
Patch Volumes: Segmentation-based Consistent Mapping with RGB-D Cameras

Peter Henry and Dieter Fox
University of Washington

Computer Science & Engineering
Seattle, Washington

peter@cs.washington.edu

fox@cs.washington.edu

Achintya Bhowmik and Rajiv Mongia
Intel Corporation

Santa Clara, California
achintya.k.bhowmik@intel.com

rajiv.k.mongia@intel.com

Abstract
Recent advances have allowed for the creation of dense,

accurate 3D maps of indoor environments using RGB-D
cameras. Some techniques are able to create large-scale
maps, while others focus on accurate details using GPU-
accelerated volumetric representations. In this work we de-
scribe patch volumes, a novel multiple-volume representa-
tion which enables the creation of globally consistent maps
of indoor environments beyond the capabilities of previous
high-accuracy volumetric representations.

1. Introduction
The availability of RGB-D cameras such as the Mi-

crosoft Kinect has opened up research on how to utilize
these cameras for modeling environments and objects. The
capability to create models with these inexpensive sen-
sors has applications in robotics, augmented reality, local-
ization, and 3D content creation. Several research group
have developed techniques for generating consistent maps
of large scale environments. These approaches typically
extend visual odometry to incorporate depth information,
and use feature matching techniques to detect loop clo-
sures followed by global alignment via graph-based opti-
mization [11, 8, 12, 7]. In a separate line of work, New-
combe and colleagues introduced KinectFusion and showed
how extremely accurate volumetric representations can be
generated in real time taking advantage of GPU based op-
timizations [15]. Since this approach relies on keeping the
full model in GPU memory, a straightforward implemen-
tation does not scale to larger environments. To overcome
this limitation, Whelan and colleagues introduced Kintinu-
ous, which keeps only a small, active part of the model in
GPU memory [20]. However, the rigid, volumetric mod-
els underlying both KinectFusion and Kintinuous do not al-
low for global re-optimization after loop closure detection.
They are thus not able to align data collected in very large
environments.

In this paper we present a framework which we call patch

volumes, which has the ability to create large globally con-
sistent scene models with RGB-D cameras. Our approach
combines the accuracy and efficiency of volumetric repre-
sentations with the global consistency achieved with feature
based approaches and graph optimization.

2. Related Work
The first paper describing a system for SLAM and

dense reconstruction with RGB-D cameras is from Henry
et al. [10], with an expanded treatment in [11]. This sys-
tem performs frame-to-frame alignment with a combined
optimization over sparse visual features and iterative clos-
est point (ICP) [2] with a point-to-plane error metric [4].
Loop closures are suggested through place recognition, es-
tablished with the same frame-to-frame alignment method,
and optimized with pose graph optimization or bundle ad-
justment. This system was also extended to an interactive
setting with real-time feedback and error recovery [6]. A
similar system was described by Engelhard et al. [8], and
their code was made available1. This system was evaluated
on a publicly available dataset in [7].

Newcombe et al. provided an inspired approach to
smaller scale high fidelity geometric reconstruction with
KinectFusion [15]. This system utilizes a real-time GPU
implementation of the range image fusion method of Cur-
less and Levoy [5] to create a volumetric truncated signed
distance function (TSDF) representation of the environ-
ment. Subsequent frames are aligned against this model
with projective association point-to-plane ICP by perform-
ing parallel GPU ray-casting into the volume to generate
a surface prediction. By performing frame-to-model align-
ment, drift is significantly reduced, eliminating the need for
explicit loop closure detection or global optimization for
the sequences on which it was demonstrated. The result-
ing models exhibit substantially higher depth accuracy than
is present in an individual frame due to the effective noise
reduction from TSDF fusion. KinectFusion inspired sev-

1http://www.ros.org/wiki/rgbdslam

1

http://www.ros.org/wiki/rgbdslam

eral widely used implementations such as Kinfu2 and Re-
constructMe3.

One key limitation of KinectFusion is the restriction on
model size imposed by the need to store a dense volumet-
ric representation of the entire model in GPU memory. One
method to alleviate this issue was originally described as
Kintinuous [20]. In this work, the open source KinFu im-
plementation was modified to allow a moving TSDF fusion
volume. As the camera moves through the environment,
slices of the volume which fall out of the view frustum
are converted to a mesh. This GPU memory is efficiently
reclaimed by treating the volume as a 3D circular buffer.
While this allows the system to map effectively unbounded
environments, no provision is made for reincorporating the
mesh data into tracking or fusion when the camera returns
to previously visited locations.

Other work avoids ICP-style shape alignment and uses
the depth sensor of the RGB-D camera to enable 3D warp-
ing for dense color alignment [1, 18]. These methods do not
volumetrically reconstruct the scene, but focus on the prob-
lem of frame-to-frame visual odometry, minimizing the er-
ror in projection of color from the previous frame onto the
current color frame.

Recently, contemporaneous work by Whalen et al. [19]
combines the moving volume and ICP alignment of Kintin-
uous with dense color frame-to-model registration on the
GPU, as well as feature-based frame-to-frame alignment on
the CPU. Their system runs in real time and produces high
quality reconstructions. Notably, the camera trajectories for
which they demonstrate results do not return to previously
mapped areas, for as with their previous Kintinuous [20]
work, they provide no method for loop closure or global
consistency.

No previous system combines the real-time high accu-
racy models from GPU-based volumetric fusion with the
global consistency of RGB-D slam systems. It is this com-
bination of traits we wish to achieve in this work.

3. System Description
Our complete system applies volumetric fusion, ray-

casting for surface prediction, dense frame-to-model align-
ment, and pose-graph inspired optimization for global con-
sistency. Our system is implemented in C++. The nor-
mal computation, patch volume fusion, ray-casting, and
alignment optimization are all implemented in OpenCL. We
cover each of these components in detail in the following
sections.

3.1. Patch Volume Representation
A patch volume (PV) is a dense volumetric representa-

tion of a region of space. Taking inspiration from KinectFu-
2http://pointclouds.org/documentation/

tutorials/using_kinfu_large_scale.php
3http://reconstructme.net/

sion [15] which uses the technique of [5], we represent the
geometry as a TSDF, which is a dense voxel grid F where
positive voxel values lie in front of the surface, and nega-
tive values lie behind the surface. The implicit surface is
the zero crossing of the TSDF. We maintain a correspond-
ing grid WF of weights which allow weighted average fu-
sion of new depth frames. To store color appearance infor-
mation, we also store a grid of RGB values C and corre-
sponding weight grid WC. A patch volume also has a pose
TPV ∈ SE3 relative to the scene frame, which we define
as the first camera pose. We also maintain a changing esti-
mate TG of the scene relative to the current camera. Thus,
to transform PV-frame points to camera-frame points, we
apply TG ◦TPV .

An entire scene is represented as potentially many patch
volumes of arbitrary size and resolution. The original
KinectFusion representation can be thought of as a single
patch volume without color (only F and WF). As we wish
to represent arbitrarily large scenes, patch volumes may be
dynamically moved into and out of GPU memory based on
availability. When a PV is moved out of GPU memory, we
compress it using run length encoding to conserve system
memory.

A prediction of scene geometry and color from any pose
may be obtained through parallel ray-casting. We build up
a depth image Dr and color image Cr for a virtual camera
by rendering each patch volume sequentially, only overwrit-
ing depth and color for a pixel if the newer pixel is closer
to the camera. We also produce a normal map Nr and a
PV assignment map Sr. As the number of PVs falling into
the viewing frustum may require more than the amount of
GPU memory available, the system can bring PVs on and
off the GPU individually as necessary to render all visible
PVs while never exceeding GPU memory.

The method for parallel ray casting is substantially the
same as that described in KinectFusion [15]. We make sure
to only process the portion of a ray which intersects a given
patch volume, which provides a notable speedup for vol-
umes which occupy only a small fraction of the camera
frustum. When a zero-crossing is located, the normal is
computed as a finite difference approximation of the gra-
dient of F and the color is trilinearly interpolated in C. At
any point the user may pause modeling and generate a col-
ored mesh for each patch volume using the marching cubes
algorithm [13]. Each mesh vertex is colored according to
trilinear interpolation in C.

3.2. Frame Normals
For a new frame F consisting of depths Df and col-

ors Cf , we also require an estimate of frame normals Nf

for both projective association (section 3.3) and segmenta-
tion for PV fusion (section 3.4). To take into account the
quadratically increasing noise in Df values with increasing

http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php
http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php
http://reconstructme.net/

depth, we use the empirically determined simple axial noise
model of [16] (which implies zmin = 0.4):

σz(z) = 0.0012 + 0.0019(z − 0.4)2 (1)

We consider a neighboring point to be from the same sur-
face as the point under consideration if the depth difference
is less than 3σz .

Similar to KinectFusion [15], a pixel (u, v) has a valid
normal if all four neighboring pixels are from the same sur-
face, providing two pixel-space axis-aligned 3D gradient
vectors. A raw estimate of the normalN0

f (u, v) is computed
using the cross product of these vectors. This raw estimate
is refined with k = 2 iterations of a depth aware box filter,
in which all valid normals from the same surface in a 3× 3
neighborhood around N i

f (u, v) are averaged to produce the
next value N i+1

f (u, v). The final value for each valid nor-
mal is Nf (u, v) = Nk

f (u, v). All of these operations are
implemented on the GPU.

3.3. Model To Frame Alignment
Given a patch volume scene and a new camera frame, we

wish to find the pose of the scene relative to camera. As-
suming a small amount of motion relative to the last frame,
we can use a local alignment method with projective data
association.

A full six degree of freedom 3D pose is defined by[
R t
0ᵀ 1

]
∈ SE3 (2)

with rotation matrix R ∈ SO3 and translation vector
t ∈ R3. We parameterize the six degrees of freedom as
x ∈ R6, with t = (x1, x2, x3)ᵀ representing translation
and q = (x4, x5, x6)ᵀ representing a unit quaternion as
((1 − ||q||), x4, x5, x6) ∈ R4, which can be converted to
rotation matrix R in the usual way.

We render the scene from the previous camera pose as
described in section 3.1. This produces a depth map Dr,
normal map Nr, and color map Cr in the resolution of the
camera. For each valid depthDr(u, v) = z, and given cam-
era focal lengths (fx, fy) and center (cu, cv) the 3D point is
computed as

p =

(
(u− cu)z

fx
,

(v − cv)z

fy
, z

)ᵀ

(3)

Naturally, this can be inverted to project a point p =
(x, y, z)ᵀ to pixel space (uf , vf)ᵀ ∈ R2 as

uf = x
fx
z

+ cu vf = y
fy
z

+ cv (4)

The rendered normal map is already formed as unit length
vectors Nr(u, v) ∈ R3.

We wish to take advantage of all depth and color data to
make the alignment. We will compute a combined shape
and color error term for each valid correspondence between
rendered model point and frame point.

The desired 6DOF pose correction is initialized as x =
0 ∈ R6. To compute the error for parameters x, we convert
them to a 6DOF pose T̂ as in equation 2. An error term
is obtained for each model rendered pixel (u, v) with valid
rendered depth dr = Dr(u, v). This dr is transformed into
world coordinates with equation 3 and transformed by T̂ to
obtain pr, which is then projected into the frame with equa-
tion 4 yielding frame pixel coordinates (uf , vf)ᵀ ∈ R2. We
also transform the corresponding normal Nr(u, v) with the
rotation part of T̂ to obtain nr. We look up the nearest cor-
responding frame depth df = Df (round(uf), round(vf))
which also gives us a frame point pf via equation 3. We
also look up the normal nf = Nf (round(uf), round(vf)).
A rendered location (u, v) is compatible with the frame if
all of pr, nr, pf , and nf are valid, if ||pr − pf || < θd,
and if the angle between nr and nf is less than θn. We use
θd = 0.05 and θn = 45◦.

For compatible points, the geometric error is defined via
the point-to-plane ICP error as

εg = wg(pf − pr) · nr (5)

As distant points are noisier, we downweight their contribu-
tion using equation 1 by letting

wg =
σz(zmin)

σz(pr.z)
(6)

The color error can be defined in a variety of color
spaces. While our system supports an arbitrary number of
color channel errors, we found simple intensity error to be
effective. With frame intensity image Yf and rendered in-
tensity image Yr, the color error is simply

εc = (Yf (uf , vf)− Yr(u, v)) (7)

The overall residual for a point is a weighted combination
of these two quantities:

ε = λεg + εc (8)

As they are in different units, a simple empirically set bal-
ancing factor λ = 10 causes both functions to contribute
roughly equally to the total error.

The goal is relative pose correction T? with

T? = argmin
T̂

∑
||ε||2 (9)

Assuming we are in the correct convergence basin, we pro-
ceed with Gauss-Newton iterative nonlinear least squares

minimization, for which we need to obtain and solve the
normal equation

JᵀJ∆x = −Jε (10)

to obtain parameter updates ∆x.
Giving pr = (xp, yp, zp)ᵀ and nr = (xn, yn, zn)ᵀ, there

is one row of the Jacobian for each geometric and each color
error term for each valid correspondence.

The geometric rows are computed as follows:

J3D =

 1 0 0 0 2zn −2yn
0 1 0 −2zn 0 2xn
0 0 1 2yn −2xn 0

 (11)

Jrot =

 0 0 0 0 2zn −2yn
0 0 0 −2zn 0 2xn
0 0 0 2yn −2xn 0

 (12)

The geometric Jacobian row Jg is then

Jg = λwg (−nᵀ
rJ3D + (pf − pr)ᵀJrot) (13)

To compute the Jacobian rows for the color error terms,
we need to use the chain rule to compute how the image er-
ror changes with respect to the parameters x. We take our
inspiration from [18] and [1], but the use of Gauss-Newton
for direct dense image alignment goes back to [14]. We
first need how the error changes with respect to the projec-
tion (uf , vf)ᵀ of pr. This is linearly approximated using
the gradient images of Yf , which we compute using a nor-
malized Sobel filter of Yf to obtain Gx and Gy . We then
compute how the projection changes with respect to 3D po-
sition:

Jproj =

[
fx
zr

0 −xrfx
z2
r

0
fy
zr

−yrfy
z2
r

]
(14)

Putting this together with equation 11, the color Jacobian
row is

Jc =
[
Gx(uf , vf) Gy(uf , vf)

]
◦ Jproj ◦ J3D (15)

The final Jacobian matrix J is 2n× 6 with a geometric and
color row for each of the n valid correspondences. We com-
pute the quantities JᵀJ and −Jᵀε needed by equation 10 in
parallel on the GPU, including parallel tree reduction us-
ing local memory to avoid global GPU memory writes. We
solve the resulting 6× 6 linear equation using Cholesky de-
composition on the CPU. We apply the parameter update
as x + ∆x, and iterate until ||∆x||1 < θ∆, where we use
θ∆ = 0.0001.

3.4. Segmentation and Patch Volume Fusion
The patch volume framework allows for splitting up the

scene in a wide variety of ways. We opt to use scene-
dependent splitting based on locally planar geometric seg-
mentation. This allows us to save memory by only allo-
cating patch volumes for areas of the scene containing sur-
faces, and the patch volumes can be aligned with planar sur-
faces to avoid needless voxels in free space.

Our segmentation algorithm is inspired by the
Felzenszwalb-Huttenlocher algorithm [9]. We create
edges between each pixel (u, v) in Df and its eight
neighbors (u′, v′) on the same surface (see section 3.2),
with edge weight (1 − Nf (u, v) · Nf (u′, v′)). We sort the
edges by weight, meaning that pixels with more similar
normals are considered first. Each pixel is initially in its
own component, and components are merged using an
efficient union-find data structure. We also maintain a map
from components to normals, so when two components
are merged, we can set the merged component normal
to a size-weighted average of the merged components’
normals. When each edge is considered for merging, the
two associated components are merged only if the angle
between current component normals is less than a threshold
θseg = 30◦. After all edges have been considered, we
eliminate spurious small segments by making another pass
over the edges in order and merge two segments if either
has size less than 1000.

For frames after the first, we wish to consistently assign
points to the corresponding existing patch volume. To ac-
complish this, following alignment (section 3.3) but before
segmentation, we project the rendered points from Dr, nor-
mals from Nr, and PV assignments Sr into the new frame.
We consider a projection onto (u, v) consistent if the an-
gle between Nf (u, v) and the projected normal from Nr is
less than θseg and the depth difference is less than 3σz . We
initialize components for segmentation with these consis-
tent projections, and all remaining pixels start in their own
unary components. Thus new pixels can be merged with ex-
isting segments by following the same segmentation algo-
rithm. New components following segmentation will estab-
lish new patch volumes. An example of this segmentation
procedure is shown in figure 1.

Once we have segmented a new frame, we must fuse the
new data into the existing patch volumes. For segment com-
ponents not corresponding to an existing PV, we axis-align
the segment in 3D using the segment normal, and initialize
a new PV with size sufficient to contain the segment plus
a small border (0.01m). For existing segments correspond-
ing to existing PVs, we expand the PV in each axis direc-
tion as required to contain the new points. If expansion is
required, we expand by an additional border (0.1m) in an-
ticipation of further needed expansion in that direction on
subsequent frames. Note that while this can cause PVs to
overlap in 3D space, the consistent projection segmentation
maps each input pixel into at most one PV and restricts each
PV to represent a locally planar piece of the scene.

We now have a segmentation which maps input pixels
to existing PVs that contain the input points in space. To
fuse new geometric measurements into F and WF for a
PV, we follow the techniques of [15]. In parallel on the
GPU, each voxel vF ∈ F and vWF

∈ WF is transformed

(a) Input image 1 (b) Input depth 1 (c) Normals (d) Segments

(e) Input image 2 (f) Rendered segments (g) Consistent segments (h) Result segments

Figure 1: The first row shows an example of our segmentation on an initial frame. The second row shows the transfer of
consistent segment labels via rendering of existing patch volumes. White pixels are singleton segments.

into the PV via TG ◦TPV to obtain pf and projected into
the input frame using equation 4 obtaining the closest pixel
(u, v) = (round(uf), round(vf)). The current voxel val-
ues are dold ← vF and wd

old ← vWF
. We define

d = Df (u, v)− pf .z (16)
dmin = −3σz (Df (u, v)) (17)
dmax = 3σz (Df (u, v)) (18)

dnew =

 null : d < dmin

d : dmin ≤ d ≤ dmax

dmax : d > dmax

(19)

In this, null values represent unseen voxels and dmax rep-
resents empty voxels. To compensate for the additional ax-
ial and lateral space covered by distance measurements, we
modify the weighting function of [16]:

wd
new =

σz(zmin)

σz(Df (u, v))

z2
min

Df (u, v)2
(20)

If dnew 6= null, we update the voxel values

vF ←
wd

olddold + wd
newdnew

wd
old + wd

new

(21)

vWF
← min(wd

old + wd
new, wmax) (22)

where wmax = 100.
We also fuse new color information into vC ∈ C and

vWC
∈ WC in a similar way. With color, we modify the

fusion function to only update voxels near the surface and
not in empty space. We also weight the color contribution

based on the distance from the surface. We have previous
values cold ← vC and wc

old ← vWC
.

cnew =

{
null : |d| > dmax

Cf (u, v) : |d| ≤ dmax
(23)

wc
new = wd

new

(
1− |d|

dmax

)
(24)

If cnew 6= null (ensuring wc
new ≥ 0), update:

vC ←
wc

oldcold + wc
newcnew

wc
old + wc

new

(25)

vWC
← min(wc

old + wc
new, wmax) (26)

When performed for all PVs and their corresponding seg-
ments in the new frame, this completes the fusion of the
new frame into the scene model.

One remaining issue is that patch volume expansion may
cause PVs for large planar segments to grow to an unwieldy
size, hampering dynamic GPU memory swapping. When
a patch volume expands such that any dimension has voxel
count larger than 256, we split the patch volume on that
dimension.

3.5. Loop Closure and Global Optimization
A key issue with previous volumetric fusion mapping

techniques is the inability to scale to larger environments.
One issue is the large memory requirement of volumetric
representations, which we address by representing the scene
as patch volumes which can be moved in and out of GPU
memory. Another issue, not addressed in previous work, is
handling the inevitable drift that occurs during sequential

mapping, which becomes most apparent when when return-
ing to a previously mapped areas of the scene after many
intervening frames. This is the loop closure problem.

Our strategy is to divide patch volumes into two sets:
Scurrent and Sold. Only PVs in Scurrent are used when
performing standard alignment and fusion (sections 3.3
and 3.4). All PVs are initially in Scurrent. We track how
many frames have passed since a PV was last in the render
frustum for alignment. Once a PV has not been rendered for
sequential alignment in over 50 frames, it is moved to Sold.
Every 10 frames, after sequential alignment, we check for a
loop closure by rendering all patch volumes in Sold. If the
resulting rendering has valid points in more than half of the
pixels, this is considered a loop closure detection, and we
must ensure global consistency.

We might hope that the alignment procedure in sec-
tion 3.3 would be sufficient to align our current camera pose
with the old patch volumes, but the amount of drift accu-
mulated since the PVs in Sold were last observed may well
be large enough that we are not in the convergence basin
of the local optimization. To mitigate this issue, we intro-
duce the use of visual feature matching against keyframes
to initialize the local alignment. As we perform sequential
mapping, we cache features for a keyframe each time we ac-
cumulate a pose translational change of more than 0.5m or
angular change of more than 30◦. We also store which PVs
were in view of the keyframe, so we can map PVs back to
keyframes which observed them. We compute FAST fea-
tures [17] and BRIEF descriptors [3], associate them with
their points from the depth image (or discard them if they
lack valid depth), and save only this information for the
keyframe to minimize memory usage.

When a loop closure is detected by rendering, but be-
fore alignment is run, we accumulate all keyframes that ob-
served the PVs from Sold which fell into the render frus-
tum. We filter these to only keyframes within 1.5m and 60◦

of the current pose estimate. Features and descriptors are
generated for the current frame to be matched against these
keyframes. Starting from the oldest such keyframe, we ob-
tain purported matches for each feature in the current frame
as the most similar descriptor in the keyframe. We then use
RANSAC along with reprojection error to discard outliers
and obtain a relative pose estimate relative to the keyframe.
We accept the first relative pose obtained with at least 10
feature match inliers. Once we have an improved initial
pose estimate relative to the PVs we rendered from Sold,
we refine the camera pose relative to these PVs using the
full dense alignment described in section 3.3. We have ob-
served that the full dense alignment (given good initializa-
tion) provides better relative pose estimates than keyframe-
based alignment alone.

Now that we have one belief about the camera pose rel-
ative to the sequentially rendered PVs from Scurrent and

another from the loop closure alignment against Sold, we
must globally minimize the disagreement error. To do this,
we use techniques from pose-graph optimization, utilizing
the G2O library [12]. We maintain a graph with a vertex
for each camera and a vertex for each PV. Each new frame,
we add a relative pose edge between the new camera and
each PV observed by that camera, enforcing their relative
pose following alignment. Following a detected loop clo-
sure, relative pose edges are added from the new camera to
the PVs from Sold enforcing their relative pose from loop
closure alignment. Optimizing the G2O pose graph for a
few iterations (5 in our implementation) converges, achiev-
ing a globally consistent scene model.

Because we wish to maintain the flexibility of adjusting
PVs relative to each other, we do not currently merge PVs
from Sold into their overlapping counterparts in Scurrent.
Merging overlapping PVs can be accomplished through
weighted addition of the underlying voxel values, but deter-
mining when to perform this operation is an open problem.

4. Results
We evaluate various components of our system on indoor

sequences recorded with a hand-held Asus Xtion Pro Live
camera. We use the OpenNI2 API, which allows for hard-
ware time synchronization and depth-to-image registration
for each frame, as well as the ability to disable automatic
exposure and white balance. Though the goal is real-time
live reconstruction, we currently process the files offline.
We use only every third frame, corresponding to input at 10
frames per second. We use a voxel resolution of 1cm3.

Our test system is an Intel Xeon E5530 4-core 2.4 GHz
machine with 12GB of RAM and an NVidia GTX 560 Ti
graphics card with 1GB video RAM.

4.1. Geometry and Color
Our first result shows that both the depth and color error

terms are needed to achieve the best alignment. We use a
single PV with 256 voxels per side with no loop closure
for this example to highlight the properties of the alignment
algorithm. The sequence consists of 157 processed frames
of a painting on a wall. The running time averaged 122ms
per frame on the GPU. As a comparison, disabling the GPU
and running the OpenCL code on the CPU yielded a running
time of 1100ms per frame.

We ran our algorithm using just the geometric term
(equation 5). As the scene consists primarily of a flat wall
which does not sufficiently constrain point-to-plane ICP,
this failed within the first few frames, and is not shown.
Next we ran our algorithm using only the color error term
(equation 7). This also performed poorly, as the lack of ge-
ometric constraint caused some poor alignments. Once the
geometry of the model is inconsistent, subsequent results
are even worse as the model is projecting incorrect colors.
In comparison, our full alignment produces a visually accu-

(a) Color Only (b) Full Alignment View 1 (c) Full Alignment View 2

Figure 2: This example demonstrates the need for both color and depth in alignment. Figure (a) shows the failure when only
the color term is used. Using only the geometric term failed immediately and is not shown. Figures (b) and (c) show two
views of the model using our full alignment.

rate model with no obvious alignment failures through the
entire sequence. See figure 2 for a comparison of these re-
sults.

4.2. Global Consistency
Our next result showcases the need for global consis-

tency through loop closure, and how our patch volume rep-
resentation allows us to achieve this. We recorded a se-
quence in a medium sized room, performing roughly one
full rotation from within the center of the room. This se-
quence consists of 248 processed frames. The final model
consists of 141 patch volumes requiring 952MB of mem-
ory, which did not fit simultaneously in (free) GPU memory,
requiring our dynamic patch volume swapping. The total
time per frame averaged 616ms, including the loop closure
checks in the same thread every 10 frames. Approximately
a third of this time is spent on patch volume fusion, where
the segmentation on the CPU and periodic patch volume
expansion and splitting are both computationally expensive.
We are confident that with additional optimization and plac-
ing loop closure in a parallel thread, real-time performance
can be achieved.

In figure 3, we compare the result in the overlapping
portion of the sequence. Note that without loop closure,
the alignment does not fail catastrophically, because the
sequential alignment is carried out only over frames in
Scurrent. However, there is a clear global inconsistency,
with duplicate instances of pictures on the wall. In com-
parison, detecting loop closures and performing graph opti-
mization over patch volumes produces a consistent model.
Please see an overview of the final model in figure 4, where
one can observe that the overall model is not adversely af-
fected by the graph optimization.

A video showing these results is present in the supple-
mentary material and online4.

4http://youtu.be/hEUDRTTlCxM

5. Conclusion
We have presented a system based on a novel multiple

volume representation called patch volumes which com-
bines the advantages of volumetric fusion with the ability
to generate larger-scale globally consistent models.

In future work, we will optimize towards true real-time
operation over yet larger settings. We will explore multi-
scale representations for memory efficiency, texture map-
ping for visual accuracy, and modifications to the frame-
work to handle objects in dynamic environments.

Acknowledgements
We are grateful to Richard Newcombe for his guidance

during the development of our system. This work was
funded in part by an Intel grant and by the Intel Science and
Technology Center for Pervasive Computing (ISTC-PC).

References
[1] C. Audras, A. I. Comport, M. Meilland, and P. Rives. Real-

time dense appearance-based SLAM for RGB-D sensors.
Australian Conference on Robotics and Automation, 2011.
2, 4

[2] P. J. Besl and N. D. McKay. A Method for Registration of
3-D Shapes. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 14(2), 1992. 1

[3] M. Calonder, V. Lepetit, and C. Strecha. BRIEF : Binary
Robust Independent Elementary Features. European Con-
ference on Computer Vision (ECCV), 2010. 6

[4] Y. Chen and G. Medioni. Object Modeling by registration
of multiple range images. In International Conference on
Robotics and Automation (ICRA), 1991. 1

[5] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. SIGGRAPH, 1996. 1, 2

[6] H. Du, P. Henry, X. Ren, M. Cheng, D. B. Goldman, S. M.
Seitz, and D. Fox. Interactive 3D Modeling of Indoor Envi-
ronments with a Consumer Depth Camera. UbiComp, 2011.
1

[7] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An Evaluation of the RGB-D SLAM System.

http://youtu.be/hEUDRTTlCxM

(a) No Loop Closure (b) With Loop Closure

Figure 3: This example shows the need for loop closure to achieve global consistency. Figure (a) shows the overlapping
region of the sequence if no loop closure is performed. Note the drift has caused serious misalignment. In comparison, figure
(b) shows the globally consistent result when we perform graph optimization over the patch volumes.

Figure 4: An overview of the final result and the patch volumes used.

IEEE International Conference on Robotics and Automation
(ICRA), 3(c):1691–1696, May 2012. 1

[8] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard.
Real-time 3D Visual SLAM with a Hand-held RGB-D Cam-
era. Proceedings of the RGB-D Workshop on 3D Perception
in Robotics at the European Robotics Forum, 2011. 1

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-
based Image Segmentation. International Journal of Com-
puter Vision (IJCV), 59(2):167–181, Sept. 2004. 4

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D
Mapping: Using Depth Cameras for Dense 3D Modeling of
Indoor Environments. International Symposium on Experi-
mental Robotics (ISER), 2010. 1

[11] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using Kinect-style depth cameras for dense 3D
modeling of indoor environments. The International Journal
of Robotics Research (IJRR), 31(5):647–663, Feb. 2012. 1

[12] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A General Framework for Graph Op-
timization. International Conference on Robotics and Au-
tomation (ICRA), 2011. 1, 6

[13] W. E. Lorensen and H. E. Cline. Marching Cubes: A
High Resolution 3D Surface Construciton Algorithm. SIG-
GRAPH, 21(4):163–169, 1987. 2

[14] B. D. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. Interna-

tional Conference on Artificial Intelligence (IJCAI), 1981. 4
[15] R. A. Newcombe, D. Molyneaux, D. Kim, A. J. Davison,

J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), 2011. 1, 2, 3, 4

[16] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling Kinect
Sensor Noise for Improved 3D Reconstruction and Track-
ing. 2012 Second International Conference on 3D Imag-
ing, Modeling, Processing, Visualization & Transmission
(3DIM/3DPVT), pages 524–530, Oct. 2012. 3, 5

[17] E. Rosten and T. Drummond. Machine Learning for High-
speed Corner Detection. European Conference on Computer
Vision (ECCV), pages 430–443, 2006. 6

[18] F. Steinbrücker, J. Sturm, and D. Cremers. Real-Time Visual
Odometry from Dense RGB-D Images. Workshop on Live
Dense Reconstruction with Moving Cameras at the Interna-
tional Conference on Computer Vision (ICCV), 2011. 2, 4

[19] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and
J. Mcdonald. Robust Real-Time Visual Odometry for Dense
RGB-D Mapping. International Conference on Robotics and
Automation (ICRA), 2013. 2

[20] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johanns-
son, and J. J. Leonard. Kintinuous: Spatially Extended
KinectFusion. 3rd RSS Workshop on RGB-D: Advanced Rea-
soning with Depth Cameras, 2012. 1, 2

