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Abstract—Particle filters have been applied with great suc-
cess to various state estimation problems in robotics. However,
particle filters often require extensive parameter tweaking in
order to work well in practice. This is based on two obser-
vations. First, particle filters typically rely on independence
assumptions such as “the beams in a laser scan are independent
given the robot’s location in a map”. Second, even when
the noise parameters of the dynamical system are perfectly
known, the sample-based approximation can result in poor
filter performance. In this paper we introduce CRF-Filters, a
novel variant of particle filtering for sequential state estimation.
CRF-Filters are based on conditional random fields, which are
discriminative models that can handle arbitrary dependencies
between observations. We show how to learn the parameters of
CRF-Filters based on labeled training data. Experiments using
a robot equipped with a laser range-finder demonstrate that
our technique is able to learn parameters of the robot’s motion
and sensor models that result in good localization performance,
without the need of additional parameter tweaking.

I. INTRODUCTION
Estimating the state of a dynamical system is of fundamen-

tal importance in robotics. Particle lters are a sample-based
implementation of Bayes lters, which are generative models
that recursively estimate posterior probability distributions
over the state of a dynamical system [14], [4]. Due to their
expressiveness and conceptual simplicity, particle lters have
become extremely popular for state estimation in robotics.
Successful applications of particle lters include robot lo-
calization, mapping, and people tracking.
While the sample-based representation gives particle l-

ters a huge exibility in modeling dynamical systems, this
representation comes at the cost of increased computational
complexity. Furthermore, to make particle lters work in
practice, one often has to resort to extensive manual tweaking
of lter parameters. This has two main reasons: First, in
order to generate good lter performance, the parameters
must model both the noise of the dynamical system and the
approximation error due to the limited number of particles.
As a result, for instance, even when the noise of the system
is perfectly known, a particle lter solely modeling this
noise might perform poorly especially when posteriors are
highly peaked [14]. To alleviate this problem, it is common
practice to articially inate the noise of the system, thereby
“smoothing” posterior distributions [4].
The second potential reason for poor particle lter perfor-

mance is due to invalid independence assumptions underly-

ing the probabilistic model. For instance, a very common
assumption made by Bayes lters is the so-called naive
Bayes assumption for measurement vectors. In the context of
robot localization, this assumption states that the individual
beams of a sonar or laser range-scan are independent given
the robot’s location [5], [6], [14]. While such an assumption
signicantly reduces the complexity of measurement models,
it is often violated and causes overly peaked likelihood
functions, even when the model parameters are learned from
real data. A standard way of dealing with this problem is to
articially reduce the gain of the learned sensor model, for
instance by applying an exponential smoothing coefcient to
each individual observation component [14].
In this paper we introduce CRF-Filters, a novel variant

of particle lters. CRF-Filters build on conditional random
elds (CRF), which are discriminative probabilistic models
designed to handle high-dimensional and correlated obser-
vations [7], [12]. CRF-Filters extend CRFs to continuous
domains by performing particle ltering during inference
and learning. By learning model parameters discriminatively,
CRF-Filters automatically learn parameters that maximize
lter performance, taking dependencies, sensor noise, and
sample-based approximations into account. For instance,
our experimental evaluation of laser-based robot localization
shows that CRF-Filters learn different parameters depending
on how many beams are contained in a laser scan and
depending on whether the robot performs global localization
or position tracking.
This paper is organized as follows. After discussing related

work in the next section, Section III describes generative
Bayes lters and CRF-Filters. In this section we also show
how to model a wide range of transition and measurement
models in our framework. Sample-based inference and dis-
criminative learning is described in Section IV, followed by
experimental results. We conclude in Section VI.

II. RELATED WORK

Particle lters have been applied successfully to a variety
of estimation problems in robotics. However, it is well
known that particle lters require large numbers of particles
especially when the observation noise is very small. Several
researchers showed how to deal with this problem by gener-
ating particles from an improved proposal distribution [15],
[16]. Recently, Pfaff and colleagues [9] showed how to adapt
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Fig. 1. (left) Directed graphical model of a Bayes lter with typical naive Bayes independence assumption on observations. (right)
Undirected graphical model of a CRF-Filter. Light grey areas indicate prediction clique (solid) and correction cliques (dashed) for time t.

the smoothness of a sensor model depending on the density
of the particles during robot localization. This approach
attempts to model the additional sensor noise needed to
incorporate the sample-based approximation of the posterior.
While these approaches greatly improve the efciency of the
resulting lters, they do not address the problem of how to
learn the parameters of the lters. Furthermore, they provide
no foundation for handling the dependencies inherent in
high-dimensional sensor data such as laser range-scans.
Abbeel and colleagues [1] showed how to discrimina-

tively train the noise parameters of Kalman lters. They
demonstrated that discriminatively trained Kalman lters
outperform their generatively trained counterparts. [2] and
[10] showed that consistent motion and observation models
can be learned for mobile robots. At the current stage of their
work, however, it is not clear how their fully unsupervised
techniques can scale to more realistic problems in sequential
state estimation.
Taycher and colleagues [13] used conditional random

elds for people tracking. They applied standard CRF models
by discretizing the continuous state space. While such an
approach worked well in their specic application, grid-
based representations do not scale well to higher dimensional
state spaces. To overcome this limitation, we use sample-
based approximations for inference and learning in our CRF-
Filters. The resulting particle lter algorithm is a special
version of nonparametric belief propagation introduced by
[11]. While their focus is on sample-based inference in
generative models such as Markov random elds, we show
how particle ltering can be used for both inference and
discriminative learning of model parameters in CRFs.

III. CRF-FILTERS

In this section we show how to apply conditional random
elds to sequential state estimation. We start with a brief
description of Bayes lters, a generative framework for
sequential state estimation (see [14] for details).

A. Bayes Filters for Sequential State Estimation

The goal of Bayesian ltering is to estimate the posterior
over the state, xt, of a dynamical process, conditioned on all
control information, u1:t−1, and sensor measurements, z1:t,
obtained through time t. Typically, time is discretized, but all
random variables can be continuous. In robot localization, for
instance, xt describes the robot’s 〈x, y, θ〉 location at time
t, ut−1 is odometry information about the robot’s motion

between time t − 1 and t, and zt is a sensor measurement
such as a laser range-scan.
Bayes lters are generative models that can be described

via the directed graphical model shown in the left panel of
Figure 1. The model denes the following recursive equation
to compute posterior distributions over the hidden state x t:
p(xt|u1:t−1, z1:t) ∝

p(zt|xt)
∫

p(xt|ut−1,xt−1)p(xt−1|u1:t−2, z1:t−1) dxt−1(1)

The term p(xt|ut−1,xt−1) is a probabilistic model of the
system dynamics, which predicts the state at time t based
on the previous state and control information. As can be
seen, Bayes lters rely on Bayes rule to model posterior
distributions. A key component of such a lter is the genera-
tive measurement model p(zt|xt), which describes how mea-
surements are generated from the hidden state. Very often,
observations zt are measurement vectors (z1

t , z2
t , . . . , zn

t )′,
such as a camera image or a scan of laser range-readings.
In order to avoid modeling high-dimensional distributions
over such vectors, Bayes lters typically make the naive
Bayes like assumption that the individual readings z i

t are
independent given the state xt [14]. The resulting likelihood
model, indicated by the multiple arcs in Figure 1, is then
given by

p(zt|xt) =
n∏

i=1

p(zi
t | xt) . (2)

However, since such likelihood models are learned for each
measurement component independently, the resulting likeli-
hood can become overly peaked.

B. CRF-Filters for Sequential State Estimation
Conditional random elds are undirected graphical models

that were developed for labeling sequence data [7] (see [12]
for a recent overview). The nodes in a CRF represent random
variables, just like those in the directed graphical model
underlying Bayes lters. The main difference, however, is
that the connections between nodes are undirected and the
dependencies between nodes are not restricted to normal-
ized, conditional probabilities, but can be any non-negative
function. Furthermore, instead of relying on Bayes rule to
estimate distributions over hidden states from observations,
CRFs directly represent the conditional distribution over
hidden states given the observations. CRFs thereby avoid the
need for generative measurement models, which gives them
substantially more modeling exibility.
The distribution over hidden states of a CRF is dened

via the nodes and the clique structure imposed by the edges



between them. To see, consider the structure of our CRF-
Filter shown in the right panel in Figure 1. For each time step
t, the model has two cliques (fully connected sub-graphs)
consisting of (xt,xt−1,ut−1) and (xt, zt), respectively. For
this structure, the conditional distribution over the hidden
states x0:T of a sequence of length T + 1 factorizes into
the following product of clique potentials, which are non-
negative functions dened over the two types of cliques:
p(x0:T | z1:T ,u0:T−1) =

1
Z(z1:T ,u1:T−1)

·
T∏

t=1

φp(xt,xt−1,ut−1) φm(xt, zt) (3)

Z(. . . ) =
∫ ∏T

t=1 φp(xt,xt−1,ut−1)φm(xt, zt) dx1:T is
the normalizing partition function. It is necessary since the
potential functions in CRFs do not need to be normalized, in
contrast to the conditional probabilities used in Bayes lters.
Since the computation of this partition function requires
integration over all possible congurations of the continuous
hidden states, exact inference is not possible in CRF-Filters.

φp in (3) is the prediction potential. It models the tem-
poral evolution of the process and is closely related to the
dynamics model in the Bayes lter formulation (1). φm,
the measurement potential, corresponds to the observation
model in the Bayes lter. Intuitively, the potentials capture
the “compatibility” among the variables in the clique; the
larger the potential value, the more likely the conguration.
Following standard CRF convention, we describe clique

potentials φ by log-linear combinations of feature functions.
For instance, φ(x1,x2) = exp {w′ · f(x1,x2)} denes a
potential for variables x1 and x2, where f is a vector of fea-
tures extracted from the variables, and w is a weight vector
(Section IV describes how to learn weights). The individual
components of the feature vectors are typically real-valued
or binary functions. CRFs have been applied successfully to
problems involving thousands of features [12].

C. Application to Robot Localization
We will now show how CRF-Filters can be used for

mobile robot localization using proximity sensors such as
sonar sensors or laser range-nders. Here, the state xt =
(xt, yt, θt) represents a robot’s location and orientation in a
given map of the environment.

Prediction potential for odometry motion model
The prediction potentials φp model the temporal evolution

of the dynamical process. Each φp(xt,xt−1,ut−1) measures
the compatibility between two consecutive states, xt−1 and
xt, and the control information ut−1. For instance, consider
the following odometry motion model commonly used in
mobile robotics. Here, the robot’s motion between time t−1
and t is estimated using wheel encoders, and the vector u t =
(δrot1, δtrans, δrot2)′ is specied by an initial rotation of δrot1

degrees, followed by a translation of δtrans cm, and a nal
rotation of δrot2 degrees [14].
We can use prediction potentials to specify a Gaussian

noise model on the individual components of u t, as is often
adopted by particle lter and Kalman lter models [14]. To

do so, we dene the feature functions of prediction potentials
φp as

f i
p(xt,xt−1,ut−1) := (ui

t−1 − ûi
(xt−1,xt))

2, (4)

where ui
t−1 denotes the i-th component of the odometry

measurement vector ut−1. û(xt−1,xt) is the derived odometry
vector, which is the odometry value that corresponds to
noise-free motion between state xt−1 and xt. Each com-
ponent of the feature vector fp is thus the squared difference
between the measured and the derived odometry vectors 1.
The corresponding prediction clique potential is

φp(xt,xt−1,ut−1) = exp
{
w′

p · fp(xt,xt−1,ut−1)
}

, (5)

which denes a quadratic penalty function that corresponds
to an (unnormalized) Gaussian noise model. More speci-
cally, let wi

p be the i-th component of the weight vector wp.
It can be shown that (5) represents a Gaussian noise model
with mean at the odometry measurement u i

t and variance
σ2 = 1/(−2wi

p) (we constrain these weight values to be
negative). This connection to Gaussian noise models will
turn out to be very useful for sampling-based inference, as
described in Section IV-A.

Measurement potential for proximity sensor model
Proximity sensors such as sonar sensors or laser range-

nders measure distances to obstacles around the robot.
Mobile robots are often equipped with multiple sonar sen-
sors and/or a laser range-nder that typically generates 180
beams of distance measurements per planar scan. To develop
appropriate feature functions for the measurement potentials,
we show how to model a slightly simplied version of the
generative, beam-based approach given in [5], [14]. This
model will also enable us to compare our CRF-Filter with
an established, generative Bayes lter technique. We rst
describe the generative version of the sensor model.
Here, the likelihood p(z i

t|xt) of a specic sensor beam is
computed by rst determining the expected measurement, ẑ i

t,
given the robot location xt. This measurement is typically
determined by ray-tracing in a map of the environment,
starting at the sensor location (determined by x t). The
generative model applies the following mixture distribution.

p(zi
t | xt) =




αhit

αmax

αrand




′

·




N (zi

t; ẑi
t, σ

2
hit)

I(zi
t = zmax)

1
zmax



 (6)

Here, zmax is the maximum range of the sensor. The rst
component, which models a measurement that successfully
detects the obstacle in the map, is a Gaussian centered at the
expected distance ẑ i

t. The second component models maxi-
mum range measurements, and the third component models
erroneous measurements, which are represented by a uniform
distribution. The vector (αhit, αmax, αrand)′ represents the
weights of the mixture components.
In a typical generative Bayes lter, the likelihood of a

sonar or laser scan is then given by multiplication of the

1To model noise that is relative to the size of the motion, we divide the
individual components of fp by values derived from ut−1, see [14].



individual beam likelihoods, as given in (2). The parameters
of such a model are typically learned for individual beams
using expectation maximization (EM), based on training data
for which ground truth locations are known [14].
To represent a similar sensor model in our CRF-Filter, we

dene the binary value ci
t, which is true if the difference be-

tween the measurement and the expected measurement is less
than 20 centimeters (this models “correct” measurements).
We also dene the binary variable mi

t, which is true if the
measurement zi

t is max range, and m̂i
t, which is true if the

expected measurement ẑ i
t is max range (that is, the closest

obstacle in the sensing direction is further away than max
range). The feature vector f i

m modeling each sensor beam is
then dened by considering the combinations of measured
and expected max range measurements:

f i
m(zt,xt) =





(¬mi
t ∧ ¬m̂i

t) ci
t (zi

t − ẑi
t)2

(¬mi
t ∧ ¬m̂i

t) c̄i
t

(¬mi
t ∧ m̂i

t)
( mi

t ∧ ¬m̂i
t)

( mi
t ∧ m̂i

t)




(7)

The rst case corresponds to the Gaussian component of
the generative likelihood model. The second case models
a random measurement (not unlike the third component of
the generative model), and the other cases model different
combinations of measured and expected maximum range
measurements. The correction clique potential φm for this
sensor model follows as

φm(xt, zt) = exp

{
w′

m

n∑

i

f i
m(zt,xt)

}
, (8)

where wm is the 5-dimensional weight vector modeling the
impact of the different components of the feature vector (7).

IV. INFERENCE AND DISCRIMINATIVE LEARNING
A. Particle Filtering for CRF-Filters
As indicated in (3), CRFs estimate posterior distributions

over complete state sequences x1:T , which corresponds to
smoothing in the state estimation context. However, just
as for Bayes lters, we can recursively estimate ltering
posteriors in CRF-Filters. It turns out that the resulting
particle lter algorithm is an instance of nonparametric
belief propagation, which was introduced for sample-based
inference in undirected Markov models [11]. Here, we omit
a derivation and describe only the basic particle ltering
algorithm for CRF-Filters, as given in Alg. 1.
As can be seen, the algorithm is virtually identical to gen-

erative particle lters, which update sample sets according
to a procedure often referred to as sequential importance
sampling with re-sampling [4]. The loop starting in Step
2 generates a weighted particle x(i)

t for each particle x(i)
t−1

drawn via re-sampling in Line 1. In Step 3, the particle lter
makes a prediction by sampling from the marginal prediction
potential, rather than a conditional distribution, as is done
in generative particle ltering. Given the specic form of
prediction clique potentials dened in Section III-C, however,
this marginal potential is an unnormalized Gaussian model

Inputs : Control ut−1, measurement zt, sample set
St−1 = {〈x(i)

t−1, α
(i)
t−1〉 | i = 1, . . . , N}

Re-sampling: Draw N samples x(i)
t−1 from St−1 with1

probability proportional to importance weights α (i)
t−1;

for i = 1, 2, · · · , N do2
Prediction: Sample x(i)

t ∼ φp(xt,x
(i)
t−1,ut−1);3

Importance sampling: α(i)
t = φm(x(i)

t , zt);4
end5
Algorithm 1: Particle ltering for CRF-Filters

with a diagonal covariance matrix2. We can easily sample
from this marginal by rst generating a “noisy version”,
u(i)

t−1, of the control vector via sampling Gaussian noise for
each control vector component, followed by the computation
of the resulting x(i)

t . The Gaussian noise of each component
is specied by the weight vector wp in (5). Finally, Step 4
incorporates the measurement by weighting the particle by
the correction clique potential φm.

B. Discriminative Parameter Learning
The parameter weights of CRFs are typically learned

discriminatively using training sequences that contain the
ground truth hidden states x∗

1:T along with z1:T and u1:T−1.
The most-widely used learning criterion for CRFs is to
maximize the conditional log-likelihood of the training data,
log p(x∗

1:T | z1:T ,u1:T−1). This objective function is typi-
cally optimized using techniques such as L-BFGS [12].
Since computation of the weight gradients and conditional

likelihoods can be challenging in continuous domain CRF-
Filters, we resort to an adapted version of the averaged
perceptron algorithm, which lends itself to a simple im-
plementation. The averaged perceptron algorithm was intro-
duced by Collins [3] for discriminative training of discrete
state hidden Markov models in natural language processing.
The key idea of this technique is to iteratively update the
weights based on the difference between feature values
computed from the ground truth sequence x∗

1:T and feature
values given by the maximum aposteriori (MAP) sequence
x̂1:T = argmaxx1:T

p(x1:T | u1:T−1, z1:T ). Our approach
determines an approximate MAP sequence using the history
of the most likely particle at the nal step T of the lter.
The overall learning algorithm is summarized in Alg. 2.
The algorithm takes as input a sequence of sensor and

odometry measurements along with the ground truth loca-
tions. At each iteration, the algorithm picks a sub-sequence
from the training data and performs particle ltering to
compute the MAP location sequence x̂1:t (Step 3). This
sequence and the ground truth locations are used to determine
the values f(x̂1:T ,u1:t−1, z1:t) and f(x∗

1:t,u1:t−1, z1:t), re-
spectively. These values are computed by adding the feature
vectors (4) and (6) over the complete sub-sequence, with
locations instantiated to x̂1:T and x∗

1:t. The difference ∆
between these values provides the gradient for the weight

2Note that more general prediction potentials might require additional
normalization factors for the different particles and more advanced sampling
methods such as Markov chain Monte Carlo (MCMC).



Inputs : Controls u1:T−1, measurements z1:T ,
ground truth positions x∗

1:T , initial weight
vector w0

Output: Estimated weight vector w
w = w0;1
repeat2

Randomly pick sub-sequence and estimate MAP3
sequence x̂1:t using CRF-Filter with weights w;
Compute feature difference4
∆ = f(x∗

1:t,u1:t−1, z1:t) − f(x̂1:t,u1:t−1, z1:t);
Initialize step size µ = 1;5
Randomly pick sub-sequence for testing;6
for i = 1, 2, · · · , M do7

wtest = w + µ∆;8
if CRF-Filter loses track using wtest then9

µ = 0.5 µ;10
else11

w = wtest ; break ;12
end13

end14
until w converges ;15

Algorithm 2: Learning algorithm for CRF-Filters

update (note that this ∆ is closely related to the weight
gradient of the conditional log-likelihood function [12]).
An important question in this context is the step size

used for the weight update. While too small updates lead to
slow convergence, too large updates might lead to poor lter
performance. In the loop starting at Step 7, the algorithm
searches for an appropriate step size by testing a sequence
of exponentially decreasing steps along the gradient (each
update in Step 8 ensures that the components of the weight
vector corresponding to noise variances remain negative). For
each step size, the algorithm checks if the lter successfully
localizes the robot on a randomly picked test sequence (Step
9). This check is rather straightforward using the ground truth
locations in the test sequence. The weight update is accepted
in Step 12 if the algorithm successfully tracks, otherwise a
smaller step size is tested (Step 10). The algorithm stops
when changes in w fall under a pre-specied threshold.
To summarize, our learning algorithm performs approxi-

mate gradient steps in the conditional log-likelihood of the
training data, where step sizes are chosen to avoid weight
vectors that result in lter divergence.

V. EXPERIMENTS
We evaluated CRF-Filters in the context of mobile robot

localization. To do so, we used a Pioneer2-DX robot
equipped with a SICK laser range-nder. The laser provides
scans containing 181 beams, covering a planar area of 180
degrees in front of the robot. To learn the parameters of
the motion and sensor model, we moved the robot through
our department building, collecting 1,312 laser scans and
odometry mesurements over a path of length 360m. For
testing, we collected traces of length 200m from a differ-
ent environment. The map and ground truth locations for

Fig. 2. Maps used for training (left) and testing (right).

learning and evaluation were generated by using a highly-
accurate scan-matcher to align the scans. Figure 2 shows the
high-resolution maps we used for training and testing.
Training of the motion and measurement model param-

eters typically converged after 90 iterations, each of which
performed a particle ltering run to compute the gradient
and three tests to verify that the new weights are still
sufcient for tracking. Depending on the type of experiment,
the particle lter was either initialized with a Gaussian
distribution centered on the ground truth start location of
the robot, or with a uniform distribution. Parameter learning
typically took between 10 and 30 minutes (depending on the
number of laser beams) for tracking and up to 10 hours for
global localization on a standard desktop PC.
Comparison with generatively trained particle filter: We

learned 10 sets of weights for tracking. For each set of
weights, we ran 40 tracking tests, where each test consisted
of starting the robot at a random point in the test trace. We
then computed the average error of the mean of the particle
set from the ground truth location over all 400 test traces.
To learn the parameters of the generative particle lter, we
used expectation maximization, as described in [14]. The
generative model had an average error of 7.5cm, whereas
the CRF-Filter had an average of 7.1cm.
For global localization, we learned 3 sets of weights.

Similar to tracking, we ran 40 tests per set of weights. We
then counted how often the particle lter was able to globally
localize the robot using 25,000 particles. The generative
model localized the robot 30% of the time. The highly-
peaked nature of the generative model caused the particles
to quickly concentrate in one area of the map–usually in the
wrong area. Our CRF-Filter was able to localize the robot
96% of the time. The table below summarizes our results.

Tracking Global Localization
Error (cm) Accuracy (%)

Generative 7.52 cm 30 %
CRF-Filter 7.07 cm 96 %

Dealing with dependent measurement vectors: Vanilla
particle lters are brittle w.r.t. peaked observation like-
lihoods [4]. This problem typically occurs when high-
dimensional observations are used, especially when the in-
dividual components of the obervations are learned inde-
pendently of each other, as is typically done for genera-
tive approaches. In this experiment we investigated whether
CRF-Filters are able to learn parameters that work in such
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Fig. 3. Norm of sensor model weights as function of scan size.

situations. To do so, we used different numbers of the 181
laser beams, and learned model parameters for each number
of beams. For training and testing, we used 500 particles
initialized at the ground truth location.
To see how CRF-Filters behave for different scan sizes, we

plot the norm of the sensor model weights learned for the
different settings (see Figure 3). These weights indicate how
peaked the measurement clique potential of each individual
laser beam is. As can be seen, the model automatically learns
smoother potentials (per beam) the more beams are used.
Considering particle uncertainty: In an additional experi-

ment comparing weights learned for global localization and
tracking we found that the average norm of the sensor model
learned for global localization using 181 beams is 0.0852.
This is much lower (resulting in a smoother sensor model)
than the average of 0.4 when learning tracking parameters.
Theses experiments demonstrate that the CRF-Filter is

able to deal with high-dimensional observations and automat-
ically compensates for overly peaked likelihoods, something
that is typically done manually for generative particle lters.

VI. CONCLUSIONS

We presented CRF-Filters, a novel, discriminatively
trained approach to particle ltering. CRF-Filters are con-
tinuous versions of conditional random elds, which are
undirected graphical models that are ideally suited to han-
dle complex, dependent observation vectors. For parameter
learning from labeled training data we propose an algorithm
based on averaged perceptron learning for hidden Markov
models. Since our learning technique performs particle l-
tering as part of each optimization step, it is able to learn
parameters that maximize lter performance, taking depen-
dencies between measurements, sensor noise, and sample-
based approximations into account.
We investigate the capabilities of CRF-Filters using

the problem of laser-based robot localization. Experiments
demonstrate that our approach is able to jointly learn the pa-
rameters of motion and sensor models, resulting in signicant
improvements over generatively trained particle lters. In
fact, our approach learns different sensor models depending
on the number of beams in a laser range-scan and on the
localization task (global localization or tracking).
In this paper, we focused on standard motion and measure-

ment models used in robot localization. However, we believe
that CRF-Filters are applicable to a much wider range of

sensors and state estimation problems. In future work we will
investigate other sensor and motion models in the context
of robot mapping and make use of the additional exibility
provided by the feature functions in CRF-Filters.
An important limitation of our current approach is the need

for ground truth locations and we consider discriminative
learning with partially labeled sequences a very promising
direction for future work. Furthermore, more advanced learn-
ing algorithms such as L-BFGS need to be investigated in
the context of CRF-Filters. Finally, Liao and colleagues [8]
showed how to automatically extract good feature functions
from high-dimensional, continuous measurements. We be-
lieve that the extension of this technique to our work would
greatly increase the capabilities of CRF-Filters.
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