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Liquids are an important part of many common manipulation tasks in human environments. If we wish to have
robots that can accomplish these types of tasks, they must be able to interact with liquids in an intelligent
manner. In this paper, we investigate ways for robots to perceive and reason about liquids. That is, a robot asks
the questions What in the visual data stream is liquid? and How can I use that to infer all the potential
places where liquid might be? We collected two datasets to evaluate these questions, one using a realistic liquid
simulator and another on our robot. We used fully convolutional neural networks to learn to detect and track
liquids across pouring sequences. Our results show that these networks are able to perceive and reason about
liquids, and that integrating temporal information is important to performing such tasks well.
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Introduction

Liquids are ubiquitous in human environments.
Humans perform many of their daily actions
using liquids, whether it is pouring coffee, mixing
ingredients for a recipe, or washing their hands. Any
general purpose robot that will operate in a human
environment should be able to robustly handle
liquids. This task poses different challenges than
object manipulation, since liquids follow complicated
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dynamics and aren’t necessarily divisible into well-
defined objects.

Before a robot can even begin to manipulate
liquids, it first must be able to perceive and reason
about them. For example, solving tasks such as
pouring requires both robust control and detection of
liquid during the pouring operation. Thus, controlling
liquids requires close closed-loop sensory feedback to
perform well. This is a difficult problem in itself. For
example, many liquids are transparent, making them
hard to see in images. Additionally, many approaches
to finding rigid objects in a scene rely on using a
depth sensor, which is unsuitable for liquids as many
of them are not visible on depth sensors. In this
paper, we investigate ways to solve this task using
deep learning techniques.

Specifically, we examine the problems of perceiving
and reasoning about liquids. That is, we ask the
questions Where in the raw visual data stream is
liguid? and Can that be used to infer all places
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where liqguid might be? To solve these problems, we
take advantage of recent advances in the field of
deep learning. This approach has been extremely
successful in various areas of computer vision,
including classification (Krizhevsky et al., 2012),
semantic labeling (Farabet et al., 2013), and pose
regression (Girshick et al., 2011), and it enabled
computers to successfully play Atari games from raw
image data (Guo et al., 2014) and train end-to-end
policies on robots (Levine et al., 2016). The ability
of deep networks to process and make sense of raw
visual data makes them a good fit for perceiving and
reasoning about liquids.

In this paper, we focus on the task of pouring
as our exemplar task for learning about liquids.
While researchers have already worked on robotic
pouring tasks, previous techniques made simplifying
assumptions, such as replacing water by an easily
visible granular medium (Yamaguchi and Atkeson,
2016¢), restricting the setting such that no perceptual
feedback is necessary (Langsfeld et al., 2014; Okada
et al., 2006; Tamosiunaite et al., 2011; Cakmak
and Thomaz, 2012), requiring highly accurate force
sensors (Rozo et al., 2013), detecting moving liquid
in front of a relatively static background (Yamaguchi
and Atkeson, 2016b), or dealing with simulated
liquids only (Kunze, 2014; Kunze and Beetz, 2015).
Here, we show how fully-convolutional deep networks
(FCNs) can be trained to robustly perceive liquids
and how they can be modified to peform better at
generalization. To collect the large amounts of data
necessary to train these deep networks, we utilize
a realistic liquid simulator to generate a simulated
dataset and a thermal camera to automatically label
water pixels in a dataset collected on the real robot.

Our results show that the methodology we propose
in this paper is able to both perceive and reason
about liquids. Specifically, they show that recurrent
networks are well-suited to these tasks, as they are
able to integrate information over time in a useful
manner. We also show that, with the right type of
input image, our neural networks can generalize to
new data with objects that are not included in the
training set. These results strongly suggest that our
deep learning approach is useful in a robotics context,

which we demonstrate in a closed-loop water pouring
experiment.
The main contributions of this paper are:

e A deep learning framework for perceiving and
reasoning about liquids based on raw visual data.

e An approach for automatic, pixel-level labeling
of real, visual data using a thermal camera along
with heated liquid.

e Two fully labeled datasets containing videos
generated by a realistic liquid simulator and our
novel thermal-visual imagery approach.

e An extensive experimental evaluation investigat-
ing the pros and cons of different deep network
structures and demonstrating the superior per-
formance of our approach, ultimately enabling a
closed-loop water pouring system.

The rest of this paper is laid out as follows.
The next section discusses relevant work related to
ours. The following section details the exact tasks
we investigate in this paper. The sections after that
describe how we generate our simulated dataset and
performed the pouring trials on our robot, followed
by a discussion of our learning methodology. We then
describe how we evaluate our networks and present
experimental results. And finally, the last section
concludes the paper and summarizes the results.

Related Work

Humans interact with liquids from a young age.
Studies have shown that even infants can distinguish
between rigid objects and “substances”, or liquids
(Hespos and VanMarle, 2012). They have also shown
that infants as young as five months have knowledge
about how substances behave and interact with
solid objects (Hespos et al., 2016). Furthermore,
infants as young as 10 months have the ability to
distinguish quantities of non-cohesive substances as
greater or less than, although the quantity ratio
must be larger for substances than for solid objects,
suggesting that humans use a different mechanism
to quantify substances than to quantify objects
(VanMarle and Wynn, 2011). Further studies have
shown a correlation between humans’ understanding
of fluid dynamics and what would be expected of a
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probabilistic fluid physics model (Bates et al., 2015),
which suggests that humans have more than a simple
perceptual understanding of fluid physics.

However, there has been little work in robotics
on creating deep understandings of liquids. Much
of the work in robotics involving liquids focuses on
the task of pouring (Langsfeld et al., 2014; Okada
et al., 2006; Tamosiunaite et al., 2011; Cakmak and
Thomaz, 2012). All of these works, though, constrain
the task space enough so as to preclude the need for
any direct perception of or detailed reasoning about
liquids. For example, in (Cakmak and Thomaz, 2012)
the focus was solely on learning the overall pouring
trajectory, requiring the robot only to upend the
source over the target without needing to know the
specifics of the liquid dynamics. Work by Rozo et al.
(Rozo et al., 2013) did have the robot pour a specific
amount of liquid into the target, which is more
challenging than simply dumping all the contents
from the source. However, they used their robot’s
precise proprioceptive sensors to measure the liquid
amount, bypassing the need for any sort of liquid
understanding. Many robots do not have precise
proprioceptive sensors, making relying on them for
liquid perception infeasible.

There has been some prior work in robotics
focusing on physics-based understanding of liquids.
The works by Kunze and Beetz (Kunze, 2014; Kunze
and Beetz, 2015) utilized a robotic physics simulator
to reason about the outcomes of different actions
taken by the robot. Specifically, the robot was
tasked with finding the best sequence of actions
to fry pancakes, which involved reasoning about
the liquid pancake batter while pouring and mixing
it. However, they simulated the liquid batter as a
collection of small balls which had different physics
than real pancake batter, and they did not connect
the simulated environment to any real-world sensory
data. This resulted in a system that, while it worked
well in simulation, does not translate directly to a
real environment.

Similar work by Yamaguchi and Atkenson also
utilized a robotic simulator with small balls in
place of liquid. In (Yamaguchi and Atkeson, 2015,
2016a), they utilize this simulator to learn fluid
dynamics models and perform planning over pouring

trajectories. Similar to prior work on robotic pouring,
the robot poured all the contents from the source
to the target, however in this case they utilized
the simulator to reason about spilled liquid. They
also applied this framework to a robot in a
real environment (Yamaguchi and Atkeson, 2016¢),
although they used a constant color background and
fixed color features to detect the liquid. In more
recent work (Yamaguchi and Atkeson, 2016b), they
utilized optical flow in addition to a set of heuristics
to perceive the liquids in a real-world environment.
By detecting the motion of the liquid as it fell,
they were able to localize the liquid in the scene,
although the output labels were imprecise and could
only detect liquid in the air and not liquid resting in a
container. For the tasks in this paper, it is necessary
to detect both stationary and moving liquid, thus
it is unlikely that this method would perform well
on its own. However, the results in (Yamaguchi and
Atkeson, 2016b) show that their method works in at
least some cases, so we evaluate combining the use of
optical flow for detection of moving liquid with deep
neural networks to achieve maximal performance on
the task.

While (Kunze, 2014; Kunze and Beetz, 2015;
Yamaguchi and Atkeson, 2015, 2016a) all used small
balls in place of liquid in their simulations, work
in computer graphics has developed realistic fluid
simulations (Bridson, 2015). Work by Ladicky et
al. (Ladicky et al., 2015) used regression forests to
learn the particle interactions in the fluid simulation,
resulting in realistic fluid physics, showing that
machine learning methods are capable of learning
fluid dynamics. Additionally, the work in (Kunze,
2014; Kunze and Beetz, 2015; Yamaguchi and
Atkeson, 2015, 2016a) was ungrounded, i.e., it was
disconnected from real-world sensory data. On the
other hand, the work by Mottaghi et al. (Mottaghi
et al., 2016b,a) has shown how physical scene models
can be connected to real visual data. Specifically,
they utilize convolutional neural networks (CNNs) to
convert an image into a description of a scene, and
then apply Newtonian physics to understand what
will happen in future timesteps. In this paper we
also utilize CNNs to convert raw sensory data into
a labeled scene.
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There has been some work in robotics on perceiving
liquids. Rankin et al. (Rankin and Matthies, 2010;
Rankin et al., 2011) investigated ways to detect
pools of water from an unmanned ground vehicle
navigating rough terrain. However, they detected
water based on simple color features or sky
reflections, and didn’t reason about the dynamics of
the water, instead treating it as a static obstacle.
Griffith et al. (Griffith et al., 2012) learned to
categorize objects based on their interactions with
running water, although the robot did not detect or
reason about the water itself, rather it used the water
as a means to learn about the objects. In contrast to
(Griffith et al., 2012), we use vision to directly detect
the liquid itself, and unlike (Rankin and Matthies,
2010; Rankin et al., 2011), we treat the liquid as
dynamic and reason about it.

This paper builds on our prior work (Schenck and
Fox, 2016, 2017b). In (Schenck and Fox, 2016) we
utilized CNNs to both detect and track liquids in
a realistic fluid simulator. We found that recurrent
CNNs are best suited to perceive and reason about
liquids. In this paper we show how deep neural
networks can be utilized on not only simulated data,
but also on data collected on a real robot. We show in
work concurrent to this that a robot can use the liquid
perception and reasoning capabilities developed in
this paper to solve a real robotic task (Schenck and
Fox, 2017b), specifically learning to pour a specific
amount of liquid from only raw visual data.

Task Overview

In this paper we investigate the duel tasks of
perception and reasoning about liquids. We define
perception to be determining what in the raw sensory
data is liquid, and what is not liquid. We call this
task detection. We define reasoning to be, given
labels for the visible liquid (i.e., a working detector),
determining where all the liquid is, even if it may
not be directly perceivable (e.g., liquid inside a
container). We call this task tracking. For this paper,
we focus on the task of pouring as it requires
reasoning about both where the visible liquid is as
well as where hidden liquid is.

We evaluate our neural networks on the tasks of
detection and tracking in both simulation and on data
collected on a real robot. For the simulated dataset,
we generated a large amount of pouring sequences
using a realistic liquid simulator. As it is simple to
get the ground truth state from the simulator, we can
easily evaluate both tasks on the simulated data. For
evaluations using real-world data, we carried out a
series of pouring trials on our robot. We use a thermal
camera in combination with heated water to acquire
the ground truth pixel labels. However, this only gives
labels for visible liquid, and not liquid occluded by the
containers, so we evaluate only the task of detection
on the robot data.

Simulated Data Set

We use the simulated dataset generated in our
prior work (Schenck and Fox, 2016) to evaluate our
methodology. The dataset contains 10,122 pouring
sequences that are 15 seconds long each, for a total
of 4,554,900 images. Each sequence was generated
using the 3D-modeling program Blender (Blender
Online Community, 2016) and the library EI'Beem
for liquid simulation, which is based on the lattice-
Boltzmann method for efficient, physically accurate
liquid simulations (Kérner et al., 2006).

We divide the data generation into two steps:
liquid simulation and rendering. Liquid simulation
involves computing the trajectory of the mesh of
the liquid over the course of the pour. Rendering is
converting the state of the simulation at each point
in time into color images. Liquid simulation is much
more computationally intensive than rendering*, so
by splitting the data generation process into these
two steps, we can simulate the trajectory of the liquid
and then re-render it multiple times with different
render settings (e.g., camera pose) to quickly generate
a large amount of data. We describe these two steps
in the following sections.

*Generating one 15 second sequence takes about 7.5 hours to
simulate the liquid and an additional 0.5 hours to render it on
our Intel Core i7 CPUs.



Schenck and Fox

(a) Untextured (b) Background Texture

(c) Background+ Video

(d) Fully Textured

Figure 1. The scene used to simulate pouring liquids. The background sphere is cut-away to show its interior. From left
to right: The scene shown without any texture or materials; The background image sphere texture added; The video on
the plane added in addition to the background texture; and The scene fully textured with all materials.

Liquid Simulation

The simulation environment was set up as follows.
A 3D model of the target container was placed on
a flat plane parallel to the ground, i.e., the “table.”
Above the target container and slightly to the side
we placed the source container. This setup is shown
in Figure la. The source container is pre-filled with
a specific amount of liquid. The source then rotates
about the y-axis following a fixed trajectory such that
the lip of the container turns down into the target
container. The trajectory of the liquid is computed at
each timestep as the source container rotates. Each
simulation lasted exactly 15 seconds, or 450 frames
at 30 frames per second.

For each simulation, we systematically vary 4
variables:

e Source Container - cup, bottle, or mug

e Target Container - bowl, dog dish, or fruit bowl
o Fill Amount - 30%, 60%, or 90%

e Trajectory - partial, hold, or dump

The 3 source containers we used are shown in Figures
2a, 2b, and 2c, and the 3 target containers we used are
shown in Figures 2d, 2e, and 2f. Each source container
was filled either 30%, 60%, or 90% full at the start of
each simulation. The source was rotated along one of
three trajectories: It was rotated until it was slightly
past parallel with the table, held for 2 seconds, then
rotated back to upright (partial); It was rotated until
it was slightly past parallel with the table, where it
stayed for the remainder of the simulation (hold); or
It was rotated quickly until it was pointing nearly

Source Containers

(b) Bottle
Target Containers

|

(e) Dog Dish (f) Fruit Bowl

(d) Bowl

Figure 2. The objects used to generate the simulated
dataset. The first row are the three source containers. The
last row are the 3 target containers. The objects are each
shown here with 1 of their possible 7 textures.

vertically down into the target container, remaining
there until the simulation finished (dump). The result
was 81 liquid simulations (3 sources x 3 targets x 3
fill amounts x 3 trajectories).
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Rendering

To generate rendered pouring sequences, we ran-
domly select a simulation and render parameters’.
We place the camera in the scene so that it is pointing
directly at the table top where the target and source
containers are. In order to approximate realistic
reflections on the liquid’s surface, we enclose the
scene in a sphere with a photo sphere taken in our lab
set as the texture (shown in Figure 1b). Next we place
a video of activity in our lab behind the table opposite
the camera (shown in Figure 1c). We took videos
such that they approximately match the location
in the image on the background sphere behind the
video plane. We randomly select a texture for the
source and target containers, and we render the liquid
as 100% transparent (but including reflections and
refractions). We also vary the reflectivity of the liquid
as well as its index of refraction to simulate slight
variations in the liquid type. Figure 1d shows the full
scene with textures, video, and background sphere.

We randomly select from the following N
parameters for each rendered sequence:

Source Texture - 7 preset textures

Target Texture - 7 preset textures

Activity Video - 8 videos

Liquid Reflectivity - normal or none

Liquid Index-of-Refraction - air-like, low-water,
or normal-water

Camera Azimuth - 8 azimuths

o (Camera Height - high or low

e Camera Distance - close, medium, or far

There are 48 total camera viewpoints. The camera
azimuth is randomly selected from 1 of 8 possibilities
spaced evenly around the table. The height of the
camera is selected such that it is either looking down
into the target container at a 45 degree angle (high,
lower-left image in Figure 3) or it is level with the
table looking directly at the side of the target (low,
upper-left image in Figure 3). The camera is also
placed either close to the table, far from the table,
or in between. The output of the rendering process

TThe number of parameters makes it infeasible to evaluate
every possible combination.

Visible

All Labels

Figure 3. Examples of frames from the simulated dataset.
The left column is the raw RGB images generated by the
renderer; the center-left column shows the ground truth
liquid location for visible liquid; the center-right column
shows the ground truth liquid location for all liquid in the
scene; the right column shows the ground truth labeling
output by the simulator.

is a series of color images, one for each frame of the
sequence.

Generating the Ground Truth

We generate the ground truth for each image in
each rendered sequence as follows. For each object
(source container, target container, and liquid), we
set that object to render as a solid color irrespective
of lighting (red, green, and blue respectively). Then
we make all other objects in the scene invisible, and
render the resulting scene. We then combine the
images for the objects as separate channels of a single
image (right column of Figure 3).

For the tasks of detection and tracking, we need to
be able to distinguish between wisible and all liquid
respectively. To do this, we render the scene again
with each object rendered as its respective color,
and then we encode which object is on top in the
alpha channel of the ground truth image described
in the last paragraph. Some examples of the result
are shown in Figure 3. The left column shows the
rendered color image, the right column shows the
ground truth pixel labels (absent the alpha channel),
and the middle columns show the visible or all liquid.
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Figure 4. The robot used in the experiments in this paper.
It is shown here in front of a table, holding the bottle in its
right gripper, with the fruit bowl placed on the table.

Robot Data Set
Robot

The robot used to collect the dataset is shown in
Figure 4. It is a Rethink Robotics Baxter Research
Robot, an upper-torso humanoid robot with 2 7-
dof arms, each with a parallel gripper. The robot is
placed in front of a table with a towel laid over it
to absorb spilled water. The robot is controlled via
joint velocity commands. In the experiments in this
paper, the robot uses only one of its arms at a time.
The arm is fixed above the target container and the
robot controls the joint velocity of its last joint, i.e.,
the rotational angle of its wrist.

Sensors

The robot is equipped with a pair of cameras
mounted to its front immediately below its screen.
The first camera is an Asus Xtion RGBD camera,
capable of providing both color and depth images at
640x480 resolution and 30 Hz. The second camera
is an Infrared Cameras Inc. 8640P Thermographic
camera, capable of providing thermal images at
640x512 resolution and 30 Hz. The thermal camera

is mounted immediately above the RGBD camera’s
color sensor, and is angled such that the two cameras
view the same scene from largely similar perspectives.
The Baxter robot is also equipped with joint-torque
sensors, however the signal from these sensors is
too unreliable and so we did not use them in the
experiments in this paper.

Calibration of the Thermal Camera For our experi-
ments, we use the thermal camera in combination
with heated water to acquire the ground truth pixels
labels for the liquid. To do this, we must calibrate
the thermal and RGBD cameras to each other. In
order to calibrate the cameras, we must know the
correspondence between pixels in each image. To get
this correspondence, we use a checkerboard pattern
printed on poster paper attached to an aluminum
sheet. We then mount a bright light to the robot’s
torso and shine that light on the checkerboard pat-
tern while ensuring it is visible in both cameras.
The bright light is absorbed at differing rates by the
light and dark squares of the pattern, resulting in a
checkerboard pattern that is visible in the thermal
camerat.

We then use OpenCV’s findChessboardCorners
function to find the corners of the pattern in
each image, resulting in a set of correspondence
points Per™ and PREGB. We compute the affine
transform T between the two sets using singular-
value decomposition. Thus to find the corresponding
pixel from the thermal image to the RGB image,
simply multiply as follows

Tptherm _ pRGB
where p!"¢™™ is the xy coordinates of a pixel in the
thermal image, and p“® are its corresponding xy
coordinates in the RGB image.

It should be noted that T is only an affine
transformation in pixel space, not a full registration
between the two images. That is, T is only valid
for pixels at the specific depth for which it was

fAlbeit inverted as the black squares absorb more light than
the white, thus appearing brighter in the thermal image.
However we only care about the corners of the pattern, which
are the same.
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(a) RGB (b) Thermal

(c) Threshold

(d) Overlay

Figure 5. An example of obtaining the ground truth liquid labels from the thermal camera. From left to right: The color
image from the RGBD camera; The thermal image from the thermal camera transformed to the color pixel space; The
result after thresholding the values in the thermal image; and An overlay of the liquid pixels onto the color image.

therm

calibrated, and for pixels at different depths, T'p
will not correspond to the same object in the RGB
image as p!**"™ in the thermal image. While methods
do exist to compute a full registration between RGB
and thermal images (Pinggera et al., 2012), they tend
to be noisy and unreliable. For our purposes, since the
liquids are always a constant depth from the camera,
we opted to use this affine transform instead, which
is both faster and more reliable, resulting in better
ground truth pixel labels. While our RGBD camera
does provide depth values at each pixel, the liquid
does not appear in the depth readings and thus we
could not use them to compute the full registration.
Figure 5 shows an example of the correspondence
between the thermal image and the RGB image.

Objects

For the robot dataset, we used two sets of objects:
source containers and target containers. We used 3
different source containers, the cup, the bottle, and
the mug, shown in 6a, 6b, and 6c. The bottle and
mug were both thermally insulated, and we wrapped
the cup in insulators. This was done so that the robot
could use the same source container from trial to trial
without the object accumulating heat and appearing
the same temperature as the liquid in the thermal
image. The only exception to this was the lid of
the mug, which was not thermally insulated. It was
submersed in cold water between each trial to prevent
heat build-up.

We used two different types of target containers, 3
large containers and 3 small. The 3 large containers

Source Containers

(a) Cup (b) Bottle (c) Mug

Target Containers

(d) Bowl (e) Fruit Bowl

(g) Small Bowl (h) Tan Mug (i) Redgray Mug
Figure 6. The objects used to collect the dataset for this
paper. The first row are the three source containers. The

last two rows are the 6 target containers.

were the bowl, the fruit bowl, and the pan shown in
Figures 6d, 6e, and 6f. The 3 small containers were
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the small bowl, the tan mug and the redgray mug
shown in 6g, 6h, and 6i. Each target container was
swapped out at the end of each trial to allow it time
to dissipate the heat from the hot liquid.

Data Collection

We collected 1,009 pouring trials with our robot,
generated by combining the data collected in our
prior work (Schenck and Fox, 2017b) with additional
data collected for this paper. For every trial on
our robot we collected color, depth, and thermal
images. Additionally we collected 20 pouring trials for
evaluating our methodology’s generalization ability
with objects not present in the training set.

We collected 648 pouring trails on our robot for
use in this paper. We fixed the robot’s gripper over
the target container and placed the source container
in the gripper pre-filled with a specific amount of
liquid. The robot controlled the angle of the source
by rotating its wrist joint. We systematically varied
6 variables:

e Arm - left or right

e Source Container - cup, bottle, or mug

e Target Container - bowl, fruit bowl, or pan
o Fill Amount - empty, 30%, 60%, or 90%

e Trajectory - partial, hold, or dump

e Motion - minimal, moderate, or high

We used both arms, as well as varied the source
containers. We also used the 3 large target containers
to contrast with the 3 small ones used in the prior
dataset (described next). In addition to various fill
percents, we also included trials with no liquid to
provide negative examples (which we use for both
training and evaluating our networks). The robot
followed three fixed pouring trajectories: one in which
it tilted the source to parallel with the ground and
then returned to vertical; one in which it tilted
the source to parallel with the ground and held it
there; and one in which the robot quickly rotated
the source to pointing almost vertically down into
the target. Finally, we added motion to the data.
For minimal motion, the only motion in the scene
was the robot’s with minimal background motion.
For moderate motion, a person moved around in the

(a) Blue Bowl
S

(c) Gold Mug

(b) Tan Bowl
|

w

(d) Teal Mug

Figure 7. The target containers used to create the testing
set.

background of the scene while the robot was pouring.
For high motion, a person grasped and held the target
container and actively moved it around while the
robot poured into it.

Prior Robot Data Collection In our prior work
(Schenck and Fox, 2017b) we collected 361 pouring
trials. We use that data as part of our dataset for this
paper and briefly describe the data collection process
here (refer to our prior work for more details).

The robot’s gripper was fixed over the target
container and it rotated only its wrist joint. The
source container was fixed in the robot’s gripper
and pre-filled with a specific amount of liquid. The
robot used its controller to attempt to pour a specific
amount of liquid, resulting in trajectories where the
robot would tilt the source container until some
amount of liquid had transferred to the target and
then the robot would tilt the source back upright. We
used only the mug as the source container for these
trials and only the small bowl, tan mug, and redgray
mug as target containers. The robot used only its
right arm. We varied the target amount between 100
and 300 ml and the initial amount of liquid in the
source between 300 and 400 ml.



10

The International Journal of Robotics Research XX(X)

Test Data We also collected 20 pouring trials on our
robot to evaluate our methodology’s generalization
ability. We used the target containers in Figure 7
which were not included in the training datasets
described in the previous sections. For each object,
we recorded 3 trials using the mug as the source
container, the robot’s right arm, and we filled the
source initially 90% full. We collected one trial for
each of the pouring trajectories described previously
(partial, hold, and dump) with minimal background
motion. We collected 2 more trials with each object
where we fixed the pouring trajectory (fixed as dump)
and varied the motion between moderate and high.
Overall there were 5 trials per test object for a total
of 20 test trials.

Generating the Ground Truth from Thermal
Images

We process the thermal images into ground truth
pixel labels as follows. First, we normalize the
temperature values for each frame in the range 0 to
1. For all frames before liquid appears, we use the
normalization parameters from the first frame with
liquid. We then threshold each frame at 0.6, that is,
all pixels with values lower than 0.6 are labeled not-
liquid and all pixels higher are labeled liquid.

While this results in a decent segmentation of
the liquid, we can further improve it by removing
erroneously labeled liquid pixels. For example, during
some sequences the robot briefly missed the target
container, causing water to fall onto the table
and be absorbed by the towel. While this is
still technically liquid, we do not wish to label
it as such because after being absorbed by the
towel, it’s appearance qualitatively changes. We use
the PointCloud Library’s plane fitting and point
clustering functions to localize the object on the
table from the depth image, and we remove points
belonging to the table’ Additionally, for some trials,
the lid on the mug did not properly cool down
between trials, and so for those trials we use a simple

§We keep points above the lip of the target container in the
image so as to not remove the stream of liquid as it transfers
form the source to the target.

depth filter to remove pixels too close to the camera
(the source container is slightly closer to the camera
than the target).

Learning Methodology

We utilize deep neural networks to learn the tasks
of detection and tracking. Specifically, we use fully-
convolutional networks (FCNs) (Long et al., 2015),
that is, networks comprised of only convolutional
layers (in addition to pooling and non-linear layers)
and no fully-connected layers. FCNs are well suited
to the tasks in this paper because they produce pixel-
wise labels and because they allow for variable sized
inputs and outputs. The following sections describe
the different types of inputs and outputs for our
networks, as well as the different network layouts.

Network Input

We implemented 6 different types of input images
to feed into our networks. The first was the standard
RGB image shown Figure 8a. This is the type of FCN
input most commonly seen in the literature (Havaei
et al., 2017; Romera-Paredes and Torr, 2016), and we
use it as the primary type of input for all detection
tasks on the simulated dataset. However, since the
robot dataset is one tenth the size of the simulated
dataset, and thus is more prone to overfitting, we also
desired to evaluate other types of images that may
help counteract this tendency to overfit. The most
obvious type of image is grayscale, which was very
commonly used in computer vision methods prior to
CNNs (Forsyth and Ponce, 2002). Figure 8b shows a
grayscale version of the RGB image in Figure 8a.
Inspired by prior work (Yamaguchi and Atkeson,
2016b), we also evaluated optical flow as an
input to the networks. We computed the dense
optical flow for a given frame by calling OpenCV’s
calcOpticalFlowFarneback on that frame and the
frame immediately prior (for the first frame we used
the following frame instead). For the parameters to
the function calcOpticalFlowFarneback, we set the
number of pyramid levels to 3 and the pyramid scale
to 0.5, the window size to 15 and the number of
iterations to 3, and the pixel neighborhood size to
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(a) RGB (b) Grayscale

(f) Grayscale+Optical Flow

Outputs

(g) Visible Liquid (h) All Liquid

Figure 8. Different images of the same frame from the
same sequence. The upper part of this figure shows the
different types of network inputs (RGB, grayscale, optical
flow, visible objects, RGB-+optical flow, and
grayscale+toptical flow). The lower part shows the types of
desired network outputs (visible liquid and all liquid).

5 with a standard deviation of 1.2. Besides calling
calcOpticalFlowFarneback, we did not perform
any other filtering or smoothing on the optical flow
output.

The output of the dense optical flow was an
xy vector for each pixel, where the vector was
the movement of that feature from the first frame
to the second. We converted each vector to polar
coordinates (angle and magnitude), and further
converted the angle to the sine and cosine values for
the angle, resulting in three values for each pixel.
We store the resulting vectors in a three channel
image, where the first channel is the sine of each
pixel’s angle, the second is the cosine, and the third
is the magnitude. An example is shown in Figure 8c
(converted to HSV for visualization purposes, where
the angle is the hue and the magnitude is the value).
While (Yamaguchi and Atkeson, 2016b) showed that
optical flow at least correlates with moving liquid, it
is not clear that flow by itself provides enough context
to solve the detection problem. Thus we also evaluate
combining it with RGB (Figure 8e) and grayscale
(Figure 8f).

For the task of tracking we use pre-segmented
images as input. That is, we make the assumption
that the robot already has a working detector that
can identify the object label for each pixel in the
image. Each input pixel is labeled with the object
that is visible at the pixel, which is represented as a
one-hot vector (i.e., a binary vector where the index
for the corresponding object label is 1 and all the
other indices are 0). An example of this is shown
in Figure 8d. When visualized, the labels for the
source container become the red channel, for the
target container become the green channel, and for
the liquid become the blue channel. Note that unlike
the right column of Figure 3, here the network only
gets labels for the object that is “on top” at each pixel
and cannot see objects occluded by other objects,
e.g., cannot see the liquid in either container.

Network Output

The desired output of the network is fixed based on
the task. For detection the network should output the
locations of the visible liquid in the scene. An example
of this is shown in Figure 8g. Note that in the case
of Figure 8g, most of the liquid is occluded by the
containers, so here the robot is detecting primarily
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the flow of liquid as it transfers from the source to
the target container.

For tracking, the desired output is the location
of all liquid in the scene, including liquid occluded
by the containers. Here the network must learn to
infer where liquid is in the scene based on other
clues, such as determining the level of liquid in the
source container based on the stream of liquid that
is visible coming from the opening. An example of
this is shown in Figure 8h. We should note that
for our two datasets, it is only possible to get the
ground truth location of all liquid from the simulated
dataset because the simulator allows us to directly
see the state of the environment, whereas on the
robot dataset, the thermal camera only allows us to
see the visible liquid and not liquid occluded by the
containers.

The output of each network is a pixel-wise label
confidence image, i.e., for each pixel, the network
outputs its confidence in [0, 1] that that pixel is either
liquid or not-liquid.

Network Layouts

All of the networks we use in this paper are fully-
convolutional networks (FCNs). That is, they do not
have any fully-connected layers, which means each
intermediate piece of data in the network maintains
the image structure from the original input. This
makes FCNs well-suited for tasks which require pixel
labels of the pixels from the input image, which both
our tasks detection and tracking require. Additionally,
they allow variable sized input and outputs, which
we take advantage of during training of our networks
(described later in the evaluation section).

We use the Caffe deep learning framework (Jia
et al., 2014) to implement our networks

Input Blocks Each network we implement is built
from one or more input blocks. Input blocks are
combinations of network layers with different types
of input. Essentially each is the beginning part of
an FCN. We split our description of our neural
networks into input blocks and network types (below)
to simplify it. We combine our different types of input
blocks with our different network types to create a
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(c) Late Fusion Input Block

Figure 9. The 3 different types of input blocks. The first is
used when the network takes only a single type of input;
the second two are used when combining two different
types of input. Here gray boxes are the feature
representations at each level of the network, and the
colored squares are the layers that operate on each
representation. Gray boxes immediately adjacent indicate
channel-wise concatenation.
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combinatorially larger number of networks, which we
then use to solve the tasks of detection and tracking.

Figure 9 shows the 3 different types of input blocks
that we use in this paper. The first (Figure 9a)
is the standard input block used by most of our
networks. It takes as input a single image, which it
then passes through 5 conv-pool layers, which apply a
convolution, then a rectified linear filter, and finally a
max pooling operation. The first two conv-pool layers
have a stride of two for the max pooling operation;
all other layers have a stride of one. The output of
this input block is a tensor with shape 32 x % X %
where H and W are the height and width of the input
image respectively.

The second two input blocks are used for networks
that take two different types of images as input (e.g.,
RGB and optical flow). Figure 9b shows the early-
fusion approach, which combines the two images
channel-wise and feeds them into a block otherwise
identical to the standard input block. Figure 9c shows
the late-fusion approach, which feeds each image
into separate copies of the standard input block,
and then concatenates the resulting tensors channel-
wise, resulting in a 64 X % X % tensor. Some work
in the literature has suggested that the late-fusion
approach tends to perform better than the early-
fusion approach(Valada et al., 2016), however in this
paper we evaluate this premise on our own tasks.

Network Types We use 3 different types of networks
in this paper:

FCN The first is a standard FCN shown in Figure
10a. It takes the output of the input block and
passes it through 2 1x1 convolutional layers and
a final transposed convolution¥ layer (written as
Conv' in the figure). The 1x1 convolutional
layers take the place of fully-connected layers
in a standard neural network. They take only
the channels for a single “pixel” of the input
tensor, acting similar to a fully-connected layer
on a network that takes the image patch of
the response region for that pixel. Each 1x1

YSometimes referred to in the literature as upsampling or
deconvolution.

convolutional layer is followed by a rectified
linear filter.

MF-FCN The second network type is a multi-frame
FCN shown in Figure 10b. It takes as input a
series of sequential frames, and so has an input
block for each frame. Each input block shares
parameters, e.g., the first convolutional layer in
the first input block has the exact same kernels
as the first convolutional layer in the second
input block, and so on. The output tensors of
all the input blocks are concatenated together
channel-wise. This is then feed to a network
structured identical to the structure for the
previous network (two 1x1 convolutional layers
followed by a transposed convolution layer).

LSTM-FCN The last network type is a recurrent
network that utilizes a long short-term memory
(LSTM) layer (Hochreiter and Schmidhuber,
1997) shown in Figure 10c. It takes the recurrent
state, the cell state, and the output image from
the previous timestep in addition to the frame
from the current timestep as input. The output
tensor from the input block is concatenated
channel-wise with the recurrent state, and with
the output image from the previous timestep
after it has been passed through 3 conv-pool
layers. The resulting tensor is then fed into the
LSTM layer along with the cell state. The LSTM
layer uses the cell state to “gate” the other
inputs, that is, the cell state controls how the
information in the other inputs passes through
the LSTM. The resulting output we refer to as
the “recurrent state” because it is feed back into
the LSTM on the next timestep. The LSTM
layer also updates the cell state for use on the
next timestep. In addition to being used in the
next timestep, this recurrent state is also fed
through a 1x1 convolutional layer and then
a transposed convolution layer to generate the
output image for this timestep. To maintain
the fully-convolutional nature of our network,
we replace all the gates in the LSTM layer
with 1x1 convolutional layers. Please refer to
Figure 1 of (Greff et al., 2016) for a more detailed
description of the LSTM layer.
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Figure 10. The three types of networks we tested. The first is a standard FCN. The second is an FCN that takes in a
series of consecutive frames. The final is a recurrent network that uses an LSTM layer to enable the recurrence. As in
Figure 9, the gray boxes are the feature representations at each level of the network, and the colored squares are the
layers that operate on each representation. Gray boxes immediately adjacent indicate channel-wise concatenation (the
dashed line in the MF-FCN indicates a concatenation over the range of inputs). N; indicates the size of the output of the
input block, with Ny = 2 for the late-fusion blocks and N; = 1 for all other blocks. The LSTM-FCN takes its own output
from the previous timestep as input (lower-left), convolves it through 3 layers, and concatenates it with the output of the
input block. The LSTM layer is implemented using the layout described in Figure 1 of (Greff et al., 2016)
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Evaluation

Simulated Data Set

We evaluate all three of our network types on the
tasks of detection and tracking on the simulated
dataset. For this dataset, we use only single input
image types, so all networks are implemented with
the standard input block (Figure 9a). We report
the results as precision and recall curves, that is,
for every value between 0 and 1, we threshold
the confidence of the network’s labels and compute
the corresponding precision and recall based on
the pixel-wise accuracy. We also report the area-
under-curve score for the precision and recall curves.
Additionally, we report precision and recall curves for
various amounts of “slack,” i.e., we count a positive
classification as correct if it is within n pixels of a true
positive pixel, where n is the slack value. This slack
evaluation allows us to differentiate networks that are
able to detect or track the liquid, albeit somewhat
imprecisely, versus networks that fire on parts of the
image not close to liquid.

We evaluate our networks on two subsets of the
simulated dataset: the fized-view set and the multi-
view set. The fized-view set contains all the data for
which the camera was directly across from the table
(camera azimuth of 0 or 180 degrees) and the camera
was level with the table (low camera height), or
1,266 of the pouring sequences. Due to the cylindrical
shape of all the source and target containers, this
is the set of data for which the mapping from the
full 3D state of the simulator to a 2D representation
is straightforward, which is useful for our networks
as they operate only on 2D images. The multi-view
set contains all data from the simulated dataset,
including all camera viewpoints. The mapping from
3D to 2D for this set is not as straightforward.

Detection For the task of detection, we trained all
three networks in a similar manner. Due to the fact
that the vast majority of pixels in any sequence
are not-liquid pixels, we found that trying to train
directly on the full pouring sequences resulted in
networks that settled in a local minima classifying
all pixels as not-liquid. Instead, we first pre-train each
network for 61,000 iterations on crops of the images

and sequences around areas with large amounts of
liquid (due to the increased complexity of the LSTM-
FCN, we initialize the pre-training LSTM-FCN with
the weights of the pre-trained single-frame FCN).
We then train the networks for an additional 61,000
iterations on full images and sequences. This is only
possible because our networks are fully-convolutional,
which allows them to have variable sized inputs
and outputs. Additionally, we also employ gradient
weighting to counteract the large imbalance between
positive and negative pixels. We multiply the gradient
from each not-liquid pixel by 0.1 so that the error
from the liguid pixels has a larger effect on the learned
weights.

The full input images to our networks were scaled
to 400x300. The crops taken from these images were
160x160. The single-frame networks were trained
with a batch size of 32. The multi-frame networks
were given a window of 32 frames as input and were
trained with a batch size of 1. The LSTM networks
were unrolled for 32 frames during training (i.e., the
gradients were propagated back 32 timesteps) and
were trained with a batch size of 5. We used the mini-
batch gradient descent method Adam (Kingma and
Ba, 2015) with a learning rate of 0.0001 and default
momentum values. All error signals were computed
using the softmax with loss layer built-into Caffe (Jia
et al., 2014).

Tracking For the task of tracking, we trained the
networks on segmented object labels (Figure 8d).
That is, assuming we already have good detectors
for what is visible in the scene, can the robot find
the liquid that is not visible? Note that here we
use the ground truth labels as shown in Figure 8d
and not the output of the detection network as
input to the tracking network, however we do also
evaluate combining the two (as described in the next
section). Since the input image is already somewhat
structured, we scale it down to 130x100. Unlike for
detection, here we don’t pre-train the networks on
crops, but we do utilize the same gradient weighting
scheme. We use the same training parameters as for
detection with the exception that we unroll the LSTM
network for 160 timesteps. For tracking, we use only
the fized-view set.
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Combined Detection & Tracking Finally, we also
evaluate performing combined detection & tracking
with a single network. The networks take in the
same 400x300 images that the detection networks
take, and output the location of all liquid in the
scene. We initialize these networks with the weights of
their corresponding detection network and train them
on full images. We use the same gradient weighting
scheme as for the two tasks separately. We train the
networks for combined detection & tracking using the
same learning parameters as for training the detection
networks.

Robot Data Set

For the robot dataset, we evaluate our networks only
on the task of detection because our thermal camera
can only see wisible liquid and not liquid occluded
by the containers. However, detection on the robot
dataset is more challenging than on the simulated
dataset as there is less data to train on. This is a
general problem in robotics with deep learning. Deep
neural networks require vast amounts of data to train
on, but it is difficult to collect this much data on a
robot. While there have been some proposed solutions
for specific problems (Levine et al., 2016; Tzeng et al.,
2015), there is no generally accepted methodology for
solving this issue. Here we evaluate utilizing different
types of input images to help prevent the networks
from overfitting on the smaller amount of data.

Specifically, we train networks for each of the
following input types (with the corresponding input
block in parentheses):

e RGB (standard input block)

e Grayscale (standard input block)

e Optical Flow (standard input block)

e RGB+Optical Flow (early-fusion input block)

e Grayscale+Optical Flow (early-fusion input
block)

o RGB+Optical Flow (late-fusion input block)

e Grayscale+Optical Flow (late-fusion input
block)

We train LSTM networks on all of these different
types of inputs, as well as the single-frame networks
since they are necessary to initialize the weights

of the LSTM networks. We use the same learning
parameters and training methodology as for detection
on simulated data (pre-training on crops, gradient
weighting, etc.). For brevity, we report our results
as area under the curve for the precision and recall
curves for each network.

Unlike for the simulated dataset, where the train
and test sets are created by dividing the dataset, for
the robot dataset, we created an explicit test set. To
test the robot’s generalization ability, we used target
containers that did not appear in the train set. We
train all networks on the entire dataset and test on
this explicit test set. To gauge the extent to which
our networks overfit to their training set, we report
the performance of the networks on both the train
set and the test set.

Baseline for the Robot Data Set

For comparison, we implement as a baseline the liquid
detection methodology described in (Yamaguchi
and Atkeson, 2016b) for the detection task on
the real robot dataset. We briefly describe that
implementation here. For each image in a sequence,
we compute the dense optical flow using the same
methodology as for the neural network method. Next,
we compute the magnitude of the flow vector for each
pixel, and create a resulting flow magnitude image.
We then perform the following steps to filter the
image as described in Section IT.A of (Yamaguchi and
Atkeson, 2016b):

1. Erode the image with a square kernel of size 3.
2. Dilate the image with a square kernel of size 3.
3. Apply a temporal filter with size 5 to each pixel,
replacing the value in the pixel with the OR of
all the pixels covered by the filter.
Dilate the image with a square kernel of size 7.
Erode the image with a square kernel of size 11.
Dilate the image with a square kernel of size 13.
Convolve the image with a 12x1 filter (12 pixels
high, 1 wide) where each value in the filter is
1/12.
8. Use the result of the prior step to apply as a
mask to the result of step 3.
9. Apply the same filter to the result as in step 7.

N oot
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10. Scale the magnitudes in the resulting image to
be in the range 0 to 1.

Note that some of the hyper parameters we used are
adjusted from the values used in (Yamaguchi and
Atkeson, 2016b) to account for the difference in image
sizes (640x480 vs. 400x300 in this paper).

There are two primary differences between
our implementation and the implementation in
(Yamaguchi and Atkeson, 2016b). The first is the
way in which background motion is removed. In that
paper, the authors utilized stereo RGB cameras to
localize the optical flow in 3D, and then fixed a region
of interest around the liquid, removing all motion not
in that region. In our work, we use a single camera,
however our camera also uses structured infrared
light combined with an infrared camera to determine
the depth of each point in the image. In order to
remove background motion, we generate a mask by
including only pixels whose value is closer than one
meter from the camera. We then smooth this mask by
eroding, then dilating twice, then eroding again, all
with a square kernel of size 7. This mask is applied to
the optical flow before applying the filter steps above.

The second difference between our implementation
and that in (Yamaguchi and Atkeson, 2016b) is that,
in order to be comparable to our methodology, it
must compute a distribution over the class labels,
rather than a single label. In (Yamaguchi and
Atkeson, 2016b) they compute only a binary mask
for each image. However, in the following section
we utilize precision-recall curves to compare our
methods, which requires a probability distribution
over class labels to compute. We approximate this
distribution using the magnitude of the flow at each
pixel, that is, the more a pixel is moving, the more
likely it is liquid.

Results

Simulated Data Set

Detection Figures 11 and 12 show the results of
training our networks for the detection task on the
simulated dataset. Figure 11 shows the output of
each network on example frames. From this figure
it is clear that all networks have the ability to

Labels FCN MF-FCN LSTM-FCN

Input

Figure 11. Example frames from the 3 network types on
the detection task on the simulated dataset. The sequences
shown here were randomly selected from the test set and
the frame with the largest amount of liquid visible was
selected. The last sequence was selected to show how the
networks perform when no liquid is present.

at least detect the presence of liquid. However, it
is also clear that the MF-FCN is superior to the
single-frame FCN, and the LSTM-FCN is superior
to the MF-FCN. This aligns with our expectations:
As we integrate more temporal information (the
FCN sees no temporal information, the MF-FCN
sees a small window, and the LSTM-FCN has a
full recurrent state), the networks perform better.
The quantitative results in Figure 12 confirm these
qualitative results. For reference, all the networks
have a very similar number of parameters (414,336,
477,824, and 437,508 for the FCN, MF-FCN, and
LSTM-FCN networks respectively), so it is clear that
the success of the LSTM-FCN is not simply due to
having more parameters and “remembering” the data
better, but that it actually integrates the temporal
information better.

Since the LSTM-FCN outperformed the other two
network types by a significant margin, we evaluated it
on the multi-view set from the simulated dataset. The
performance is shown in Figure 12d. Even with the
large increase in camera viewpoints, the network is
still able to detect liquid with only a relatively small
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Figure 12. Precision-recall curves for detection on the
simulated dataset. The first three show the curves for the
three network types on the fized-view subset. The last
graph shows the performance of the LSTM network on the
multi-view subset. The different lines show the different
amounts of slack, i.e., how far a positive classification can
be from a true positive to still count as correct. The area
under the curve (AUC) is shown for the 0 slack curve.

loss in performance. These results combined with
the performance of the LSTM-FCN in Figure 12c
clearly show that it is the best network for performing
detection and is the reason we focus on this network
for detection on the robot dataset.

Tracking Figure 13 shows the performance of the 3
network types on the tracking task. As expected, the
only network with an explicit memory, the LSTM-
FCN, performs the best. However, the other two
networks perform better than would be expected of
networks with no memory capability. This is due to
the fact that, given segmented input, the networks
can infer where some of the liquid likely is. Although
it is clear that LSTM-FCNs are best suited for this
task.

We additionally tested the LSTM-FCN on the
combined detection & tracking task. The results are
shown in Figure 13d. The network in this case is
able to do quite well, with only a minor drop in

Recall

(d) Combined LSTM-FCN

Recall

(c) LSTM-FCN

Figure 13. The precision-recall curves for the tracking task
on the simulated dataset. The first 3 show the performance
of the three network types on the tracking task alone. The
last graph shows the performance of the LSTM-FCN on
the combined detection & tracking task. Similar to

Figure 12, the different lines show the different amounts of
slack, i.e., how far a positive classification can be from a
true positive to still count as correct. The area under the
curve (AUC) is shown for the 0 slack curve.

performance as compared to the LSTM-FCN on the
tracking task alone.

Robot Data Set

Figure 15 shows example output on the test set of the
LSTM-FCN with different types of input. From this
figure, it appears that the best performing network
is the one that takes as input grayscale images plus
optical flow with the early-fusion input block. Indeed,
the numbers in the table in Figure 14b confirm this.
Interestingly, the grayscale + optical flow early-fusion
network is the second worst performing network on
the train set, but performs the best on the test set.
This suggests that the other networks tend to overfit
more to the training distribution and as a result don’t
generalize to new data very well.

The table in Figure 14a reflects a similar, albeit
slightly different, result for single-frame FCNs. While
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Figure 14. The area under the curve (AUC) for the
precision-recall curves for the networks for the detection
task on the robot dataset. The top table shows the AUC
for the single-frame FCN; the bottom shows the AUC for
the LSTM-FCN. The tables show the AUC for different
types of input, with rows for different types of image data
(RGB or grayscale) and the columns for different types of
optical flow (none, early-fusion, or late-fusion). Each cell
shows the AUC on the train set (upper) and the AUC on
the test set (lower), all computed with 0 slack.

the grayscale plus optical flow early-fusion network
has one of the highest performances on the test
set, it is outperformed by the network that takes
only optical flow as input. As counter-intuitive as
it may seem, this makes some sense. The single-
frame FCN does not have the ability to view any
temporal information, however since optical flow is
computed between two frames, it implicitly encodes
temporal information in the input to the network. As
we saw in the section on detection on the simulated
dataset, temporal information is very important
for the detection task and the network that takes
only optical flow is forced to only use temporal
information, thus allowing it to generalize to new
data better. In the case of the LSTM-FCN, this effect
is less pronounced because the network can store
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Figure 15. Example frames for the LSTM-FCN for the
detection task on the robot dataset with different types of
input images. The first row shows the color image for
reference and the row immediately below it shows the
ground truth. All these images are from the test set with
target object not seen in the train set. The last row shows
the output of the baseline.

temporal information in its recurrent state, although
performance of the optical flow only network is still
better than performance of the networks that do not
use optical flow in any way.
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Baseline Comparison We also computed the perfor-
mance of the baseline method based on the method-
ology of (Yamaguchi and Atkeson, 2016b). It achieved
5.9% AUC on the training set and 8.3% AUC on the
testing set. The last row of Figure 15 shows some
examples of the output of the baseline. While it is
clear from the figure that the baseline is at least
somewhat able to detect liquid, it does not perform
nearly as well as the neural network based methods.
However, it is important to note that this method
was developed by (Yamaguchi and Atkeson, 2016b)
for a slightly different task in a slightly different
environment and using stereo cameras rather than
monocular, so it would not be expected to perform
as well on this task. Nonetheless, it still provides a
good baseline to compare our methods against.

The biggest advantage of the baseline method over
learning-based methods is it’s resilience to overfitting
due to its lack of trained parameters. However, this
lack of learning also means it can’t adapt to the
problem as well. Inspired by the resilience of the
baseline method, we combined it with our deep
neural network architectures to soften the effect
of overfitting while maintaining the adaptability of
learning-based methods. As shown in Figure 14b, the
methods using optical flow as an input tended to have
a smaller disparity between their training set and
testing set performance. While this didn’t completely
alleviate all overfitting, it is clear that combining
these two methods is superior to using either alone.

Initializing on Simulated Data We evaluated whether
or not the simulated data set, with its larger size,
could be used to pre-train the weights of a network
that would then be trained on the robot data.
Since the LSTM-FCN with grayscale plus optical
flow early-fusion as input generalized the best in
the previous section, we trained another LSTM-FCN
on the same type of input. However, instead of
pre-training it on cropped images from the robot
dataset, we went through the full training process
for a detection network on the simulated dataset,
and used those weights to initialize this network,
which was then trained on the robot dataset. The
networks converged to the same performance after
61,000 iterations of training. Figure 16 shows the
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Figure 16. The area under the curve on the test set at
each iteration of training. The red line shows the
performance of the LSTM-FCN trained solely on the robot
dataset; the blue line shows the performance of the
LSTM-FCN initialized from the simulated dataset.

performance of both the network not initialized with
any simulated data as compared to the performance
of this network on the test set at each iteration. The
network initialized with simulated data does seem
to converge slightly faster, although not by a large
amount.

Tracking Revisited

The prior section showed that an LSTM-FCN taking
as input grayscale early-fused with optical flow has
the ability to generalize better than any other type
of network we evaluated. This result was achieved
on the detection task, and we wanted to see if this
translates to the tracking task. However, the robot
data set does not contain the ground truth for
tracking, so we return to the simulated dataset to
test this hypothesis.

We train two networks: one that takes the default
input of RGB images and one that takes grayscale
images early-fused with optical flow. We train
them on the combined detection & tracking task.
They are trained in the same manner as described
previously for doing combined detection & tracking.
The advantage of using this alternative input type is
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Figure 17. The performance on the combined detection &
tracking task of the LSTM-FCN that takes as input RGB
images compared to the performance of the LSTM-FCN
that takes as input grayscale images plus optical flow using
the early-fusion input block. The upper graph shows the
precision-recall plot for both networks on both the train
and test sets. The lower table shows the corresponding
area under the curve for each curve. Note that here we
don’t use any slack unlike in Figures 12 and 13 (equivalent
to a slack of 0).

its ability to generalize to new data, so we hold out all
pouring sequences with one of the target containers
(the dog dish) during training. This includes during
training of all pre-trained networks such that the final
weights of the networks were never influenced by any
data containing the test object.

Figure 17 shows the performance of the two
networks on both the train and test sets. From this
figure it is clear that the RGB network outperforms
the other on the training set, however, the gray+flow
early-fusion network outperforms the RGB network
on the test set. This confirms the results we found in
the previous section: Networks trained with grayscale
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Figure 18. The entire robot control system using the
recurrent neural network for detections and the multi-frame
network for volume estimation. The recurrent detection
network (top) takes both the color image and its own
detections from the previous time step and produces a
liquid detection heatmap. The multi-frame network
(center) takes a sequence of detections cropped around the
target container and outputs a distribution over volumes in
the container. The output of this network is fed into a
HMM, which estimates the volume of the container. This
is passed into a PID controller, which computes the robot’s
control signal.

early-fused with optical flow generalize better to new
situations.

Application to a Control Task

We applied our methodology described in this paper
to a robotic control task involving liquids. This
application is described in our concurrent work
(Schenck and Fox, 2017b). We briefly summarize it
here to illustrate the efficacy of our method. Please
refer to that paper for more details.

Task

We utilize our liquid detection framework described
here as input to a control algorithm for the pouring
task. The robot’s goal was to pour a specific amount
of liquid from a source container into a target
container using only its RGBD camera as sensory
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Figure 19. Plot of the result of each pour. The x-axis is
the target amount that the robot was attempting to reach,
and the y-axis is the actual amount the robot poured. The
points are color-coded by the target container. The black
dashed line shows a 1:1 correspondence for reference.

input. The robot was given a target amount in
milliliters and a source container with an unknown
initial amount of liquid (but always more than
the target). The robot then used visual closed-loop
feedback to pour liquid from the source into the
target until the correct amount was reached.

Methodology

Figure 18 shows the robot control system. The robot’s
gripper with the source container was fixed over the
target and it controlled the angle of its wrist to
control the angle of the container. First, we trained
a LSTM-FCN to classify pixels as liquid or not-liquid
from RGB images!l. The heatmap from this network
was cropped around the target container and then
passed to another neural network. This network was
a multi-frame network that was trained to take in
a series of sequential inputs and output the amount
of liquid in milliliters in the target container. The
output of this network is a distribution over the

IISince this work was concurrent, we did not yet have the results
indicating that grayscale images with optical flow performed
better than RGB images for detection, and so we used RGB
images as the default.

liquid volume. This distribution was then passed
to a hidden Markov model (HMM) that modeled
the change in volume over time. The probability
distribution over the liquid volume was represented
as a histogram over a set of uniform, discrete bins
and the HMM smoothed this distribution’s changes
over time. Finally, the difference between the target
volume and the volume in the HMM was used by
a PID controller to control the pour. The PID
controller adjusted the angular velocity of the robot’s
wrist joint to control the flow of liquid leaving
the source container, returning to upright when the
volume reached the target amount.

Results

We evaluated our method on 30 pouring tasks using
the objects in Figures 6g, 6h, and 6i as the target
container and the mug in Figure 6¢c as the source
container. For each pour, we randomly selected an
initial amount of liquid in the source between 300 and
400 ml and a target between 100 and 300 ml (always
ensuring at least a 100 ml difference). At the end
of each pour, we compared the target volume given
to the robot with the actual volume as measured by
a scale. Note that the our methodlogy here is able
to run in real-time (approximately 30 Hertz) on a
computer with a modern GPU.

Figure 19 shows the results of each pour. The
robot had an average deviation from its target of
only 38 ml. While this may not be sufficient for
high precision tasks such as tasks in a wetlab, this
is approximately the precision expected in common
household tasks such as cooking. This shows that our
liquid perception and reasoning methods developed
in this paper are indeed precise and reliable enough to
be utilized online in a control task involving liquids,
not just for processing data offline.

Conclusion

In this paper, we showed how a robot can solve
the tasks of detection and tracking liquids using
deep learning. We evaluated 3 different network
architectures, FCN, MF-FCN, and LSTM-FCN, all
of which integrated different amounts of temporal
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information. We also evaluated eight different types
of input images to our networks, including RGB and
grayscale combined with optical flow. We tested these
networks on both data we generated in a realistic
liquid simulator and on data we collected from a real
robot.

Our results clearly show that integrating temporal
information is crucial for perceiving and reasoning
about liquids. The multi-frame FCN was able
to outperform the single-frame FCN because it
incorporated a window of frames, giving it more
temporal information. Furthermore, the LSTM-FCN
is able to learn to remember relevant information in
its recurrent state, enabling it to outperform the MF-
FCN since it keeps information much longer than the
fixed window of the MF-FCN. This was true not only
for the task of tracking, which requires a notion of
memory, but also for the task of detection.

The results also showed that, for the purposes of
generalizing to new objects and settings, standard
RGB images lead to overfitting and are not as well
suited as images converted to grayscale and early-
fused with optical flow. Networks trained on RGB
images tended to perform very well on sequences
drawn from the same distribution as their training
set, but their performance dropped considerably
when those sequences were drawn from a slightly
different setting. However, while networks trained on
grayscale early-fused with optical flow did not reach
the same level of performance on data taken from
the training distribution, their generalization to new
settings was significantly better.

Beyond merely demonstrating that these methods
work on offline datasets, we also showed results from
our concurrent work (Schenck and Fox, 2017b) in
which we apply them to a control task. Specifically,
we showed how we can combine our deep learning
methods with a relatively simple controller to achieve
robust results on a robot pouring task. Our robot was
able to pour accurate amounts of liquid using only
color images for closed-loop feedback. This clearly
shows that the methods we describe in this paper
are applicable to real, online robot control tasks.

The contributions of this paper are as follows.
First, we showed how deep learning can be applied
to address the challenging perception task of

liquid detection and tracking in the context of
pouring. Second, we introduced a novel technique
using a thermographic camera and hot water to
automatically generate ground truth labels for
our real robot dataset. Third, we investigated
different deep network structures and showed through
experimental evaluation how different types and
combinations of inputs affect a networks ability to
solve the detection task. Finally, we showed how our
methodology can be applied to a control task on a
real robot.

This paper also introduced a new dataset, the
University of Washington Liquid Pouring Dataset
(UW-LPD), which we make available to the wider
research community via the following url: http://
rse-lab.cs.washington.edu/1lpd/. The total size
of all the data collected is approximately 2.5
terabytes.

This paper opens up various avenues for future
work. So far, our deep learning only enables reasoning
about liquids in 2D, rather then the 3D volumetric
space. A next step for future work would be to look
at ways that enable robots to reason about liquids
in full 3D and take advantage of that to do more
complex manipulation tasks. One possible direction
is to connect the 2D liquid detection introduced in
this paper to 3D fluid simulation, as we showed in
our initial work on closed-loop simulation (Schenck
and Fox, 2017a). A promising alternative would be
to incorporate fluid simulation into a deep network
structure, performing volumetric reasoning using a
convolutional structure. Another avenue for future
work is to investigate more ways for networks to
generalize to new data. In this paper the test
data, while different from the training data, was
still collected in the same environment with the
same setup. Future work will examine methods for
training networks to generalize to different types
of liquids across many different environments with
many different conditions.
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