that “Pepsi” is more related
to “grocery” by using the hierarchy information. Only 7
questions were asked in this case. Using attribute and object
classifiers, the system filtered “onion”, “vegetable”, “natural
object” and “food can” which did not exist in the scene.
It also found that “pepsi” is not a synonym of “soda can”
because there is still uncertainty in the scene simply using
“soda can” to refer to the target. Our system found that
“Pepsi” is a new instance of “soda can” after asking 2
questions.



VII. CONCLUSION

A robot operating in indoor environments and interacting
with people will frequently face new objects and new names
used for referring to objects. It therefore has to be able to
learn new objects and names as they occur during task execu-
tion. Toward this goal, we propose a new object recognition
system for identifying objects based on natural language
referrals. Based on a hierarchical, semantic organization
of objects and their names, our system can identify even
unknown objects and when a person uses novel names
for these objects. To reason about new object names, our
system leverages co-occurrence frequencies of words in large
document corpora and learns a new vector representation
suitable for our object hierarchy.

Extensive experiments show that our learned word vector
representation achieves significantly better reasoning about
unknown names than the original word vectors. Our overall
system achieves 74% identification accuracy for scenes con-
taining six objects, with half of the objects being unknown
on average. This is an extremely challenging task, since not
only might the object of interest be novel to the system,
but the system doesn’t even know whether a new name
refers to a novel object or is a synonym for a known
object. Our experiments also demonstrate that our approach
is able to determine the correct location of an unknown
object name in the hierarchy by asking a user only a small
number of questions. Results show that combining perceptual
information with name reasoning significantly reduces the
number of necessary questions.

There are some situations in realistic scenarios that are not
addressed by our current system. In the previous discussion,
we assume that there is only one target object in the scene. In
the real world, a robot may encounter cases where a person
refers to none or multiple of the visible objects. For the
first case, we can set a decision threshold for identification
confidence, such that the system rejects to identify any object
because there is no target object. For the latter case with
multiple objects, the system may either identify any of the
target objects or require more attributes, such as the relative
location, to localize a specific object.

Some mistakes in learning names may happen in our
current system. For instance, a person may use ”Pepsi” to
refer to a single ”Soda Can” in a scene and our current
system may infer “Pepsi” as a synonym of “Soda Can”. This
kind of failure is not very likely to happen because peopley
typically use higher level names (“Soda Can”) rather than
lower level names (“Pepsi”) of an object unless necessary.
However, to avoid introducing noise into the hierarchy, a
fully automatic name learning system still needs to provide
some way to frequently clean up the hierarchy, which is part
of future work.

In this paper, the experimental results on artificially cre-
ated scenes have demonstrated the feasibility of the proposed
algorithm for learning new names. In real world scenes,
there will be some additional challenges for our system,
such as highly cluttered scenes resulting in noisy object

segmentation. Finally, our system only adds nodes at the
leaves of the hierarchy, assuming that all object classes are
given by a repository such as Wordnet. Adding internal nodes
is another opportunity for future research.
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