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Abstract— This paper considers the use of non-parametric
system models for sequential state estimation. In particular,
motion and observation models are learned from training
examples using Gaussian Process (GP) regression. The state
estimator is an Unscented Kalman Filter (UKF). The resulting
GP-UKF algorithm has a number of advantages over standard
(parametric) UKFs. These include the ability to estimate the
state of arbitrary nonlinear systems, improved tracking quality
compared to a parametric UKF, and graceful degradation with
increased model uncertainty. These advantages stem from the
fact that GPs consider both the noise in the system and the
uncertainty in the model. If an approximate parametric model
is available, it can be incorporated into the GP; resulting in
further performance improvements. In experiments, we show
how the GP-UKF algorithm can be applied to the problem of
tracking an autonomous micro-blimp.

I. INTRODUCTION

Estimating the state of a dynamic system is a fundamental
problem in robotics. The most successful techniques for
state estimation are Bayesian filters such as particle filters
or extended and unscented Kalman filters [16]. Bayes filters
recursively estimate posterior probability distributions over
the state of a system. The key components of a Bayes filter
are the prediction and observation models, which proba-
bilistically describe the temporal evolution of the process
and the measurements returned by the sensors, respectively.
Typically, these models are parametric descriptions of the
involved processes. The parameters and noise components
of the models can be estimated from training data or tuned
manually [1], [9], [2]. Even though such parametric models
are very efficient, their predictive capabilities are limited
because they often ignore hard to model aspects of the
process.

In this paper we present Gaussian Processes (GP) [14] as
an alternative or enhancement of parametric prediction and
observation models for Bayes filters. GPs are non-parametric
regression models that estimate distributions over functions
from training data. Conditioned on training data, a GP defines
for any input value a Gaussian distribution over the output
value. This regression model is thus extremely well suited
for incorporation into Bayesian filtering techniques.

Recently, GPs have been applied successfully to the prob-
lem of learning predictive state models [4], [10], [5]. The fact
that GP regression models provide uncertainty estimates for
their predictions allows them to be readily incorporated into

Fig. 1. The robotic blimp used to evaluate the GP-UKF algorithm.

particle filters as observation models [3] or as improved sam-
pling distributions [11]. We showed in previous work how
this basic technique can be improved upon by augmenting
the predictive GP model with a standard deterministic model.
This Enhanced-GP model was then used to learn a controller
for an autonomous blimp [7].

In this paper we show how GP prediction and observation
models can be incorporated into Unscented Kalman Filters
(UKF) [6]. The resulting GP-UKF approach inherits the
following features from GP regression:
• GP-UKFs do not depend on the availability of paramet-

ric prediction and observation models. GP-UKF models
and all their parameters can be learned from training
data, using non-parametric regression.

• GP-UKFs can take advantage of parametric models, if
available. By incorporating such models into the GP
regression, the GP-UKF parameters can typically be
learned from significantly less training data.

• GP-UKFs use state-dependent uncertainty estimates that
take both noise and regression uncertainty due to limited
training data into account. As a result, the filter automat-
ically increases its uncertainty when the process enters
areas in which not enough training data is available.

We evaluate GP-UKFs in the context of tracking a blimp
using external cameras. Our experiments indicate that the
combination of GPs and parametric models greatly improves
the performance of standard UKFs.

This paper is organized as follows. After providing the
necessary background on UKFs and GPs, GP-UKFs are
introduced in Section III. The blimp testbed is discussed



in Section IV, followed by the experimental evaluation. We
conclude in Section VI.

II. PRELIMINARIES

This section reviews the basics of Unscented Kalman
Filters (UKF) for sequential state estimation and Gaussian
Processes (GP) for regression. More information on these
topics can be found in two recent books [14], [16]. The
integration of GP regression into UKFs will be described
in Section III.

A. Unscented Kalman Filters

UKFs estimate the state of a dynamic system based on a
sequence of observations and control information. Specifi-
cally, let xk denote the state of the system at time k. uk
and zk are the control input and observation at time k,
respectively. We assume that the dynamic system evolves
according to a state transition function g,

xk = g(uk−1,xk−1) + εk, (1)

where εk is additive, zero-mean Gaussian noise with covari-
ance Qk. That is, εk ∼ N (0, Qk). Similarly, the observation
zk is a function, h, of the current state corrupted by additive
Gaussian noise δk with covariance Rk,

zk = h(xk) + δk. (2)

In general, the functions g and h are not linear. As a result,
even when the estimate of the state xk−1 is Gaussian, the
estimate after passing the state through the transition function
g is no longer Gaussian. In order to estimate posteriors over
the state space using efficient Kalman filtering, one therefore
has to linearize the functions g and h. While extended
Kalman filters (EKF) perform this linearization using Taylor
series expansion around the most recent estimate, UKFs
apply a more accurate, stochastic approximation, also called
the unscented transform [6].

To see how the unscented transform works, consider an
n-dimensional random variable, x, distributed according to
a Gaussian with mean µ and covariance Σ. The goal is to
estimate a Gaussian approximation of the distribution over
y = f(x), where f is a potentially non-linear function.
The unscented transform performs this approximation by
extracting so-called sigma points X from the Gaussian
estimate and passing them through f . In the general case,
these sigma points are located at the mean µ and symmet-
rically along the main axes of the covariance Σ (two per
dimension). Specifically, the 2n + 1 sigma points X [i] are
chosen according to the following rule:

X [0] = µ (3)

X [i] = µ+
(√

(n+ λ) Σ
)
i

for i = 1, . . . , n

X [i] = µ−
(√

(n+ λ) Σ
)
i−n

for i = n+ 1, . . . , 2n.

Here, (
√

(n+ λ) Σ)i is the i-th column of the matrix square
root, and λ is a scaling parameter that determines how far
the sigma points are spread from the mean. The sigma points

1: Algorithm Unscented Kalman filter(µk−1,Σk−1,uk−1, zk):

2: Xk−1 =
`
µk−1 µk−1 + γ

p
Σk−1 µk−1 − γ

p
Σk−1

´
3: for i = 0 . . . 2n: X̄ [i]

k = g(uk−1,X
[i]
k−1)

4: µ̂k =
2nX
i=0

w
[i]
m X̄

[i]
k

5: Σ̂k =

2nX
i=0

w
[i]
c (X̄ [i]

k − µ̂k)(X̄ [i]
k − µ̂k)T +Qk

6: X̂k =

„
µ̂k µ̂k + γ

q
Σ̂k µ̂k − γ

q
Σ̂k

«
7: for i = 0 . . . 2n: Ẑ [i]

k = h
“
X̂ [i]
k

”
8: ẑk =

2nX
i=0

w
[i]
m Ẑ

[i]
k

9: Sk =

2nX
i=0

w
[i]
c (Ẑ [i]

k − ẑk)(Ẑ [i]
k − ẑk)T +Rk

10: Σ̂x,zk =

2nX
i=0

w
[i]
c (X̂ [i]

k − µ̂k)(Ẑ [i]
k − ẑk)T

11: Kk = Σ̂x,zk S−1
k

12: µk = µ̂k +Kk(zk − ẑk)

13: Σk = Σ̂k −Kk Sk KT
k

14: return µk,Σk

TABLE I
THE UNSCENTED KALMAN FILTER ALGORITHM.

are then passed through the function f , thereby probing how
f changes the shape of the Gaussian:

Y [i] = f(X [i]) (4)

The parameters µ′ and Σ′ of the resulting Gaussian are
extracted from the mapped sigma points Y [i] according to

µ′ =
2n∑
i=0

w[i]
m Y [i] (5)

Σ′ =
2n∑
i=0

w[i]
c (Y [i] − µ′)(Y [i] − µ′)T ,

where the weights w
[i]
m and w

[i]
c are chosen appropriately

(see [6], [16] for more details).
The UKF applies the unscented transform to the transi-

tion function g and the observation function h. The UKF
algorithm is summarized in Table I. The input is the mean
and covariance of the estimate at time k − 1 along with
the most recent control input, uk−1, and observation, zk.
Line 2 determines the sigma points of the estimate using
Equation (3), with γ short for

√
n+ λ. These points are

propagated through the noise-free motion model in line 3.
The predicted mean and variance are then computed from
the resulting sigma points (lines 4 and 5). Qk in line 5 is
added to the sigma point covariance in order to model the
additional state transition noise εk.

A new set of sigma points is extracted from the predicted
Gaussian in line 6. This sigma point set X̂k now captures the



overall uncertainty after the state prediction step. In line 7, a
predicted observation is computed for each sigma point. The
resulting observation sigma points Ẑk are used to compute
the mean observation ẑk and its uncertainty, Sk. The matrix
Rk is the covariance matrix of the additive measurement
noise. Line 10 determines the cross-covariance between state
and observation, which is then used in line 11 to compute
the Kalman gain Kk. Finally, the updated state estimate is
computed in lines 12 and 13 using a standard Kalman filter
update.

The UKF is highly efficient and inherits the benefits of
the unscented transform for linearization. For purely linear
systems, it can be shown that the estimates generated by the
UKF are identical to those generated by the Kalman filter.
For nonlinear systems the UKF produces equal or better
results than the EKF, where the improvement over the EKF
depends on the state uncertainty and the nonlinearities in g
and h (see [16]).

B. Gaussian Processes for Regression

Gaussian processes (GP) are a powerful, non-parametric
tool for learning regression functions from sample data. Key
advantages of GPs are their modeling flexibility, their ability
to provide uncertainty estimates, and their ability to learn
noise and smoothness parameters from training data. More
information can be found in [14].

A GP can be thought of as a “Gaussian over functions”.
More precisely, a GP describes a stochastic process in
which the random variables, in this case the outputs of
the modeled function, are jointly Gaussian distributed. A
Gaussian process is fully described by its mean and co-
variance functions. Assume we have a set of training data
D = {(x1, y1), (x2, y2), ..., (xn, yn)}, drawn from the noisy
process

yi = f(xi) + ε , (6)

where xi is an n-dimensional input vector and yi is a scalar
output (extension to multiple outputs is discussed below).
The Gaussian noise term ε is drawn from N (0, σ2). For
convenience, both inputs and outputs are aggregated into
X = [x1,x2, ...,xn], and y = [y1, y2, ..., yn] respectively.
The joint distribution over the noisy outputs y is a function
of the inputs X . It is a zero-mean multivariate Gaussian,
with the form

p(y) = N (0,K(X,X) + σ2
nI), (7)

where K(X,X) is the kernel matrix with elements Kij =
k(xi,xj). The kernel function, k(x,x′), is a measure of the
“closeness” between inputs. The term σ2

nI introduces the
Gaussian noise and plays a similar role to that of ε in (6). The
key idea is to condition this Gaussian upon known elements
(training points).

The squared exponential is a commonly used kernel func-
tion and will be used in this paper. It is

k(x,x′) = σ2
f exp((−1

2
(x− x′)W (x− x′)T )), (8)
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Fig. 2. Example of one-dimensional GP regression. Shown are a sine func-
tion (black), noisy samples drawn from the function (green diamonds), the
resulting GP mean function estimate (red dashed), and the GP uncertainty
sigma bounds (blue/gray). The GP hyperparameters were determined via
optimization of the data likelihood. Note how the uncertainty widens in the
x-interval [3, 7] due to the sparseness of data points in this area.

where σ2
f is the signal variance. The diagonal matrix W

contains the length scales for each input dimension.
For a given set of training data, 〈X,y〉, and a test input

x∗, a GP defines a Gaussian predictive distribution over the
output y∗ with mean

GPµ (x∗, 〈X,y〉) = kT∗ [K(X,X) + σ2
nI]−1y (9)

and variance

GPΣ (x∗, 〈X,y〉) =

k(x∗,x∗)− kT∗
[
K(X,X) + σ2

nI
]−1

k∗. (10)

Here, k∗ is the kernel vector between the test input x∗ and
the training inputs X . The equations above show that the
mean prediction is a linear combination of the training output
y, and the weight of each output is directly related to the
correlation between x∗ and the training input X . The pre-
diction uncertainty, captured by the variance GPΣ, depends
on both the process noise and the correlation between the
test input and the training data.

The GP parameters θ = [W,σf , σn], describing the kernel
function (8) and the process noise (7), respectively, are called
the hyperparameters of the Gaussian process. These hyper-
parameters can be learned by maximizing the log likelihood
of the training outputs given the inputs,

θmax = argmax
θ
{log(p(y|X,θ))} , (11)

which can be done using numerical optimization techniques
such as conjugate gradient descent [14]. An example of GP
regression is given in Figure 2.

III. GP-UKF

A. Learning Prediction and Observation Models

Gaussian process regression can be applied directly to the
problem of learning motion (1) and observation (2) models
of a dynamic system. The objective here is to learn separate
GPs for the state transition and observation functions, g and



h, in addition to learning the associated noise covariances,
Q and R.

The training data for each GP is a set of input-output
relations. The process model maps the state and control
(xk,uk) to the state transition ∆xk = xk+1 − xk. The next
state can be found by integrating the previous state with
the state transition. The observation model maps from the
state, xk, to the observation, zk. The appropriate form of
the process and observation training data sets is respectively

Dg = 〈(X,U), X ′〉 (12)
Dh = 〈X,Z〉 , (13)

where X is the matrix of ground truth states, and X ′ =
[∆x1,∆x2, ...,∆xk] is the matrix of state transitions. Z is
the matrix of observed outputs from the cameras.

The GP approximations of g and h will be denoted GPg

and GPh, respectively, so that

xk = GPgµ([xk−1,uk−1], Dg) + εk (14)

zk = GPhµ(xk, Dh) + δk, (15)

where εk ∼ N (0,GPgΣ([xk−1,uk−1], Dg)) and δk ∼
N (0,GPhΣ(xk, Dh)). The ideal outcome is for GPgµ and
GPhµ to approach g and h and for GPgΣ and GPhΣ to approach
Q and R, respectively. Optimal hyperparameters for GPg and
GPh can be found using this training data in conjunction
with (11).

Each Gaussian process has only a single associated global
noise parameter, σn. This will work well if the process and
observation error covariances are a multiple of the identity
matrix. However, in dynamical system modeling, the error
covariance matrices are typically assumed to be a diagonal
matrix. To achieve this flexibility with GP, a separate GP
can be learned for each output dimension. These separate
variances can be collected on the diagonal of a variance
matrix. Throughout the remainder of the paper, we make the
assumption that the error covariance matrices, Q and R, are
diagonal and use a separate GP for each output dimension
of the motion and observation models.

Another issue to consider when learning process and
observation models is that GPs assume a zero mean prior
(7). A direct ramification of this assumption is that the GP
mean function, GPµ(x∗, 〈X,y〉), tends towards zero as the
distance between the test input, x∗, and the training data, X ,
increases. A recently proposed improvement to GP system
modeling mitigates this issue by employing an approximate
parametric system model [7]. The idea is to use a GP
to learn the residual between the true system model and
the approximate model. The combined parametric plus GP
model is called an Enhanced-GP model.

Enhanced-GP modeling can be used to learn motion and
observation models that are superior to those learned with
GP alone, especially when the training data does not cover
the entire state space. Let the approximate parametric process
and observation models be denoted ĝ and ĥ, and the residual
Gaussian Processes be denoted ĜP

g
and ĜP

h
. Then, the

Enhanced-GP process and observation models become

xk = ĝ([xk−1,uk−1]) + ĜP
g

µ([xk−1,uk−1], D̂g) + εk
(16)

zk = ĥ(xk) + ĜP
h

µ(xk, D̂h) + δk, (17)

with training data

D̂g = {(X,U), X ′ − ĝ(X,U)} (18)

D̂h =
{
X,Z − ĥ(X)

}
. (19)

Here, εk ∼ N (0, ĜP
g

Σ([xk−1,uk−1], D̂g)) and δk ∼
N (0, ĜP

h

Σ(xk, D̂h)). Again, g and h are ground truth
whereas ĝ and ĥ are approximate parametric models. Note
that the parameters of the parametric models can be learned
by optimization over the same training data.

B. The GP-UKF Algorithm

Gaussian Process regression and Unscented Kalman Fil-
ters are used in conjunction to create the GP-UKF algorithm.
Asterisks in Table II highlight the main differences between
GP-UKF and the standard UKF. The algorithm is shown for
motion and observation models based on GP only. Enhanced-
GP modeling can be used in place of GP by making
appropriate changes to lines 3 and 7.

The GP-UKF algorithm begins much like the UKF algo-
rithm. The first main difference is on line 3 which shows
that the sigma points are propagated through the GP motion
model instead of the usual parametric model. The process
noise covariance is obtained from the predictive GP un-
certainty at the previous mean sigma point, and used on
line 5. On line 7, the sigma points are passed through the
GP observation model. The observation error covariance is
obtained from the observation GP and applied on line 9.

To summarize, by incorporating GP regression, GP-UKFs
can automatically learn their models and noise processes
from training data. Furthermore, the noise models of the
filter automatically adapt to the system state, depending on
the density of training data around the current state. Thus, if
less training data is available, the GP-UKF produces higher
uncertainty estimates, reflecting the higher uncertainty in
the underlying process models. Furthermore, GP-UKFs can
readily incorporate parametric models, when available.

IV. THE ROBOTIC BLIMP TESTBED

A. Experimental Testbed

The experimental testbed for evaluating the GP-UKF al-
gorithm is a robotic micro-blimp. A custom-built gondola is
suspended beneath a 5.5 foot (1.7 meter) long envelope. The
gondola houses two main fans that pivot together to provide
thrust in the longitudinal (forwards-up) plane. A third motor
located in the tail provides thrust to yaw the blimp about the
body-fixed Z-axis. There are a total of three control inputs:
the power of the gondola fans, the angle of the gondola fans,
and the power of the tail fan.

Two separate vision systems are employed here. The
first system consists of two Panasonic model KX-HCM270



1: Algorithm GP-UKF(µk−1,Σk−1,uk−1, zk):

∗ Prediction model training data: Dg
∗ Observation model training data: Dh

2: Xk−1 =
`
µk−1 µk−1 + γ

p
Σk−1 µk−1 − γ

p
Σk−1

´
3: ∗ for i = 0 . . . 2n: X̄ [i]

k = GPµ
“
uk−1,X

[i]
k−1, Dg

”
∗ Qk = GPΣ (uk−1, µk−1, Dg)

4: µ̂k =

2nX
i=0

w
[i]
m X̄

[i]
k

5: Σ̂k =

2nX
i=0

w
[i]
c (X̄ [i]

k − µ̂k)(X̄ [i]
k − µ̂k)T +Qk

6: X̂k =

„
µ̂t µ̂t + γ

q
Σ̂k µ̂t − γ

q
Σ̂k

«
7: ∗ for i = 0 . . . 2n: Ẑ [i]

k = GPµ
“
X̂ [i]
k , Dh

”
∗ Rk = GPΣ (µ̂k, Dh)

8: ẑk =

2nX
i=0

w
[i]
m Ẑ

[i]
k

9: Sk =

2nX
i=0

w
[i]
c (Ẑ [i]

k − ẑk)(Ẑ [i]
k − ẑk)T +Rk

10: Σ̂x,zk =
2nX
i=0

w
[i]
c (X̂ [i]

k − µ̂k)(Ẑ [i]
k − ẑk)T

11: Kk = Σ̂x,zk S−1
k

12: µk = µ̂k +Kk(zk − ẑk)

13: Σk = Σ̂k −Kk Sk KT
k

14: return µk,Σk

TABLE II
THE GP-UKF ALGORITHM.

network cameras which are used for collecting state measure-
ments for tracking. They can provide images at up to three
Hertz, but we limit them to one Hz, to simulate wireless
operation. The cameras are properly calibrated so that the
intrinsic and extrinsic camera parameters are known. The
second vision system is a VICON motion capture (MOCAP)
lab. This system is used to capture “ground truth” data used
to train the GPs and parametric models, and to evaluate the
tracking performance of the various UKF algorithms. The
MOCAP system tracks reflective markers attached to the
blimp as 3D points in space. Accuracy of the system is about
1 cm at a sampling frequency of 120Hz. The raw data can
be processed to extract the position and orientation of the
blimp. Velocities are obtained via a smoothed calculation of
the slope between sample points.

The testbed software is written in a combination of C++
and MATLAB. The data acquisition and integration code is
written primarily in C++ whereas the numerical calculations
are performed almost exclusively in MATLAB. Gaussian
process code is from Neil Lawrence [8].

B. Parametric Prediction and Observation Models

The parametric motion model appropriate for the blimp
was previously described in [7] and will be briefly reviewed

here. The state of the blimp consists of position p, orientation
ξ parameterized by Euler angles, linear velocity v, and
angular velocity ω. The resulting model has the form,

d

dt


p
ξ
v
ω

 =


R(ξ)ebv
H(ξ)ω

M−1 (
∑

Forces− ω ×Mv)
J−1 (

∑
Torques− ω × Jω)

 . (20)

Here, M is the mass matrix, J is the inertia matrix, Reb
is the rotation matrix from body-fixed to inertial reference,
and H is the Euler kinematical matrix. The sum of forces
and torques accounts for thrust produced by each motor,
aerodynamic effects, and gravity. This model is discretized
in order to produce ĝ which predicts the next state given the
current state and control input.

The parametric observation model takes as input the six-
dimensional pose of the blimp within the camera’s coordinate
system. It outputs the parameters of an ellipse in the camera’s
image space. The ellipse is parameterized by the image
coordinates of the center point, x and y, the lengths of the
major and minor axes (in pixels), and the rotation angle from
the x axis. These parameters are found by projecting the three
axes (forward, left, up) of the blimp into the image and then
fitting an appropriate ellipse. Ground truth observations are
formed by first using background subtraction to find “blimp”
pixels, then extracting their moments to find the best fitting
ellipses.

V. EXPERIMENTAL RESULTS

A. Prediction and Observation Quality

This first experiment is designed to test the quality of
various motion and observation models. In total, three motion
and three observation models will be compared: parametric
only (Param), GP only (GP ), Enhanced-GP (EGP ).

Training data for the motion model was collected by
flying the blimp in the MOCAP lab for approximately twelve
minutes. Although the MOCAP system is capable of 120Hz,
the resulting data was subsampled to 4Hz. This rate was
chosen so that the dynamics of the blimp could be properly
captured without requiring too many training points for the
Gaussian processes. The training data for the observation
model was collected by manually moving the blimp through
the active space. Approximately 1,800 location-image pairs
were collected. All parameters of the GP and the parametric
models were learned based on these two sets of training data.
The blimp was flown again to collect test data for motion
and observation quality evaluation.

The results for motion prediction are summarized in
Table III. Quality here is measured in terms of the average
norm prediction error in position, p, orientation, ξ, forward
velocity, v, and angular velocity, ω. Both GP-based models
produce very similar results and are significantly better than
the parametric approach.

The results for the observation models are summarized in
Table IV. Quality is measured in mean norm error in ellipse
center, major and minor axis lengths, and angle. Here, both
GP and EGP outperform the parametric model.



TABLE III
MOTION MODEL PREDICTION QUALITY

Propagation p(mm) ξ(deg) v(mm/s) ω(deg/s)
method
Param 3.3±0.003 0.5±0.0004 14.6±0.01 1.5±0.001
GP 1.8±0.004 0.2±0.0004 9.8±0.02 1.1±0.002
EGP 1.6±0.004 0.2±0.0005 9.6±0.02 1.3±0.003

TABLE IV
OBSERVATION MODEL PREDICTION QUALITY

Propagation position major minor theta
method (px) axis (px) axis (px)
Param 7.1±0.0021 2.9±0.0016 5.6±0.0030 9.2±0.0100
GP 4.7±0.0022 3.2±0.0019 1.9±0.0012 9.1±0.0088
EGP 3.9±0.0021 2.4±0.0018 1.9±0.0014 9.4±0.0099

B. GP-UKF Tracking Results

The second test is designed to evaluate the tracking
performance of the GP-UKF algorithm. The objective is to
track ∼ 12min of a test trajectory as accurately as possible.
Three different algorithms will be compared: UKF, GP-UKF,
and Enhanced GP-UKF. We will refer to these as Param,GP,
and EGP, respectively.

The algorithms that include a GP are evaluated using the
Q and R matrices from the GP in accordance with GP-UKF
algorithm (Table II). These covariance matrices vary with the
certainty in the model. In the parametric case, the covariance
between ground truth and the learned parametric model is
used as the noise matrix. This results in a static noise matrix
for both R and Q. Note that these static matrices are not
diagonal and could in theory be more accurate since they
capture the correlation between different output dimensions.

The results are summarized in Table V. The first four
columns of this data are the average norm error in position,
orientation, linear velocity, and angular velocity, respectively.
The final column contains the mean log likelihood (MLL) of
the ground truth state given the estimated state covariance of
the corresponding filter. MLL is an appropriate measure of
tracking performance because it factors in both the distance
between the estimate and the ground truth and the size of the
error covariance matrix. EGP performs very well as can be
predicted by the previous static tests. It performs more than
two times better than Param in some error measures. The
mean log likelihood of EGP is also significantly higher than
Param.

C. Dealing with Sparse Training Data

We performed additional tests to investigate the capability
of the different tracking models to deal with small numbers
of training samples. To do so, we removed increasingly
larger portions of data from the training set and evaluated
the techniques on the test set. As expected, the parametric
model Param provides equally good results even for very
small sample sets (≈ 100 samples). EGP is consistently
better than Param. The tracking accuracy of the GP -
only approach degrades significantly for smaller sample sets.
This is not surprising, since this approach uses no prior
information on the nature of the process and thus needs more
data to generate a reasonable model.

TABLE V
TRACKING QUALITY

Propagation p(mm) ξ(deg) v(mm/s) ω(deg/s) MLL
method
Param 141.0±0.15 9.6±0.010 141.5±0.12 8.1±0.009 2,1
GP 107.9±0.11 10.2±0.016 71.7±0.10 5.9±0.007 5.1
EGP 86.0±0.09 6.1±0.008 57.1±0.06 5.7±0.006 12.9

Fig. 3. The figure shows the effect of eliminating training data associated
with a left turn. Along the x-axis, the top plot shows the temporal evolution
of ground truth yaw (black line) along with the GP-UKF yaw estimate (red
dashed line) using all available training data. The tail motor is active within
the shaded region. The bottom plot shows the same command sequence with
all left turn training data eliminated. Notice how the GP-UKF automatically
increases the estimate error covariance (blue/gray lines) due to increased
model uncertainty (due to limited training data, see also Fig. 2).

In an additional experiment we investigate how the GP-
UKF technique behaves when the system transits through
a section of the state space that was not observed during
training. To do so, we removed data for specific motor
commands, in this case left turns with the tail motor, from
the GP training set. This reduced GP is then used by the GP-
UKF for tracking. The results, available in Fig. 3, show the
ground truth data along with the GP-UKF state estimate for
both full and reduced training data sets. The blue (gray) lines
indicate the three-σ uncertainty bounds. The shaded region
indicates the frames in which the tail motor was pushing left.
The uncertainty of the tracking prediction increases precisely
in the region where there is less training data. This covariance
increase keeps the ground truth within three-σ of the mean
estimate even though the mean error increases. Note that the
uncertainty of the reduced data GP-UKF reverts to that of
the full data GP-UKF soon after this test period.

D. Timing Information

In general, the complexity of UKFs is approximately
quadratic in the dimensionality of the state space. In contrast,
the complexity of GP inference depends quadratically on
the number of training points, which is governed by the
complexity of the underlying function. In our experiments



we observed that the number of training points can be greatly
reduced when using the Enhanced-GP model.

In our current implementation, the parametric UKF is
about four times faster than the GP-UKF. Also, our GP-
UKF takes about four times real time for data processing
on a standard desktop PC. However, our implementation of
GP-UKF has not been optimized for speed. We are confident
that real time performance can be achieved by porting the
bulk of the code from MATLAB to C++.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced the GP-UKF algorithm and
demonstrated its advantages over the standard UKF for
dynamical system state estimation. We showed how process
and observation models can be learned via non-parametric
Gaussian Process regression and how these GP models can
be seamlessly integrated into the Unscented Kalman Filter.
The resulting algorithm is capable of learning arbitrary
motion and observation models based on training data alone.
Furthermore, GP-UKFs model standard process noise and
state-dependent uncertainty due to lack of training data.
Our experiments indicate that this property can lead to
superior uncertainty estimates. We furthermore showed that
parametric models of motion and observation can be used
to enhance GP-UKFs, resulting in improved generalization
capabilities and more accurate state estimates.

A key disadvantage of GP models is their computational
complexity during learning and inference, which is cubic
and quadratic in the number of training points, respectively.
However, recent advances in the development of sparse GP
models enable the application of GPs to larger and more
complex problems [14]. We believe that such models will
greatly improve the efficiency of GP-UKFs.

While the predictive uncertainty of the GPs used in this
paper changes depending on local training data density,
our models assume that the noise of the underlying pro-
cess is static. In future work, we will examine the use
of heteroscedastic GPs in order to model state dependent
noise [12]. Also, where this work assumed diagonal error
covariance matrices, future work will investigate learning
fully correlated matrices.

While this paper has focused on the combination of
GP models and UKFs, GPs can also be combined with
other Bayes filters. GP prediction and observation models
can be readily incorporated into particle filters since the
Gaussian GP predictive uncertainty allows efficient sampling
and likelihood evaluation, as demonstrated by [3], [11], [7].
GP-EKF, the combination of GPs with Extended Kalman
Filters, can be developed similar to the GP-UKF introduced
in this paper, where the linearization of the model would be
performed by computing the derivative of the GP at the mean
estimate.

The evaluation of this paper focused on tracking a blimp.
The availability of a parametric model allowed us to compare
our non-parametric GP-UKF to a parametric UKF. However,
we believe that a key strength of GP-UKFs is their ability
to operate without any parametric model or with a very

weak parametric model. This might be extremely powerful
in cases where an accurate parametric model is not available.
For instance, we are currently investigating the application
of GP-UKFs in the context of human activity recognition,
where the goal is to estimate a human’s motion patterns
based on a wearable sensor system that collects information
such as barometric pressure, accelerometer, magnetometer,
light intensity, and wireless signal strength [13]. For such
problems, accurate parametric models of the joint sensor data
and features extracted thereof are not available.
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