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Summary. This paper presents a supervised learning algorithm for image feature
matching. The algorithm is based on Conditional Random Fields which provides a
mechanism for globally reason about the associations. The novelty of this work is
twofold: (i) the use of Delaunay triangulation as the graph structure for a probabilis-
tic network to reason about image feature association; (ii) the combination of local
and joint features to enforce consistency in a theoretically sound statistical learning
procedure. Experimental results show that our approach outperforms RANSAC in
our challenging datasets consisting of indoor and outdoor images, with significant
occlusion, blurring, rotational and translational transformations.

1 INTRODUCTION

Data association remains a difficult and fundamental problem for many
robotics tasks. Despite continuous efforts from the computer vision and the
robotics communities, data association is still the key limitation for larger-
scale problems in tracking, image registration, reconstruction, and simultane-
ous localisation and mapping (SLAM).

Most of the data association algorithms are unsupervised, i.e., given a set
of possible associations, the algorithms try to find the correct matches without
a priori information. However, they commonly rely on ad hoc heuristics which
require the manual definition of thresholds. This is clearly not ideal since it
can be difficult to specify thresholds in problems with large variability. Most
algorithms are also limited by the independence assumption, where each pos-
sible association is considered as a separate problem, with no influence on the
association of other data points located in the same vicinity. Finally, conven-
tional algorithms only provide a deterministic result on the association. This



makes them less robust and difficult to incorporate in probabilistic filtering
approaches since no uncertainty on the association is returned.

This paper builds upon the recently proposed algorithm for data asso-
ciation of laser scans known as CRF-Matching [15]. CRF-Matching is a su-
pervised probabilistic model able to jointly reason about the association of
points. This is obtained by overcoming the independence assumption through
the use of Conditional Random Fields (CRFs) [8]. CRFs are an extremely
flexible technique for integrating different features in the same probabilistic
framework. The power of CRFs is enhanced through the possibility to use
statistical measurements (such as the likelihood of the data given the model)
to learn a parametrisation of the model given some training data.

CRF-matching was initially proposed for laser scan matching as an al-
ternative to the Iterative Closest Point method [3], where no initialisation is
necessary. In this paper, the approach is extended to reason about the asso-
ciation of image features. We propose the use of the Delaunay triangulation
[13] as the graph structure for CRF-matching. The graph defines neighbour
points by respecting interesting geometric constraints such as the empty cir-
cle property. We demonstrate how pairwise potential functions can be defined
over edges to jointly reason about the associations.

The main contributions of this paper are: (i) A supervised learning algo-
rithm for data association of image features; (ii) A probabilistic model defined
over Delaunay triangulation to encode dependent and relational data; (iii) An
experimental evaluation of image feature algorithms in challenging, yet real-
istic, datasets often found in field robotics.

2 RELATED WORK

Frequently in processing images from robots, there is a need to find corre-
spondences between images. This has applications in visual SLAM, panorama
creation, stereo vision and object recognition. The task is difficult because of
the ego-motion of the robot, moving objects, the lighting changing, or objects
becoming occluded. One approach is the use of local descriptions, the most
popular of these being SIFT (scale invariant feature transform) [10]. However,
this set of matches is putative and may contain errors because the location of
matched descriptors (and hence the spatial consistency of the matches) is not
taken into account. Consequently, computing an association such as a homog-
raphy leads to errors, because mismatches are included in the calculations.
Typically a secondary step to remove incorrect matches is applied such as
RANSAC, (for example, in [5], [16] and [6]).

Nonetheless, others have found that in practice while RANSAC is efficient,
it does have a number of drawbacks. Firstly, because it uses a random subset
of the data, different runs of RANSAC will produce different models and
inliers, especially when the number of matches is small (typically below 10)
and the results can vary between runs. Secondly, it requires that the user
set the appropriate threshold for outliers. Thirdly, it is subject to occasional



failure, when a totally incorrect model is fit. Fourthly, especially in images
where there is textural ambiguity (e.g. buildings with recurring features such
as windows), it may make incorrect choices. To remedy this issue, [17] suggests
a generalised RANSAC algorithm that avoids committing to a single “best”
match for the correspondence.

CRF-Matching overcomes most of these problems. As a probabilistic net-
work, results are probabilistic distributions over the space of possible associ-
ations. This additional information can be used to compute the uncertainty
of the robot movement in localisation tasks. CRF-Matching does not require
initialisation and does not need to compute homography matrices. Thus it
can still be employed even when the number of detected image features is as
small as two. Additionally, as CRF-Matching parameters can be estimated in
a supervised learning procedure, no threshold need to be manually specified.

3 CRF-MATCHING

3.1 Model Definition

CRF-Matching is based on Conditional Random Fields: undirected graphi-
cal models developed for labelling sequence data [8]. CRFs directly model
p(x|z), the conditional distribution over the hidden variables x given obser-
vations z. This is in contrast to generative models such as Hidden Markov
Models or Markov Random Fields, which apply Bayes rule to infer hidden
states [14]. Due to this structure, CRFs can handle arbitrary dependencies
between the observations z, which gives them substantial flexibility in using
high-dimensional feature vectors.

We use the term features with two different meanings in the following
description. Image feature refers to features detected by SIFT. Local or Pair-
wise features refer to functions defined over observations (local) and, obser-
vations and hidden states (pairwise). The appropriate meaning should be
clear from the context. The nodes in a CRF represent hidden states, denoted
x = 〈x1,x2, . . . ,xn〉, and data, denoted z. The nodes xi, along with the con-
nectivity structure represented by the undirected edges between them, define
the conditional distribution p(x|z) over the hidden states x. Let C be the set of
cliques (fully connected subsets) in the graph of a CRF. Then, a CRF factor-
izes the conditional distribution into a product of clique potentials φc(z,xc),
where every c ∈ C is a clique in the graph and z and xc are the observed data
and the hidden nodes in the clique c, respectively. Clique potentials are func-
tions that map variable configurations to non-negative numbers. Intuitively,
a potential captures the “compatibility” among the variables in the clique:
the larger the potential value, the more likely the configuration. Using clique
potentials, the conditional distribution over hidden states is written as

p(x | z) =
1

Z(z)

∏
c∈C

φc(z,xc), (1)



where Z(z) =
∑

x

∏
c∈C φc(z,xc) is the normalising partition function. The

computation of this partition function can be exponential in the size of x.
Hence, exact inference is possible for a limited class of CRF models only.

Potentials φc(z,xc) are described by log-linear combinations of potential
functions fc, i.e., the conditional distribution can be rewritten as (1) as

p(x | z) =
1

Z(z)
exp

{∑
c∈C

wT
c · fc(z,xc)

}
(2)

To perform data association between image features detected in an im-
age A and image features in an image B, CRF-Matching creates a graphical
model over the features in A. Each hidden variable xi has a multinomial dis-
tribution where each state j in xi corresponds to the probability that feature
i in image A is associated to feature j in image B. To create the graph struc-
ture we use the Delaunay triangulation algorithm [13]. This triangulation has
the empty circle property meaning that no other image feature detected in A
is inside any circumcircle defined over triangles computed by the algorithm.
In practice, this guarantees that the neighbourhood information is properly
encoded while not establishing direct relationship between features located
far from each other. Also, it avoids long edges connecting parts of the image
with less contextual relationship, while defining local neighbourhoods that are
more appropriate for matching. The graph represents connections between the
hidden variables xi and ensures global consistence. Another reason for using
the Delaunay triangulation is the existence of efficient open source implemen-
tations available in [9]. The local observations zi describe local appearance
properties of the image features represented as SIFT descriptors. Consistency
is taken into account through the pairwise features indicated by edges. Outlier
detection is also considered in the model as an additional state for xi.

Parameter learning in CRF aims at determining the weights of the fea-
ture functions. CRFs learn these weights discriminatively by maximising the
conditional likelihood of labelled training data. We resort to maximising the
pseudo-likelihood of the training data, which is given by the sum of local like-
lihoods p(xi | MB(xi)), where MB(xi) is the Markov blanket of variable xi:
the set of the immediate neighbours of xi in the CRF graph [1].

Inference in CRFs can estimate either the marginal distribution of each
hidden variable xi or the most likely configuration of all hidden variables x
(i.e., MAP estimation), as defined in (2). Both tasks can be solved using belief
propagation (BP), which works by sending local messages through the graph
structure of the model [12, 11].

3.2 Feature Description

CRF-Matching can employ arbitrary local potentials to describe image prop-
erties, or any particular aspect of the data. If other sensors are available, their



measurements can also be incorporated. Since our focus is on associating im-
age features from two images, our local features describe differences between
SIFT descriptors. The learning algorithm provides means to weight each of
the resulting potentials to best associate the data. The local potentials are
described as follows:
SIFT descriptor distance: This feature measures the difference between
individual SIFT feature element in one image w.r.t. individual SIFT element
in the other image. As opposed to the SIFT match procedure where only
the Euclidean distance between the 128-dimensional descriptor is used, this
feature provides distances for each element individually. This will allow an
optimal combination of elements for matching during the learning procedure.
Euclidean distance of SIFT descriptor: This feature is essentially the
same used by the SIFT Match algorithm [10]. It calculates the Euclidean
distance between the 128 element vector, for each possible association.

The following feature is used to define the clique potentials of nodes con-
nected in the CRF.
Pairwise distance: This feature computes distances between neighbour
nodes in the CRF graph and compares with distances between two image
features in the other image. The idea is to use the spatial arrangement of the
image features to enforce consistency. This feature is defined of over two hid-
den nodes xi and xj and observations zA,i, zA,j from image A and multiple
observations zB,m and zB,n in image B.

4 EXPERIMENTS

We evaluate CRF-Matching in two different datasets. For each dataset 30
pairs of images were selected and manually labelled. CRF-Matching was im-
plemented using the open source MATLAB SIFT package4

We compared the performance of RANSAC with SIFT features using ho-
mography as the fitting algorithm, and CRF-Matching with SIFT features.
The CRF was trained on 29 images, and tested on the 30th, and this was
repeated for each of the 30 images in each dataset (this is commonly known
as leave-one-out cross validation). Because the homography computation used
by RANSAC requires at least 4 matching points, RANSAC could not be used
on 4 of the indoor images, therefore we excluded those four images from the
results5. It must also be remembered that RANSAC is non-deterministic, and
especially in the case where there are few SIFT matches, it can be sensitive
to initial conditions. Therefore, RANSAC was run 10 times and the results
averaged.

To compare matching performance empirically, information retrieval met-
rics were used to assess whether the correct matches were selected. This al-
4 Available at http://vision.ucla.edu/ vedaldi/code/sift/sift.html. Other image fea-

ture detectors could also be used but no open source implementations where
supplied by the authors.

5 Inclusion of these results would underestimate the performance of RANSAC.



lowed us to evaluate correctness of the match in a model-independent manner.
The three measures used are Precision, Recall and F1 score.

4.1 Indoor Dataset

To evaluate the effectiveness of CRF-Matching on data collected from robots,
we used a dataset that was collected at Robocup 2007 as part of the Rescue
Robot League competition. The competition is administered by the National
Institute of Standards and Technology (NIST) which constructs a mock dis-
aster site the size of a small house. We gathered the data using a variant of
CASTER Scorpion [7], which is equipped with a range imager, and a camera.
As the range imager has a limited point of view (approximately 44◦), it is
mounted on a pan-tilt unit with some overlap (however, due to robot move-
ment and flex in the mountings, the exact position is only known to within
5◦). The images obtained have resolution of 176× 144 pixels. In these exper-
iments we do not use range or position information, and use only the image
pairs.

An illustrative comparison of the different techniques and stages in appli-
cation of the algorithm is shown in Figure 1 for a typical pair of images from
amongst the 30 pairs. As common for this dataset, there is no much texture.
Figure 1(b) shows the results of applying SIFT matching. Note that while
there are several correct matches, there are several extraneous matches. Fig-
ure 1(c) shows ground truth: the result of hand labelling the data by humans.
Figure 1(d) shows the results of applying RANSAC. It does pick out three
correct matches, but it also identifies two extraneous ones. Finally, Figure 1(e)
shows the results of applying CRF with MAP inference, note that it missed
the top match, but it is otherwise correct. These results are typical for our
data; as can be seen, CRF outperforms RANSAC in this case.

Rescue Outdoor

F1 score Precision Recall F1 score Precision Recall

CRF 0.6206 0.6546 0.6196 0.6869 0.6558 0.7391

RANSAC 0.5830 0.5380 0.6682 0.6696 0.6639 0.6993

Table 1. Information Retrieval measures on rescue data and outdoor dataset. In
both cases RANSAC used an outlier threshold of 0.05.

Table 1 shows results for the rescue dataset. Because the homography
computation used by RANSAC requires at least 4 matching points, RANSAC
could not be used on 4 of the images, therefore we excluded those four images
from the results6. This illustrates another advantage of CRFs: it can be used
in situations where there are not many matches. CRF-matching attained a
6 Inclusion of these results would underestimate the performance of RANSAC.



(a) (b)

(c) (d)
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Fig. 1. A sequence of images showing the different results of the algorithms. Figure
(a) shows a typical image pair with no matches. Note that there is no much texture
in the images. Figure (b) shows the result of applying SIFT matching, with no
subsequent filtering. Figure (c) shows hand-labelled results used for training and
evaluating the matches. Figure (d) shows the results using RANSAC. Figure (e)
shows the graphical model, the SIFT features and CRF-Matching results.

higher F1 score overall across all of the images. It is also worth noting that
the RANSAC results show a great deal of variability, over the ten runs, the
range was 0.0852, with the minimum being 0.5474 for the F1 score. We can
see that where the number of matches is small, as it is on this data, RANSAC
does not reliably perform well. CRF matching, on the other hand does not
require tuning of parameters.

The main parameter in tuning RANSAC is the normalised distance thresh-
old before a point is considered an outlier; in order to evaluate the sensitivity
of RANSAC’s performance to this distance, we repeated the tests at different
threshold values. The results demonstrate that there is some variation in the
performance of RANSAC with different thresholds, and thus some parame-
ter tuning would be necessary. However, RANSAC seems to reach a pick of
performance at approximately 0.58 for all values above 0.05. We averaged the
results of 30 runs for these experiments, as the results with 10 runs exhibited
too much noise to discern a pattern.



4.2 Outdoor Dataset

CRF-Matching was also tested in an outdoor, urban dataset. The dataset was
collected with a Pioneer 2 AT equipped with a colour camera while navigating
at a university campus. 30 pairs of images were selected and manually labelled.
The images have resolution of 320×240 pixels and contain significant changes
in illumination and viewpoint, along with occlusions and blurring.

Since the outdoor dataset has much more texture than the indoor, the
number of SIFT features detected per image was around 500. This makes the
process of manual labelling very time consuming in practice. To overcome this
issue, we reduce the number of features detected by using the SIFT match
criterion i.e., a feature is only included in the set if d2

d1
> t, where t is a

threshold and d1 and d2 are the Euclidean distances to the first and second
nearest neighbours respectively. Note that the threshold is used only to reduce
the number of features and does not need to be precisely determined.

An illustrative example is shown in Figure 2. Figure 2(a) shows the image
pair. Note the image on the right is blurred as a result of the robot movement.
The result of the standard SIFT match algorithm is shown in Figure 2(b).
Note that there is one extraneous match associating the bottom of a tree with
the top of a car. Figure 2(c) shows the ground-truth obtained with manual
labelling. The RANSAC result is in FIgure 2(d). The incorrect match still
remains and RANSAC eliminated three correct matches. Figure 2(e) shows
the result from CRF-Matching using MAP inference. The matches are almost
identical to the ground-truth except by one extra outlier.

Information retrieval metrics for the outdoor dataset are presented in Ta-
ble 1. As, in general, there are more features per image than with the indoor
dataset, CRF-Matching outperforms RANSAC but not by a large margin.
Note, however, that results from RANSAC are variable due to the sampling
nature of the algorithm and does require the definition of a threshold. Ad-
ditionally, as in many outdoor applications, image feature matching can be
used for localisation where uncertainty estimation is crucial. As a probabilistic
approach, CRF-Matching returns a probabilistic distribution over the space
of possible matches which can be used in a standard filter.

5 CONCLUSION AND FUTURE WORK

This paper presented a probabilistic network to perform image feature data
association. Unlike other approaches where thresholds need to be manually
specified, the proposed framework can learn parameters from data through
a statistical learning procedure. Image feature association is performed as
a joint probabilistic inference where spatial constraints are taken into ac-
count to ensure consistency. We demonstrate how the Delaunay triangulation
can be used to build the graph structure of the CRF-Matching model which
obeys geometric constraints. The experimental results reported indicate that
CRF-Matching can be an interesting alternative to RANSAC for challenging
problems usually encountered in practical robotics applications.



(a) (b)
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Fig. 2. A sequence of images showing the different results of the algorithms. Figure
(a) shows a typical image pair with no matches. Note that while there is some
texture, there is not much. Figure (b) shows the result of applying SIFT matching,
with no subsequent filtering. Figure (c) shows hand-labelled results used for training
and evaluating the matches. Figure (d) shows the results using RANSAC. Figure
(e) shows the results of CRF-Matching and the graphical model.

The main caveat of CRF-Matching is the computational complexity of the
inference process. In our datasets MAP inference was performed in 0.1 to 2
seconds depending on the number of image features detected. This includes
the computation of SIFT features. The code is implemented in Matlab and is
executed in a desktop machine. Offline learning takes about 5 minutes in the
same machine.

As future work we will investigate alternative ways to yield faster MAP
inferences. Two main algorithms will be given special attention: Graph Cuts
[4] and the Iterated Conditional Modes [2]. Additionally we plan to extend
CRF-Matching to 3D range and camera data registration.
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