
Auton Robot (2011) 30: 3–23
DOI 10.1007/s10514-010-9213-0

Learning GP-BayesFilters via Gaussian process latent variable
models

Jonathan Ko · Dieter Fox

Received: 31 December 2009 / Accepted: 1 October 2010 / Published online: 26 October 2010
© Springer Science+Business Media, LLC 2010

Abstract GP-BayesFilters are a general framework for
integrating Gaussian process prediction and observation
models into Bayesian filtering techniques, including parti-
cle filters and extended and unscented Kalman filters. GP-
BayesFilters have been shown to be extremely well suited
for systems for which accurate parametric models are diffi-
cult to obtain. GP-BayesFilters learn non-parametric models
from training data containing sequences of control inputs,
observations, and ground truth states. The need for ground
truth states limits the applicability of GP-BayesFilters to
systems for which the ground truth can be estimated with-
out significant overhead. In this paper we introduce GPBF-
LEARN, a framework for training GP-BayesFilters without
ground truth states. Our approach extends Gaussian Process
Latent Variable Models to the setting of dynamical robot-
ics systems. We show how weak labels for the ground truth
states can be incorporated into the GPBF-LEARN frame-
work. The approach is evaluated using a difficult tracking
task, namely tracking a slotcar based on inertial measure-
ment unit (IMU) observations only. We also show some
special features enabled by this framework, including time
alignment, and control replay for both the slotcar, and a ro-
botic arm.

Keywords Gaussian process · System identification ·
Bayesian filtering · Time alignment · System control ·
Machine learning

J. Ko (�) · D. Fox
Department of Computer Science & Engineering, University
of Washington, Seattle, WA, USA
e-mail: jonko@cs.washington.edu

D. Fox
Intel Labs Seattle, Intel Corp., Seattle, WA, USA

1 Introduction

Over the last years, Gaussian processes (GPs) have been ap-
plied with great success to robotics tasks such as reinforce-
ment learning (Engel et al. 2006) and learning of prediction
and observation models (Ferris et al. 2006; Ko et al. 2007;
Plagemann et al. 2007). GPs learn probabilistic regression
models from training data consisting of input-output exam-
ples (Rasmussen and Williams 2005). GPs combine extreme
modeling flexibility with consistent uncertainty estimates,
which makes them an ideal tool for learning of probabilis-
tic estimation models in robotics. The fact that GP regres-
sion models provide Gaussian uncertainty estimates for their
predictions allows them to be seamlessly incorporated into
probabilistic filtering techniques, most easily into particle
filters (Ferris et al. 2006; Plagemann et al. 2007).

GP-BayesFilters are a general framework for integrating
Gaussian process prediction and observation models into
Bayesian filtering techniques, including particle filters and
extended and unscented Kalman filters (Ko and Fox 2008;
Ko et al. 2007). More recently, the GP-BayesFilter frame-
work has been extended to also include assumed density fil-
ters (ADF) (Deisenroth et al. 2009). GP-BayesFilters learn
GP filter models from training data containing sequences
of control inputs, observations, and ground truth states. In
the context of tracking a micro-blimp, GP-BayesFilters have
been shown to provide excellent performance, significantly
outperforming their parametric Bayes filter counterparts.
Furthermore, GP-BayesFilters can be combined with para-
metric models to improve data efficiency and thereby reduce
computational complexity (Ko and Fox 2008). However, the
need for ground truth training data requires substantial la-
beling effort or special equipment such as a motion capture
system in order to determine the true state of the system
during training (Ko et al. 2007). This requirement limits the

mailto:jonko@cs.washington.edu


4 Auton Robot (2011) 30: 3–23

Fig. 1 (Color online) (Left) The
slotcar track used during the
experiments. An overhead
camera supplies ground truth
locations of the car. (Right) The
test vehicle moves along a slot
in the track, velocity control is
provided remotely by a desktop
PC. The state of the vehicle is
estimated based on an on-board
IMU (indicated by the red
outline)

applicability of GP-BayesFilters to systems for which such
ground truth states are readily available.

The need for ground truth states in GP-BayesFilter train-
ing stems from the fact that standard GPs only model noise
in the output data, input training points are assumed to be
noise-free (Rasmussen and Williams 2005). To overcome
this limitation, Lawrence recently introduced Gaussian
Process Latent Variable Models (GPLVM) for probabilistic,
non-linear principal component analysis (Lawrence 2005).
In contrast to the standard GP training setup, GPLVMs only
require output training examples; they determine the cor-
responding inputs via optimization. Just like other dimen-
sionality reduction techniques such as principal component
analysis (PCA), GPLVMs learn an embedding of the out-
put examples in a low-dimensional latent (input) space. In
contrast to PCA, however, the mapping from latent space to
output space is not a linear function but a Gaussian process.
While GPLVMs were originally developed in the context
of visualization of high-dimensional data, recent extensions
enabled their application to dynamic systems (Ferris et al.
2007; Lawrence and Moore 2007; Urtasun et al. 2006;
Wang et al. 2008).

In this paper we introduce GPBF-LEARN, a framework
for learning GP-BayesFilters from partially or fully unla-
beled training data. The inputs to GPBF-LEARN are tem-
poral sequences of observations and control inputs along
with partial information about the underlying state of the
system. GPBF-LEARN proceeds by first determining a state
sequence that best matches the control inputs, observations,
and partial labels. These states are then used along with the
control and observations to learn a GP-BayesFilter, just as
in Ko and Fox (2008). Partial information ranges from noisy
ground truth states, to sparse labels in which only a subset of
the states are labeled, to completely label-free data. To de-
termine the optimal state sequence, GPBF-LEARN extends
recent advances in GPLVMs to incorporate robot control in-
formation and probabilistic priors over the hidden states.

Under our framework, alignment of multiple time series
and filtering from completely unlabeled data is possible.
Furthermore, we describe a method for control replay us-
ing GPBF-LEARN from multiple user demonstrations. We

demonstrate the capabilities of GPBF-LEARN using the au-
tonomous slotcar testbed shown in Fig. 1. The car moves
along a slot on a race track while being controlled remotely.
Position estimation is performed based on an inertial mea-
surement unit (IMU) placed on the car. Note that tracking
solely based on the IMU is difficult, since the IMU provides
only noisy acceleration and turn information. Using this test-
bed, we demonstrate that GPBF-LEARN outperforms alter-
native approaches to learning GP-BayesFilters.

This paper is an extension of a previous work (Ko and
Fox 2009). Significant additions include a description of
GPBF-LEARN for time alignment of time series data, and
control replay of expert demonstrations. The paper is also
augmented with substantial additional experimental results.

This paper is organized as follows: after discussing re-
lated work, we provide background on Gaussian process
regression, Gaussian process latent variable models, and
GP-BayesFilters. Then, in Sect. 4, we introduce the GPBF-
LEARN framework. Experimental results are given in Sect. 5,
followed by a discussion.

2 Related work

Lawrence introduced Gaussian Process Latent Variable
Models (GPLVMs) for visualization of high-dimensional
data (Lawrence 2005). Original GPLVMs impose no smooth-
ness constraints on the latent space. They are thus not able
to take advantage of the temporal nature of dynamical sys-
tems. One way to overcome this limitation is the introduc-
tion of so-called back-constraints (Lawrence and Quiñonero
Candela 2006), which have been applied successfully in the
context of WiFi-SLAM, where the goal is to learn an ob-
servation model for wireless signal strength data without
relying on ground truth location data (Ferris et al. 2007).

Wang and colleagues (Wang et al. 2008) introduced
Gaussian Process Dynamic Models (GPDM), which are an
extension of GPLVMs specifically aimed at modeling dy-
namical systems. GPDMs have been applied successfully to
computer animation (Wang et al. 2008) and visual tracking



Auton Robot (2011) 30: 3–23 5

(Urtasun et al. 2006) problems. However, these models do
not aim at tracking the hidden state of a physical system, but
rather at generating good observation sequences for anima-
tion. They are thus not able to incorporate control input or
information about the desired structure of the latent space.
Furthermore, the tracking application introduced by Urta-
sun and colleagues (Urtasun et al. 2006) is not designed for
real-time or near real-time performance, nor does it provide
uncertainty estimates as GP-BayesFilters. Other alternatives
for non-linear embedding in the context of dynamical sys-
tems are hierarchical GPLVMs (Lawrence and Moore 2007)
and action respecting embeddings (ARE) (Bowling et al.
2005). None of these techniques are able to incorporate con-
trol information or impose prior knowledge on the structure
of the latent space. We consider both capabilities to be ex-
tremely important for robotics applications.

The system identification community has developed var-
ious subspace identification techniques (Ljung 1987; Van
Overschee and De Moor 1996). The goal of these tech-
niques is the same as that of GPBF-LEARN when applied
to label-free data, namely to learn a model for a dynamical
system from sequences of control inputs and observations.
The model underlying N4SID (Van Overschee and De Moor
1996) is linear, and the parameters learned can be used to
instantiate a linear Kalman filter. Due to its flexibility and
robustness, N4SID is extremely popular. It has been applied
successfully for human motion animation (Hsu et al. 2005).
In our experiments, we demonstrate that GPBF-LEARN

provides superior performance due to its ability to model
non-linear systems. We show however that N4SID provides
good initialization for GPBF-LEARN.

Other models for learning dynamical systems do exist.
Predictive state representations (PSRs) are models in which
the “state” of the system is grounded in statistics over ob-
servations (Littman et al. 2001). They do not explicitly keep
track of a hidden or latent state. More recently, PSRs have
been used for planning in a constrained real-world problem,
where a robot learns to navigate an environment using a PSR
model (Boots et al. 2009). Other non-linear system identifi-
cation techniques are also well researched. These non-linear
techniques use different functional bases including wavelets
and neural networks. A thorough overview can be found in
Sjöberg et al. (1995).

Time alignment of time series data can be performed
using GPBF-LEARN. This is an interesting feature of the
GPBF-LEARN algorithm, as it is a fundamental problem
in the speech recognition community, where it is known as
dynamic time warping (Rabiner et al. 1978). Time align-
ment is also an important algorithm for human motion
analysis (Hsu et al. 2007; Zhou and De la Torre 2009).
The main difference between these alignment algorithms
and GPBF-LEARN alignment is that they have no notion
of dynamics models and control inputs as required for ro-
botic systems. Our technique is most closely related to time

alignment in other robotics applications like (Coates et al.
2008) and (Schmill et al. 1999).

A fundamental problem in robotics is to make a robot per-
form a desired action. Two common ways of doing this are
by explicit programming, or by using reinforcement learning
techniques. Recently, imitation learning has become very
prominent, where robots learn from the behavior demon-
strated by a teacher. We show the use of the GPBF-LEARN

framework for control replay of human demonstrations. This
is similar in spirit to other robot imitation learning sys-
tems, such as Grimes and Rao (2008) where a humanoid
robot learns from human demonstrations, Ekvall and Kragic
(2004) where robot grasps are learned from human trials, or
Abbeel et al. (2008) where a robotic car learns from human
drivers.

3 Preliminaries

This section provides background on Gaussian processes
for regression, their extension to latent variable models
(GPLVMs), and GP-BayesFilters, which use GP regression
to learn observation and prediction models for Bayesian fil-
tering.

3.1 Gaussian process regression

Gaussian processes (GPs) are non-parametric techniques for
learning regression functions from sample data (Rasmussen
and Williams 2005). Assume we have n d-dimensional input
vectors:

X = [x1,x2, . . . ,xn]. (1)

A GP defines a zero-mean, Gaussian prior distribution over
the outputs y = [y1, y2, . . . , yn] at these values:1

p(y | X) = N (y; 0, Ky + σ 2
n I). (2)

The covariance of this Gaussian distribution is defined via a
kernel matrix, Ky , and a diagonal matrix with elements σ 2

n

that represent zero-mean, white output noise. The elements
of the n×n kernel matrix Ky are specified by a kernel func-
tion over the input values: Ky[i, j ] = k(xi ,xj ). By interpret-
ing the kernel function as a similarity measure, we see that
if input points xi and xj are close in the kernel space, their
output values yi and yj are highly correlated.

The specific choice of the kernel function k depends on
the application, the most widely used being the squared ex-
ponential, or Gaussian, kernel:

k(x,x′) = σ 2
f e− 1

2 (x−x′)W(x−x′)T . (3)

1For ease of exposition, we will only describe GPs for one-dimensional
outputs, multi-dimensional outputs will be handled by assuming inde-
pendence between the output dimensions.



6 Auton Robot (2011) 30: 3–23

We use this kernel function exclusively on all our experi-
ments. The kernel function is parameterized by W and σf .
The diagonal matrix W defines the length scales of the
process, which reflect the relative smoothness of the process
along the different input dimensions. Signal variance is de-
noted by σ 2

f .
Given training data D = 〈X,y〉 of n input-output pairs,

a key task for a GP is to generate an output prediction at a
test input x∗. It can be shown that conditioning (2) on the
training data and x∗ results in a Gaussian predictive distrib-
ution over the corresponding output y∗

p(y∗ | x∗,D) = N (y∗;GPμ(x∗,D),GPΣ(x∗,D)) (4)

with mean

GPμ(x∗,D) = kT∗ [K + σ 2
n I ]−1y (5)

and variance

GPΣ(x∗,D) = k(x∗,x∗) − kT∗ [K + σ 2
n I ]−1k∗. (6)

Here, k∗ is a vector of kernel values between x∗ and the
training inputs X: k∗[i] = k(x∗,xi ). Note that the prediction
uncertainty, captured by the variance GPΣ , depends on both
the process noise and the correlation between the test input
and the training inputs.

The hyperparameters θy of the GP are given by the pa-
rameters of the kernel function and the output noise: θy =
〈σn,W,σf 〉. They are typically determined by maximizing
the log likelihood of the training outputs (Rasmussen and
Williams 2005). Making the dependency on hyperparame-
ters explicit, we get

θ∗
y = argmax

θy

log p(y | X, θy). (7)

The GPs described thus far depend on the availability of
fully labeled training data, that is, data containing ground
truth input values X and possibly noisy output values y.

Like most kernel methods, the use of Gaussian processes
do have drawbacks in terms of learning and prediction effi-
ciency. The training complexity is O(n3) for this basic for-
mulation of GPs, and O(n) and O(n2) for mean and vari-
ance predictions, respectively. Fortunately, much research
has been directed at making GPs more efficient. A few re-
cent papers show diversity of such approaches. In Snelson
and Ghahramani (2006), Snelson and colleagues increase
efficiency by learning using only representative “pseudo-
inputs” from the full dataset. Complexity is reduced by
learning multiple local GPs in Nguyen-Tuong et al. (2008).
Finally, Rahimi and colleagues describes the use of random
features for very large kernel machines that may be applica-
ble to Gaussian processes and can speed up computation
dramatically (Rahimi and Recht 2007).

3.2 Gaussian process latent variable models

GPLVMs were introduced in the context of visualization
of high-dimensional data (Lawrence 2003). GPLVMs per-
form nonlinear dimensionality reduction in the context of
Gaussian processes. The underlying probabilistic model is
still a GP regression model as defined in (2). However,
the input values X are not given and become latent variables
that need to be determined during learning. In the GPLVM,
this is done by optimizing over both the latent space X and
the hyperparameters θy :

〈X∗, θ∗
y〉 = argmax

X,θy

log p(Y | X, θy). (8)

This optimization can be performed using scaled conjugate
gradient descent. In practice, the approach requires a good
initialization to avoid local maxima. Typically, such ini-
tializations are done via PCA or Isomap (Lawrence 2005;
Wang et al. 2008).

The standard GPLVM approach does not impose any
constraints on the latent space. It is thus not able to take
advantage of the specific structure underlying dynamical
systems. Recent extensions of GPLVMs, namely Gaussian
Process Dynamical Models (Wang et al. 2008) and hierar-
chical GPLVMs (Lawrence and Moore 2007), can model
dynamic systems by introducing a prior over the latent space
X, which results in the following joint distribution over the
observed space, the latent space, and the hyperparameters:

p(Y,X, θy, θx) = p(Y | X, θy)p(X | θx)p(θy)p(θx). (9)

Here, p(Y | X, θy) is the standard GPLVM term, p(X | θx)

is the prior modeling the dynamics in the latent space, and
p(θy) and p(θx) are priors over the hyperparameters. The
dynamics prior is again modeled as a Gaussian process

p(X | θx) = N (X;0,Kx + σ 2
mI), (10)

where Kx is an appropriate kernel matrix and σm is the as-
sociated noise term. In Sect. 4, we will discuss different dy-
namics kernels in the context of learning GP-BayesFilters.
The unknown values for this model are again determined
via maximizing the log posterior of (9):

〈X∗, θ∗
y, θ

∗
x〉 = argmax

X,θy ,θx

(
logp(Y | X, θy)

+ logp(X | θx) + logp(θy) + logp(θx)
)
.

(11)

Such extensions to GPLVMs have been used successfully
to model temporal data such as motion capture sequences
(Lawrence and Moore 2007; Wang et al. 2008) and visual
tracking data (Urtasun et al. 2006).



Auton Robot (2011) 30: 3–23 7

3.3 GP-BayesFilters

GP-BayesFilters are Bayes filters that use GP regression to
learn prediction and observation models from training data.
Bayes filters recursively estimate posterior distributions over
the state xt of a dynamical system at time t conditioned on
sensor data z1:t and control information u1:t−1. Key compo-
nents of every Bayes filter are the prediction model, p(xt |
xt−1,ut−1), and the observation model, p(zt | xt ) which are
shown in graphical form in Fig. 2. The prediction model de-
scribes how the state x evolves in time based on the control
input u. The observation model describes the likelihood of
making an observation z given the state x. In robotics, these
models are typically parametric descriptions of the under-
lying processes; see Thrun et al. (2005) for several exam-
ples.

GP-BayesFilters use Gaussian process regression models
for both prediction and observation models. Such models
can be incorporated into different versions of Bayes filters
and have been shown to outperform parametric models (Ko
and Fox 2008). Learning the models of GP-BayesFilters re-
quires ground truth sequences of a dynamical system con-
taining for each time step a control command, ut−1, an ob-
servation, zt , and the corresponding ground truth state, xt .
GP prediction and observation models can then be learned
based on training data

Dp = 〈(X,U),�X〉,
Do = 〈X,Z〉,
where X is a matrix containing the sequence of ground truth
states, X = [x1,x2, . . . ,xT −1], �X is a matrix containing
the state changes, �X = [x2 − x1,x3 − x2, . . . ,xT − xT −1],
and U and Z contain the sequences of controls and obser-
vations, respectively. By plugging these training sets into
(5) and (6), one gets GP prediction and observation mod-
els. The prediction model maps from a state, xt−1, and a

Fig. 2 (Color online) Graphical model of a Bayes filter. The blue out-
line indicates the dynamics model. The red outline shows the observa-
tion model

control, ut−1, to change in state, xt − xt−1, while the obser-
vation model maps from a state, xt , to an observation, zt .
These probabilistic models can be readily incorporated into
Bayes filters such as particle filters and unscented Kalman
filters. An additional derivative of (5) provides the Taylor
expansion needed for extended Kalman filters (Ko and Fox
2008).

The need for ground truth training data is a key limita-
tion of GP-BayesFilters and other applications of GP regres-
sion models in robotics. While it might be possible to collect
ground truth data using accurate sensors (Ko and Fox 2008;
Nguyen-Tuong et al. 2008; Plagemann et al. 2007) or man-
ual labeling (Ferris et al. 2006), the ability to learn GP mod-
els based on weakly labeled or unlabeled data significantly
extends the range of problems to which such models can be
applied.

4 GPBF-LEARN

In this section we show how GP-BayesFilters can be learned
from weakly labeled data. While the extensions of GPLVMs
described in Sect. 3.2 are designed to model dynamical sys-
tems, they lack important abilities needed to make them
fully useful for robotics applications. First, they do not con-
sider control information, which is extremely important for
learning accurate prediction models in robotics. Second,
they optimize the values of the latent variables (states) solely
based on the output samples (observations) and GP dynam-
ics in the latent space. However, in state estimation scenar-
ios, one might want to impose stronger constraints on the
latent space X. For example, it is often desirable that latent
states xt correspond to physical entities such as the loca-
tion of a robot. To enforce such a relationship between latent
space and physical robot locations, it would be advantageous
if one could label a subset of latent points with their physical
counterparts and then constrain the latent space optimization
to consider these labels.

We now introduce GPBF-LEARN, which overcomes
limitations of existing techniques. The training data for
GPBF-LEARN, D = [Z,U, X̂], consists of time stamped se-
quences containing observations, Z, controls, U, and weak
labels, X̂, for the latent states. In the context discussed here,
the labels provide noisy information about subsets of the
latent states. Given training data D, the posterior over the
sequence of hidden states and hyperparameters is as follows:

p(X, θx, θz | Z,U, X̂)

∝ p(Z | X, θz)p(X | U, θx)p(X | X̂)p(θ z)p(θx). (12)

In GPBF-LEARN, both the observation model, p(Z |
X, θz), and the prediction model, p(X | U, θx), are Gaussian
processes, and θx and θz are the hyperparameters of
these GPs. While the observation model in (12) is the same



8 Auton Robot (2011) 30: 3–23

as in the GPLVM for dynamical systems (9), the predic-
tion GP now includes control information. Furthermore, the
GPBF-LEARN posterior contains an additional term for la-
bels, p(X | X̂), which we describe next.

4.1 Weak labels

The labels X̂ represent prior knowledge about individual la-
tent states X. For instance, it might not be possible to gen-
erate highly accurate ground truth states for every data point
in the training set. Instead, one might only be able to pro-
vide accurate labels for a small subset of states, or noisy
estimates for the states. At the same time, such labels might
still be extremely valuable since they guide the latent vari-
able model to determine a latent space that is similar to the
desired, physical space. While the form of prior knowledge
can take on various forms, we here consider labels that rep-
resent independent Gaussian priors over latent states:

p(X | X̂) =
∏

x̂t∈X̂

N (xt ; x̂t , σ
2
x̂t

). (13)

Here, σ 2
x̂t

is the uncertainty in label x̂t . As noted above,

X̂ can impose priors on all or any subset of latent states.
As we will show in the experiments, these additional terms
generate more consistent tracking results on test data.

We now examine use of weak labels at either extreme of
very high, or very low uncertainty. With accurate knowledge
of the latent states, σx̂t

becomes very small. As a result, the
latent states X do not move at all during GPBF-LEARN opti-
mization. At this extreme, only hyperparameters are learned,
and thus the learning becomes equivalent to simple Gaussian
process optimization. On the other hand, if no prior knowl-
edge exists about the latent states, σx̂t

becomes infinitely
large. This essentially gives a uniform distribution over the
latent states X. This is very similar to GPDM as now the
latent states have complete freedom to move around.

Currently, the label uncertainty σ 2
x̂t

is not integrated into
the probabilistic framework described by GPBF-LEARN

and must be selected independently via either manual tun-
ing, or cross validation.

4.2 GP dynamics models

GP dynamics priors, p(X | U, θx), do not constrain indi-
vidual states but model prior information of how the sys-
tem evolves over time. They provide substantial flexibility
for modeling different aspects of a dynamical system. Intu-
itively, these priors encourage latent states X that correspond
to smooth mappings from past states and controls to future
states. Even though the dynamics GP is an integral part of
the posterior model (12), for exposure reason it is easier to
treat it as if it was a separate GP.

Different dynamics models are achieved by changing the
specific values for the input and output data used for this
dynamics GP. We denote by Xin and Xout the input and out-
put data for the dynamics GP, where Xin is typically derived
from states at specific points in time, and Xout is derived
from states at the next time step. To more strongly empha-
size the sequential aspect of the dynamics model we will use
time t to index data points. Using the GP dynamics model
we get

p(X | U, θx) = N (Xout;0,Kx + σ 2
x I), (14)

where σ 2
x is the noise of the prediction model, and the kernel

matrix Kx is defined via the kernel function on input data to
the dynamics GP: Kx[t, t ′] = k(xin

t ,xin
t ′ ), where xin

t and xin
t ′

are input vectors for time steps t and t ′, respectively.
The specification of Xin and Xout determines the dynam-

ics prior. Consider the most basic dynamics GP which solely
models a mapping from the state at time t − 1, xt−1, to the
state at time t , xt . In this case we get the following specifi-
cation:

xin
t = xt−1,

xout
t = xt .

(15)

Optimization with such a dynamics model encourages
smooth state sequences X. Generating smooth velocities can
be achieved by setting xin

t to �xt−1 and xout
t to �xt , where

�xt represents the velocity [xt −xt−1] at time t (Wang et al.
2008). It should be noted that such a velocity model can be
incorporated without adding a velocity dimension to the la-
tent space. A more complex, localized dynamics model that
takes control and velocity into account can be achieved by
the following settings:

xin
t = [xt−1,�xt−1,ut−1]T ,

xout
t = �xt .

(16)

This model encourages smooth changes in velocity depend-
ing on control input. By adding xt−1 to xin

t , the dynamics
model becomes localized, that is, the impact of control on
velocity can be different for different states. While one could
also model higher order dependencies, we here stick to the
one given in (17), which corresponds to a relatively standard
prediction model for Bayes filters.

4.3 Optimization

Just as regular GPLVM models, GPBF-LEARN determines
the unknown values of the latent states X by optimizing the
log of the posterior over the latent state sequence and the
hyperparameters. The log of (12) is given by



Auton Robot (2011) 30: 3–23 9

logp(X, θx, θz | D)

= logp(Z | X, θz) + logp(X | U, θx)

+ logp(X | X̂) + logp(θz) + logp(θx) + const, (17)

where D represents the training data [Z,U, X̂]. We perform
this optimization using scaled conjugate gradient descent
(Wang et al. 2008). The gradients of the log are given by:

∂ logp(X, θx, θz | Z,U)

∂X

= ∂ logp(Z | X, θz)

∂X
+ ∂ logp(X | U, θx)

∂X

+ ∂ logp(X | X̂)

∂X
, (18)

∂ logp(X, θx, θz | D)

∂θx

= ∂ logp(X | U, θx)

∂θx

+ ∂ logp(θx)

∂θx

,

(19)

∂ logp(X, θx, θz | D)

∂θz

= ∂ logp(Z | X, θz)

∂θ z

+ ∂ logp(θz)

∂θz

.

(20)

The individual derivatives follow as

∂ logp(Z | X, θz)

∂X
= 1

2
trace

(
K−1

Z ZZtK−1
Z − K−1

Z

) ∂KZ

∂X
,

∂ logp(Z | X, θz)

∂θZ

= 1

2
trace

(
K−1

Z ZZtK−1
Z − K−1

Z

) ∂KZ

∂θz

,

∂ logp(X | θx,U)

∂X

= 1

2
trace

(
K−1

X XoutXT
outK

−1
X − K−1

X

) ∂KX

∂X

− K−1
X Xout

∂Xout

∂X
,

∂ logp(X | θx,U)

∂θx

= 1

2
trace

(
K−1

X XoutXT
outK

−1
X − K−1

X

) ∂KX

∂θx

,

∂ logp(X | X̂)

∂X[i, j ] = −(X[i, j ] − X̂[i, j ])/σ 2
x̂t

,

where ∂K
∂X and ∂K

∂θ
are the matrix derivatives. They are

formed by taking the partial derivative of the individual ele-
ments of the kernel matrix with respect to X or the hyperpa-
rameters, respectively.

4.4 GPBF-LEARN algorithm

A high level overview of the GPBF-LEARN algorithm is
given in Table 1. The input to GPBF-LEARN consists of
training data containing a sequence of observations, Z, con-
trol inputs, U, and weak labels, X̂. In the first step, the un-

Table 1 The GPBF-LEARN algorithm

Algorithm GPBF-LEARN (Z,U, X̂):

1: if (X̂ �= ∅)

X := X̂
else

X := N4SIDx(Z,U)

2: 〈X∗, θ∗
x, θ∗

z 〉 := SCG_optimize
(
logp(X, θx, θz | Z,U, X̂)

)

3: GPBF := Learn_gpbf(X∗,U,Z)

4: return GPBF

known latent states X are initialized using the information
provided by the weak labels. This is done by setting every
latent state to the estimate provided by X̂. In the sparse la-
beling case, the states without labels are initialized by lin-
ear interpolation between those for which a label is given.
In the fully unsupervised case, where X̂ is empty, we use
N4SID to initialize the latent states (Van Overschee and
De Moor 1996). In our experiments, N4SID provides ini-
tialization that is far superior to the standard PCA initial-
ization used by Lawrence (2005) and Wang et al. (2008).
Then, in Step 2, scaled conjugate gradient descent deter-
mines the latent states and hyperparameters via optimiza-
tion of the log posterior (17). This iterative procedure com-
putes the gradients (18)–(20) during each iteration using the
dynamics model and the weak labels. Finally, the result-
ing latent states X∗, along with the observations and con-
trols are used to learn a GP-BayesFilter, as described in
Sect. 3.3.

In essence, the final step of the algorithm “compiles” the
complex latent variable model into an efficient, online GP-
BayesFilter. The key difference between the filter model and
the latent variable model is due to the fact that the filter
model makes a first order Markov assumption. The latent
variable model, on the other hand, optimizes all latent points
jointly and these points are all correlated via the GP ker-
nel matrix. To reflect the difference between these models,
we learn new hyperparameters for the GP-BayesFilter. This
final step of the algorithm also allows an opportunity for
use of more sophisticated Gaussian process models. For ex-
ample, sparse GPs or heteroscedastic GPs (Kersting et al.
2007), ones where the noise predictions are state dependent,
can be used at this time.

4.5 Time alignment

We now show how time alignment for time series data can be
realized using the GPBF-LEARN framework. The capabil-
ity to do this alignment is an important property of GPBF-
LEARN. For 1D time alignment, we are interested in learn-
ing a one-to-one mapping between latent states and time in-
dices of an episode. In this context, an episode is one of a



10 Auton Robot (2011) 30: 3–23

series of similar events performed by a system. For example,
a lap around the track by the slotcar represents an episode.
To achieve this, two conditions are necessary. First, just like
loop closing in robotic SLAM (Thrun et al. 2005), latent
states for different episodes must correspond to the same
time index. Second, two latent states within a single episode
must not map to the same time index. The first condition,
the alignment of multiple episodes, happens automatically
as part of the optimization process. This is because distinct
observations are used to help align across different episodes.
The dynamics models then help fill in the gaps where obser-
vations are indistinct. To achieve the second condition, the
1D latent state space must be monotonically increasing for
each episode. To note, simply using the more complex dy-
namics model which incorporates velocities is not enough to
guarantee monotonically increasing latent states, since neg-
ative velocities are not prohibited by the model.

Before we go further into detail the details of time align-
ment, the nomenclature must be slightly revised in order to
accommodate episodic data. The log posterior formula re-
mains essentially the same. Now, xk

t denotes the 1D latent
state of episode k at time t . The total number of timesteps
for episode k is denoted by T k . X is now a concatenation of
all Xk .

For the case of GPBF-LEARN, in order to have Xk

monotonically increasing, the change in Xk must be greater
than 0. That is, ∀t, k : �xk

t > 0. To achieve this, we con-

strain velocities to take on the form of �xk
t = ewk

t , where
wk

t is a new parameter and Wk = [wk
1,wk

2, . . . ,w
k
T k ]. The

correspondence between Xk and Wk is

xk
t =

t∑

i=1

ewk
i . (21)

Note that every episode is assumed to start at latent state
0 as a by-product of this equation. In addition, the end of
one episode and the beginning of the next are not connected
probabilistically within the GPBF-LEARN framework.

We now reparameterize the original GPBF-LEARN op-
timization formula. Instead of solving for X, we now solve
for W. (Similar to X, W is a concatenation of all Wk .)

A new log posterior formula can be defined based on W.
The first step of this new formula is to extract X from W.
The log posterior calculation then proceeds as in the origi-
nal. The old and new formulas are denoted as follows,

L = logp(X, θx, θz | D), (22)

Lnew = logp(W, θx, θz | D). (23)

The derivatives of the optimization formula are also af-
fected by this reparameterization. Instead of derivatives with
respect to X, we now have to take the derivative with respect

to W. The derivatives of Lnew are very closely related to
the derivatives of L. The derivative of wt depends on every
derivative of xt that contains wt . Using the chain rule,

∂Lnew

∂wk
t

= ∂L

∂xk
1

∂xk
1

∂wk
t

+ ∂L

∂xk
2

∂xk
2

∂wk
t

+ · · · + ∂L

∂xk
t

∂xk
t

∂wk
t

, (24)

which reduces to

∂Lnew

∂wk
t

=
t∑

i=1

∂L

∂xk
i

ewk
t . (25)

The derivatives of the hyperparameters ∂Lnew
∂θX

and ∂Lnew
∂θZ

re-
main the same.

Latent states for each episode are monotonically increas-
ing after optimization. We show how 1D time alignment can
be performed for the slotcar system in our experiments. Al-
though this 1D time alignment may not be sufficient for
tracking complex systems, we believe it can be used for
time alignment in a host of problems. This technique can
be augmented by adding other unconstrained dimensions to
the latent space if one dimension is not enough. This tech-
nique has some advantages over other traditional dynamic
time warping algorithms as it is able to handle multidimen-
sional observation data in a fully probabilistic framework.
A naive extension of the method described in Rabiner et al.
(1978) for multidimensional observations would at least re-
quire tuning separate weights for each observation dimen-
sion.

4.6 Trajectory replay via GPBF-LEARN

In this section, we propose a method for replay of trajec-
tories based on expert demonstrations using the GPBF-
LEARN framework. Specifically, given one or a series of
demonstrations by a human expert, we want to learn how
to control the system in the same manner.

At a high level, in order to do trajectory replay, the la-
tent states and GP models are learned using GPBF-LEARN.
There is a corresponding control used for each point in the
latent space X based on the time index of both the control
input and the learned latent state. The idea is to build a map-
ping from latent space to controls. This relationship is out-
lined in the graphical model shown in Fig. 3. In this case,
we use a Gaussian process to learn the mapping. Again, as
for the dynamics models, different control models are pos-
sible. The input for the control model can use just the latent
states X, or incorporate velocities. The simplest model will
yield a GP with training data:

Dc = 〈X,U〉. (26)

In order to do the actual trajectory replay, the learned GP
models are used to track within the latent space via GP-
BayesFilter. Given the estimated latent state, an estimated



Auton Robot (2011) 30: 3–23 11

Fig. 3 (Color online) Graphical model showing the relationship of in-
puts and outputs for the control model

control is recovered from the GP control model. This control
is then sent to the system. We show how this technique can
be used to replay trajectories in the slotcar problem. Note
that this method for trajectory replay is rather simplistic, but
it could be readily extended to integrate more sophisticated
online optimization such as receding horizon control used in
Coates et al. (2008).

This control model works for the slotcar where drift is not
so much of a problem because the car is fixed to the track.
However, for more complex systems, the generated controls
can lead the system outside the manifold described by the
training data, at which point tracking might fail. The simple
control model described above has no mechanism to correct
for such drift. However, if there was a way to find “good”
controls that tend to reduce drift, we can learn control mod-
els based only on these controls. The resulting control model
avoids leaving parts of the state space covered well by the
training data. The challenge is to determine the amount of
drift introduced by a particular control since it may not be
directly calculable. For example, calculating drift in obser-
vation space may not yield the correct value due to aliasing
issues. Two similar observations may not derive from simi-
lar latent states. The key idea is to test the influence of each
control in the original training data of the control model. If
the control leads to control predictions which cause the dy-
namics model to become more uncertain, then we remove
that control from the control model.

The process for extracting the control training data is
shown in pseudocode in Table 2. This is shown for the sim-
plest dynamics model with Dp = 〈(X,U),X′〉 where X′ =
[x2,x3, . . . ,xT ] is the latent data offset by one time step. In
Step 1, we initialize the control training data as empty sets.
Then, in Step 2, we loop over all the training pairs 〈xt , ut 〉
which make up the control model training data. In Step 3,
we predict the control under two scenarios. In the first, we
assume that the current training pair is part of the training
data. In the second, we test the model without that training
pair. New latent state predictions are then made using the dy-
namics model with each predicted control in Step 4. Step 5

Table 2 Algorithm for selecting training data for the advanced control
model

Algorithm SelectTrainingData (X,U,X′):

1: Xnew = Unew = ∅

2: for t from 1 to T − 1

3: uW/ = GPμ (xt , 〈X,U〉)
uW/O = GPμ (xt , 〈X − xt ,U − ut 〉)

4: xW/ = GPμ

(
(xt ,uW/), 〈(X,U),X′〉)

xW/O = GPμ

(
(xt ,uW/O), 〈(X,U),X′〉)

5: σ W/ = GPΣ

(
(xW/,ut+1), 〈(X,U),X′〉)

σ W/O = GPΣ

(
(xW/O,ut+1), 〈(X,U),X′〉)

6: if (σW/ < σW/O)
insert xt into Xnew

insert ut into Unew

7: return Xnew, Unew

tests the prediction uncertainty of these new states. Finally,
in Step 6, the considered training pair is only accepted if it
results in a less uncertain control prediction one time step in
the future.

A new control model is constructed using this data. This
new set of training data can be used directly with the previ-
ously found hyperparameters. This algorithm is also written
assuming the dynamics model has a 1D output. We assume
independence between multiple outputs, so the final uncer-
tainty would just be the product of the uncertainties of the
individual dimensions for a multi-output dynamics model.

Because of the binary nature of this pruning approach,
care must be taken to avoid losing all controls in regions of
latent space. At this point in time, we avoid this by having
enough variability in the demonstration trajectories so that
no region of the latent space will have controls which only
increase uncertainty. Future work may explore a probabilis-
tic approach to pruning.

5 Experiments

In this section, we evaluate the use of GPBF-LEARN under
a variety of conditions. In the first part, GPBF-LEARN is
analyzed for conditions where prior knowledge of the latent
states is available, either through noisy, or sparsely labeled
data. GPBF-LEARN is then tested as a method for system
identification where no prior knowledge of the state is avail-
able. Under this scenario, we show how the system can be
tracked in the latent space via a GP-BayesFilter extracted
from the learned latent states. GPBF-LEARN is also com-
pare to a state-of-the-art subspace identification algorithm.
The third part demonstrates some unique features enabled



12 Auton Robot (2011) 30: 3–23

by the GPBF-LEARN framework. We show how time align-
ment of episodic behavior can be obtained, and how sys-
tem control can be achieved using models found by GPBF-
LEARN. The experiments are performed on two very dif-
ferent test platforms. The first is toy car, and the second is
a robotic arm. These two systems will be described in line
with their respective experiments.

In an additional experiment not reported here, we com-
pared the two dynamics models described in Sect. 4.2. Us-
ing 10-step ahead prediction as evaluation criteria, we found
that our control and velocity based model (16) significantly
outperforms the simpler model (15) that is typically used for
GPLVMs. In fact, our model reduces the prediction error by
almost 45%, from 29.2 to 16.1 cm. We use this more com-
plex model in all our tests.

5.1 Incorporating noisy and spare labels

In this section we demonstrate that GPBF-LEARN can learn
a latent (state) space X that is consistent with a desired la-
tent space specified via weak labels X̂. Here, the desired la-
tent space is the 1D position of the car along the track. In
this scenario, we assume that the training data contains noisy
or sparse labels X̂. First, we will describe the test platform
used.

The experimental setup consists of a track and a minia-
ture car which is guided along the track by a groove, or slot,
cut into the track. The left panel in Fig. 1 shows the track,
which contains elevation changes as well as banked curves
with a total length of about 14 m. An overhead camera is
used to track the car. The car can be extracted from the
video stream using background subtraction. This informa-
tion is then combined with a detailed model of the track to
provide the car position from the start of the lap at each point
in time. These 1D car positions serve as ground truth data for
the experiments. The car is a standard 1:32 scale model man-
ufactured by Carrera® International and augmented with an
inertial measurement unit (IMU), as shown in the second
panel in Fig. 1. The IMU is the InertiaDot sensor developed
by colleagues at Intel Research Seattle. It provides 3-axis ac-
celerometer, and 3-axis gyro information and is powered by
a small lithium battery. The overall package is quite small
at 3 cm by 3 cm by 1 cm and weighs just 10 grams. The
gyro measures changes in orientation and provides essen-
tially a turning rate for each axis. These measurements are
sent off-board in real-time via a Bluetooth interface. Con-
trol signal to the car are supplied by an off-board computer.
The controls signal is directly proportional to the amperage
supplied the car motor. It is a unitless measure stored as an
8-bit unsigned integer which gives possible values from 0
to 255. The car requires fairly precise control inputs to op-
erate as there are portions of the track that must be driven
though quickly, and other portions slowly. The car exhibits

Fig. 4 (Color online) The control inputs (top), IMU turning rate in
roll, pitch, and yaw (middle), and IMU accelerometer observations
(bottom) for the same run. Shown is data collected over two laps around
the track

two main failure modes. It can crash by entering a turn too
quickly, or by driving along the banked portions of the track
too slowly.

As can be seen in the middle and bottom panel in Fig. 4,
both the accelerometer and gyro outputs contain significant
noise. In addition, the observation data also includes sub-
stantial amounts of aliasing, in which the same measure-
ments occur at many different locations on the track. For
instance, all angle differences are close to zero whenever
the car moves through a straight section of the track. The
observation noise and aliasing makes this problem challeng-
ing, and the learning a model of the latent space a necessity
since there is no simple unique mapping between the obser-
vations Z and the states X.

In all experiments, GP-UKFs are used to generate track-
ing results (Ko et al. 2007). Different types of GP-Bayes-
Filter such as GP-EKF can be used, but GP-UKF gives a
good tradeoff between accuracy and speed.

5.1.1 Noisy labels

In this first experiment, we consider the scenario in which
one is not able to provide extremely accurate ground truth
states for the training data. Instead, one can only provide
noisy labels X̂ for the states. We evaluate four possible ap-
proaches to learning a GP-BayesFilter from such data. The
first, called INIT, simply ignores the fact that the labels are
noisy and learns a GP-BayesFilter using the initial data X̂.
The next two use the noisy labels to initialize the latent
variables X, but performs optimization without the weak
label terms described in Sect. 4.1. We call this approach
GPDM, since it results from applying the model of Wang
et al. (2008) to this setting. We do this with and without



Auton Robot (2011) 30: 3–23 13

the use of control data U in order to distinguish the contri-
butions of the various components. Finally, GPBFL denotes
our GPBF-LEARN approach that considers the noisy labels
during optimization.

The system state in this scenario is the 1D position of the
car along the track, that is, the approach must learn to project
the 6D IMU observations Z along with the control informa-
tion U into a 1D latent space X. Training data consists of
5 manually controlled cycles of the car around the track.
We perform cross-validation by applying the different ap-
proaches to four loops and testing tracking performance on
the remaining loop. The overhead camera provides fairly ac-
curate 1D track position. To simulate noisy labels, we added
different levels of Gaussian noise to the camera based 1D
track locations and used these as X̂. For each noise level ap-
plied to the labels we perform a total of 10 training and test
runs. For each run, we extract GP-BayesFilters using the re-
sulting optimized latent states X∗ along with the controls
and IMU observations. The quality of the resulting models
is tested by checking how close X∗ is to the ground truth
states provided by the camera, and by tracking with a GP-
UKF on previously unseen test data.

The top panel in Fig. 5 shows a plot of the differences
between the learned hidden states, X∗, and the ground truth
for different values of noise applied to the labels X̂. As can
be seen, GPBFL is able to recover the correct 1D latent space
even for high levels of noise. GPDM which only considers
the labels by initializing the latent states generates a high er-
ror. This is due to the fact that the optimization performed
GPDM lets these latent states “drift” from the desired val-
ues. The optimization performed by GPDM without control
is even higher than that with control. GPDM without con-
trol ends up overly smooth since it does not have controls to
constrain the latent states. Not surprisingly, the error of INIT

increases linearly in the noise of the labels, since INIT uses
these labels as the latent states without any optimization.

The middle panel in Fig. 5 shows the RMS error when
running a GP-BayesFilter that was extracted based on the
learned hidden states using the different approaches. For
clarity, we only show the averages over those runs that did
not produce a tracking error. A run is considered a failure if
the RMS error is greater than 70 cm. Out of its 80 runs, INIT

produced 18 tracking failures, GPDM without controls 11,
GPDM with controls 7, while our approach GPBFL produced
only one failure. Note that a tracking failure can occur due
to both mis-alignment between the learned latent space and
high noise in the observations.

As can be seen in the figure, GPBFL is able to learn a GP-
BayesFilter that maintains a low tracking RMS error even
when the labels X̂ are very noisy. On the other hand, simply
ignoring noise in labels results in increasingly bad tracking
performance, as shown by the graph for INIT. In addition,
GPDM generates significantly poorer tracking performance
than our approach.

Fig. 5 (Color online) Evaluation of INIT, GPDM, and GPBFL on noisy
and sparse labels. Dashed lines provide 95% confidence intervals.
(Top) Difference between the learned latent states X∗ and ground truth
as a function of noise level in the labels X̂. (Middle) Tracking errors for
different noise levels. (Bottom) Difference between the learned latent
states and ground truth as a function of label sparsity



14 Auton Robot (2011) 30: 3–23

5.1.2 Sparse labels

In some settings it might not be possible to provide even
noisy labels for all training points. This situation could arise
from a sensor that can only capture the robot or object’s po-
sition in the latent space at much lower frequency than other
sensors, or if it can only capture latent states for a fraction
of the state space. Here we simulate this scenario by ran-
domly removing noisy labels from the training data. For the
approach INIT we generated full labels by linearly interpo-
lating between the sparse labels. The bottom panel in Fig. 5
shows the errors between ground truth 1D latent space and
the learned latent space, X∗, for different levels of label spar-
sity. Again, our approach, GPBFL, learns a more consistent
latent space as GPDM, which uses the labels only for ini-
tialization. The linear interpolation approach, INIT, outper-
forms GPDM since the states X do not change at all and
thereby avoids drifting from the provided labels.

5.2 GPBF-LEARN for system identification

The next set of experiments demonstrate how GPBF-
LEARN can learn models without any labeled data. Here,
the training input consists solely of IMU observations Z and
control inputs U. We perform GPBF-LEARN using a train-
ing set comprising of about 1400 data points (observation
and control pairs), or about 16 laps of data. A very high
σx̂t

is used, essentially providing no knowledge about the
structure of the latent space. These experiments are broken
up into three parts. First, we show how a 3D latent space
can be learned by GPBF-LEARN initialized with N4SID,
a standard system identification technique. We show how
the derived GP-BayesFilter can then be used to track in the
latent space. Both GPBF-LEARN and N4SID are then com-
pared in terms of tracking and prediction performance. This
section ends with a comparison of GPBF-LEARN with a
state of the art system identification method.

5.2.1 Learning the latent states

This first experiment shows how we can learn a 3D latent
space with no prior knowledge of the latent space for the
slotcar system. A three dimensional latent space is used to
encode knowledge about the underlying system. A different
number of dimensions could be used, but three dimensions
trades off accuracy for ease of presentation. Overall, this is
an extremely challenging task for latent variable models. To
see, we initialized the latent state of GPBF-LEARN using
PCA, as is typically done for GPLVMs (Lawrence 2005;
Urtasun et al. 2006; Wang et al. 2008). The latent state is ini-
tialized using three principal components to reconstruct the
6D observations from the slotcar IMU. In this case, GPBF-
LEARN was not able to learn a smooth model of the latent

Fig. 6 First two dimensions of a 3D latent space learned by N4SID
(top) and GPBF-LEARN after optimization (bottom)

space. This is because PCA is linear and does not take the
dynamics in latent space into account, and thus the GPBF-
LEARN optimization is unable to overcome the poor initial-
ization.

A different approach for initialization is N4SID, which is
a well known linear model for system identification of dy-
namical systems. A brief description of the algorithm is pro-
vided in Appendix. A more thorough treatment can be found
here (Van Overschee and De Moor 1996). N4SID provides
an estimate of the hidden state which does take into account
the system dynamics. This approach determines the matri-
ces from which the hidden state space can then be recov-
ered. The latent space XN4SID recovered by N4SID is shown
in red in the top panel in Fig. 6. N4SID is able to capture the
overall cyclic nature of the track when using an appropri-
ately long time horizon (70 in this case). The time horizon
is the number of future and past observations considered in
the data matrix. Typically, the longer the time horizon, the



Auton Robot (2011) 30: 3–23 15

Fig. 7 (Color online) Result of tracking in latent space using GP-UKF
(black). The original training latent states (blue)

smoother the model. However, the recovered latent space is
still not very smooth, owing to the linear nature of the model.
The main advantage of N4SID is the relative simplicity of
the linear dynamics and observation models. Filtering can
be done very efficiently using a Kalman filter derived from
the N4SID model. Running GPBF-LEARN latent space op-
timization on the data initialized with N4SID gives us the
blue graph shown in the same figure. GPBF-LEARN takes
advantage of its underlying non-linear GP model to recover
a smooth latent space. The remaining roughness indicates
the abruptness of the control inputs and is a desired feature.
Note that we would not expect all cycles through the track
to be mapped exactly on top of each other, since the slot-
car has very different observations depending on its velocity
at that track position. The encoding or meaning of the dif-
ferent dimensions of the state space may not be necessarily
obvious.

5.2.2 Tracking in latent states

We now show the ability to track in the learned latent space.
This is done by tracking with a GP-UKF extracted from
the optimized training data. The training data consists of
approximately 1400 data points. We test by filtering on a
previously unseen dataset of approximately the same size.
Figure 7 shows GP-UKF tracking within the latent space.
The tracking trajectory is indicated in black with the train-
ing latent data in blue. The tracking in latent space is not
as smooth as the training data because of the observation
corrections. However, the tracking trajectory generally does
stay within the manifold described by the training data.

We now perform a more thorough comparison of the pre-
dictive power of the GPBF-LEARN and N4SID models. To
do this, N4SID and GPBF-LEARN models are learned us-
ing the previous training data. We compare the performance

Table 3 The Kalman filter algorithm used for evaluating N4SID per-
formance

Algorithm Kalman Filter (xt−1,Σt−1, zt , ut ):

1: x̄t = Axt−1 + But

2: Σ̄t = AΣt−1AT + Q

3: ẑt = Cx̄t

4: St = CΣ̄t C + R

5: xt = x̄t + K(zt − ẑt )

6: Σt = (I − KC)Σ̄t

7: return xt ,Σt ,ẑt ,St

Table 4 Observation prediction quality

Method RMS accel (m/s2) RMS gyros (deg/s) MLL

Mean 8.56 ± 0.23 239.01 ± 6.94 N/A

N4SID 7.53 ± 0.20 194.94 ± 4.86 1.54 ± 0.19

GPBFL 6.87 ± 0.19 157.75 ± 4.63 3.20 ± 0.22

of filtering based on N4SID and GPBF-LEARN using the
same previous test data. For N4SID, the filter used is a stan-
dard linear Kalman filter which is described in Table 3.

The temporary variables x̄t and Σ̄t are the predicted state
mean and covariance based only on the dynamics model.
The predicted observation mean and covariance, ẑt and S
can be computed from these temporary predictions. xt and
Σt are the final predicted state mean and covariance after
the observation correction Steps 5 and 6. The matrices A,
B, C, and K are given by the N4SID algorithm. The noise
covariances R and Q can be calculated from the observation
data and the reconstructed states XN4SID, respectively.

Since these two techniques exist within two different la-
tent spaces, comparing the filters’ ability to track within
their respective latent spaces would not be informative. The
only true point of comparison is the ability to predict ob-
servations. The root mean square (RMS) error between the
predicted and actual observation is one natural measure of
performance. The mean log-likelihood (MLL) of the actual
observation given the predicted observation and predicted
observation covariance is another measure.

We run the N4SID-derived and GPBF-LEARN-derived
filter on the test data. The RMS observation error and mean
log-likelihood are computed after allowing for 100 steps of
filter “burn-in”. The results are shown in Table 4 and clearly
reflect the superior performance of the GPBF-LEARN filter.
The row “Mean” represents using the mean of the training
observations as the prediction at every time step. This is the
baseline for worst-case performance. “Mean” does not have
an entry for MLL, since there is no observation prediction
covariance to compute the log-likelihood.

In addition to instantaneous observation predictions, the
filter framework can be used to make observation predic-



16 Auton Robot (2011) 30: 3–23

Fig. 8 (Color online) Mean log-likelihood and RMS error of
GPBF-LEARN and N4SID for different number of steps of lookahead.
To note, 95% error bars are indicated by the dashed lines

tions further into the future. That is, the filter can be run
up to a certain point, then future predictions can be made
by running the filter without observation corrections. For
the linear Kalman filter, that means not performing Steps
5 and 6 of the Kalman filter algorithm and taking x̄t and Σ̄t

as the new state mean and covariance. Observation correc-
tions can be removed from GP-UKF in a similar fashion.
RMS error and MLL can be computed as before for differ-
ent number of steps of lookahead, that is, different number
of steps without observation correction. The results are cap-
tured in Fig. 8. Note that RMS error of “Mean” does not
change since neither the mean training observation or the
test observations change with increased lookahead. Perfor-
mance degrades as the filters predict further into the future.
For GPBF-LEARN, it is a result of both an increase in pre-
diction error as well as increase in observation prediction
covariance. GPBF-LEARN still has relatively good perfor-
mance even up to 50 steps of lookahead which represents
more than halfway around the track.

5.2.3 Comparison with kernel CCA method

In the last experiment of this section, we compare GPBF-
LEARN to a state-of-the-art non-linear subspace identifi-
cation method. The method is the kernel canonical corre-
lation analysis subspace identification algorithm described

Fig. 9 (Color online) Output after filtering using GPBF-LEARN, the
kernel CCA subspace identification method, and N4SID

in Kawahara et al. (2007), herein abbreviated as KCCA-
SUBID. The idea underlying the CCA approach to system
identification is to use the canonical correlations between
past and future observations to find a low dimensional latent
state X. This latent state preserves the maximum amount of
information from past observations and inputs necessary to
predict future observations. This is similar in spirit to how
a low dimension representation of data can be reconstructed
using PCA. The method under consideration replaces CCA
with kernel CCA, thereby generalizing the approach to non-
linear system identification.

The system we wish to model is the small problem pre-
sented in Kawahara et al. (2007) and Verdult et al. (2004). It
is a non-linear system with system dynamics of the form:

ẋt = yt − 0.1 cos(xt )(5xt − 4x3
t + x5

t ) − 0.5 cos(xt )ut ,

ẏt = −65xt + 50x3
t − 15x5

t − yt − 100ut .

The output of this system is y and the input u is a zero-
order-hold white noise evenly distributed between −0.5 and
0.5. The system states are found by solving the ODE us-
ing the standard Runge-Kutta method with a step size of
0.05. N4SID, KCCASUBID, and GPBF-LEARN are eval-
uated on this data. We use one dimensional latent states for
all methods, since higher order models result in virtually no
error, even for the N4SID model. Both N4SID and GPBF-
LEARN use 600 data points for training, and 100 points for
testing. KCCASUBID requires tuning of multiple parame-
ters. Therefore, 500 points are used for training, 100 points
for validation, and 100 points for testing. The parameters are
tuned to minimize the squared error on the validation data.
These parameters are then used for testing.

The results of filtering using models built with these
three methods are shown in Fig. 9. N4SID and KCCA-



Auton Robot (2011) 30: 3–23 17

SUBID both run a linear Kalman filter. KCCASUBID op-
erates on kernel matrices, thereby enabling non-linear per-
formance. The GPBF-LEARN method is evaluated with a
GP-UKF.

The RMS errors for this plot are 8.08, 6.42, and 2.09 for
N4SID, KCCASUBID, and GPBF-LEARN, respectively.
This result for KCCASUBID is in line with those previously
published (Kawahara et al. 2007). Although the kernel CCA
subspace identification is non-linear due to the kernel trick,
it does not seem to be able to match the accuracy of GPBF-
LEARN for the same number of latent dimensions.

Effort was made to compare KCCASUBID to GPBF-
LEARN in the slotcar and arm experimental data sets, but we
encountered difficulty in extending the work to multiple di-
mensions. This requires the tuning of more parameters, and
we were unable to find a stable solution. Although faster
than GPBF-LEARN, KCCASUBID is still a kernel method,
and thus has similar issues with time and space inefficien-
cies.

5.3 Unique features of GPBF-LEARN

In this section, we explore some interesting problems that
can be solved within the GPBF-LEARN framework. The
first is obtaining time alignment using a 1D latent dimen-
sion. We then show how trajectory replay can be accom-
plished by building GP control models after learning the la-
tent states. This is demonstrated with both the simple and
advanced control model described in Sect. 4.6.

5.3.1 Time alignment in 1D

A unique aspect of GPBF-LEARN is the ability to learn
a proper alignment of the data where each portion of the
true state corresponds to a similar latent state. This experi-
ment shows how explicit time alignment of the data can be
achieved for the slotcar system. For this experiment, each
lap around the track is treated as a separate episode. Ide-
ally, after optimization, the recovered latent states would
have for every episode, the same point in latent space map-
ping to a specific point on the track. The monotonic increase
in the 1D latent space is then a necessity since we do not
want a point in latent space to represent multiple points on
the 1D track. We use the GPBF-LEARN formulation de-
scribed in Sect. 4.5 which enforces monotonically increas-
ing latent states. The GPBF-LEARN optimization problem
is initialized by assuming constant velocity from the start to
the end. That is, if the episode takes T time steps, the car
is assumed to move 1/T units in the 1D latent space per
time step. As indicated by (21), every episode starts at latent
state 0.

The overall alignment of the data can be tested by plot-
ting recovered latent positions for different episodes against

Fig. 10 (Color online) Plot showing alignment of training data in 1D
latent space vs. track position. Red lines show initial alignment. Blue
indicates final alignment after GPBF-LEARN optimization. Note that
multiple blue lines are shown with high overlap, indicating good align-
ment

the 1D ground truth data. Figure 10 shows the mapping be-
tween latent states and the ground truth car position of each
episode. The initial alignment is shown in red with each line
representing a different episode. One can see from the ini-
tialization data that the same 1D latent state maps to very
different positions on the track, which is due to the fact
that the car did not move at identical velocities in the dif-
ferent episodes. The maximum deviation occurs at latent
state 0.737 with 254.8 cm deviation. That means, using the
initial alignment, one could be up to 254.8 cm off if one
used the 1D latent state as a surrogate for track position. On
the other hand, after GPBF-LEARN optimization, the align-
ment is much tighter. The deviation now is only 47.0 cm or
about 3.3% of the track length. GPBF-LEARN gives excel-
lent alignment of the data.

5.3.2 Simple trajectory replay

This experiment shows how an imitation control model can
be learned based on previous demonstrations. We first show
how a naive method for control replay fails. This naive re-
play method simply plays back the human demonstration
based on the timestamps of the controls. The results are
shown in Fig. 11. As can be seen, due to system noise, the
controls slowly get out of sync with the original demonstra-
tion causing a crash around timestep 8,800. This crash oc-
curs based on the mis-alignment between control and track
position, resulting in too high control values before a turn.
This test shows that simple replay is not robust enough for
this system.

We demonstrate the techniques described in Sect. 4.6. At
a high level, GP models are learned with GPBF-LEARN to
track the robot in a latent space. A mapping between the
latent space and the control supplied to the robot can be
learned. Finally, to replay the control, the robot is tracked



18 Auton Robot (2011) 30: 3–23

Fig. 11 (Color online) Plot showing time-based replay of human demonstration. The replay controls move out of sync with the original demon-
stration until the car eventually crashes

Fig. 12 (Color online) Plot showing typical replay given a number of
human demonstrations. The replay controls are much smoother due to
the smoothing nature of Gaussian process control model

in the latent space while feeding back the controls learned
using the control mapping.

The training data consist of a demonstration of the slot-
car by an expert over 16 laps with about 1,400 data points.
In order to gain realtime tracking performance the GP-UKF
algorithm was reimplemented in C++. The GP-UKF algo-
rithm runs at 40±5 ms on a quad-core dual-processor Intel®
Xeon computer running at 3 GHz.

A 3D latent space is used as in the previous experiment
from Sect. 5.2. After learning the 3D latent space, we learn
a mapping between latent states and controls. This map-
ping is learned with a Gaussian process with training data
〈X,U〉. Alternatively, a more complex control model could
be learned with training data 〈(X,X′),U〉, but the first for-
mulation gave better performance in tests.

Figure 12 shows the typical control for one lap of the tra-
jectory replay. The controls are plotted against the ground
truth track position, and shows both the human demonstra-
tions, and the GPBF-LEARN replay. The replay model gives
much smoother control inputs than the demonstrations. This
is a result of the smoothing nature of Gaussian process pre-
diction. Essentially, the GP control model blends different

demonstration inputs to obtain the final control output. As a
result, the trajectory replay is more consistent than the hu-
man demonstrations. One way to see this is by the lap times
for replay vs human control. The mean laptimes and 95%
confidence for human control is 7.10 ± 0.24 sec while for
replay it is 7.22 ± 0.17 sec. This shows that the replay gives
similar results to human demonstration, but with more con-
sistency (less variance).

In this experiment, the human demonstrator has unique
advantages and insight into controlling the system. He can
see the track, understand the layout and the dynamics of the
car, anticipate turns, etc. The fact that the GPBF-LEARN

replay model can control the car as well as the human expert
while only having access to very noisy observation data is
quite exciting.

5.3.3 Advanced trajectory replay

The Barrett WAM™ arm is a 4-DOF highly precise robotic
arm with known kinematics. The controls we use for this
system are changes in joint angles between time steps. The
observations are end effector positions in 3D space

U = [�q1,�q2, . . . ,�qT ], (27)

Z = [e1, e2, . . . , eT ], (28)

where qt is the 4D vector of joint angles at time t and et is
the 3D vector of the end effector position. We are interested
in performing trajectory replay for this system. However, in
order to make this an interesting problem, one must assume
imprecise control inputs and unknown kinematics. If kine-
matics are known, then trajectory replay simplifies to the
solving for the inverse kinematics of the system. Likewise,
if control inputs are highly precise, then trajectory replay
can be accomplished with a simple time based replay of the
controls.

Figure 13 provides an illustration of the degrees of free-
dom of the arm. The first DOF is at the base which rotates
on the z-axis, the second controls the elevation of the first
shaft. The third DOF consists of a twist of that shaft. The
last is the “elbow” joint.



Auton Robot (2011) 30: 3–23 19

Fig. 13 Illustration showing the
degrees of freedom of the
robotic arm

We assume that delta joint angles are accurate within
10%. That is,

�q̂t = �qt + ε, (29)

εi ∼ N (0, 1
10 |�qi

t |), (30)

where qt and q̂t denotes the recorded and actual joint an-
gles at time t , respectively. The � operator describes the
change in angles such that �qt = qt − qt−1. The joint in-
dex is i. This setup describes a robotic arm with fairly low
cost components which lacks proper encoders and which has
unknown or difficult-to-obtain kinematics. The structure of
this system is unknown to GPBF-LEARN, which has access
only to the recored inputs and observations from the exam-
ple trajectory. In our test, we generate observations using
the forward kinematics of the system. GPBF-LEARN is not
given any prior knowledge of this mapping.

These arm experiments focus on the replay aspects of the
GPBFL algorithm as described in Sect. 4.6. The purpose of
these experiments is to demonstrate trajectory replay in a
more complex system than the one presented earlier for the
slotcar. The task is to replay a circular trajectory traced out
by the arm’s end effector in the presence of substantial con-
trol noise.

The example trajectory is given by a human demonstrator
manually manipulating the WAM™. The trajectory of the
end effector from this example is shown in Fig. 14. Overall,
1,000 training points are collected over roughly 50 loops at
a sample rate of 10 Hz. Note that the trajectory is not com-
pletely circular due to the mechanics of moving the physical
arm. Because of the encoder noise, direct replay of the tra-
jectory is not a viable strategy. The end effector trajectory
tends to drift as shown in Fig. 15.

We seek to learn a 3D latent representation for this sys-
tem using GPBF-LEARN. Initialization is performed using

Fig. 14 The end effector position from the demonstration trajectory

Fig. 15 (Color online) Top down view of the end effector trajectory
from simple time based replay of the recorded control inputs. The tra-
jectory is affected by noise in the control inputs

N4SID with a 20 step lookahead. This is roughly equiva-
lent to the time it takes to describe a single loop with the
end effector. GP-BayesFilter models are built using the op-
timized latent states. First we test replay using the simple
control model where all controls are used as training data as
in (26). The control model maps latent states to controls. We
then run GP-UKF with an initial pose and control input. The
control model predicts controls which are fed back into the
system. Observations are generated from the controls given.
The system is run for 1,000 timesteps, describing the tra-
jectory shown in Fig. 16. The control model is unable to
compensate for the drift, resulting in a failed replay.

We now describe control replay using the advanced con-
trol model which uses only a subset of the training data.
First, however, we would like to validate the use of GP un-
certainty as a measurement of drift. To do this, simulated
data of the arm moving in a circular motion is synthesized.
This simulated trajectory has much the same shape and ap-



20 Auton Robot (2011) 30: 3–23

Fig. 16 (Color online) The end effector trajectory using the simple
control model results in replay failure

Fig. 17 (Color online) The deviation of the end effector from a true
circle for multiple loops. The highlighted segments have corresponding
controls which lower GP uncertainty. The downward trend indicates
the selected controls will tend to reduce drift

pearance as the human demonstration. The only difference
is that we know exactly how far the end effector is drifting
from the desired true circular trajectory. That is, drift in this
case can be directly calculated. Figure 17 shows this devi-
ation of the end effector for 10 loops. The highlighted tra-
jectory segments are ones where the corresponding control
lowers GP uncertainty. In general, these are also the con-
trols which push the end effector closer to the circular path.
Using these controls will result in a controller which will re-
duce drift. This trend is less certain for areas near the center
of the training manifold (low drift) due to more training data
in that area complicating the calculation of uncertainty.

We now evaluate the system with the new control model.
The algorithm from Table 2 is used to find the new training
data from which we build a new control model. Repeating

Fig. 18 (Color online) The end effector trajectory using the advanced
control model for multiple loops. This model corrects for drift in the
control inputs

the previous replay experiment with the new model results
in the trajectory shown in Fig. 18. No drift is evident in the
replay. Any deviations from the trajectory are caused by the
control noise in the system.

These experiments demonstrate a powerful technique for
trajectory replay. It does not require extensive knowledge of
the system, in particular, no modeling of control inputs is
needed. This technique can replay trajectories even in the
presence of observational aliasing and control noise.

6 Conclusion

This paper introduced GPBF-LEARN, a framework for
learning GP-BayesFilters from only weakly labeled training
data. We thereby overcome a key limitation of GP-Bayes-
Filters, which previously required the availability of accu-
rate ground truth states for learning Gaussian process pre-
diction and observation models (Ko and Fox 2008).

GPBF-LEARN builds on recently introduced Gaussian
Process Latent Variable Models (GPLVMs) and their exten-
sions to dynamical systems (Lawrence 2005; Wang et al.
2008). GPBF-LEARN improves on existing GPLVM sys-
tems in various ways. First, it can incorporate weak labels
on the latent states. It is thereby able to learn a latent space
that is consistent with a desired physical space, as demon-
strated in the context of our slotcar track. Second, GPBF-
LEARN can incorporate control information into the dynam-
ics model used for the latent space. Obviously, this ability to
use control information is extremely important for complex
dynamical systems. Third, we introduce N4SID as a pow-
erful initialization method for GPLVMs. In our slotcar test-
bed we found that N4SID enabled GPBF-LEARN to learn
a model even when the initialization via PCA failed. Our



Auton Robot (2011) 30: 3–23 21

experiments also show that GPBF-LEARN learns far more
consistent models than N4SID alone.

Additional experiments on fully unlabeled data show that
GPBF-LEARN can perform nonlinear system identification
and data alignment. We demonstrate this ability in the con-
text of tracking a slotcar solely based on control and IMU
information. Here, our approach is able to learn a consis-
tent 3D latent space solely based on the control and obser-
vation sequence. This application is challenging, since the
observations are not very informative and show a high rate
of aliasing. Furthermore, due to the constraints of the track,
the dynamics and observation model of the car strongly de-
pend on the layout of the track. Thus, GPBF-LEARN has
to jointly recover a model for the car and the track. Addi-
tionally, GPBF-LEARN is shown to compare favorable to a
state-of-the-art subspace identification algorithm on a sam-
ple non-linear system.

Finally, our experiments has shown some unique aspects
of GPBF-LEARN by showing time alignment in 1D latent
space, and also demonstration replay on two robotics sys-
tems. Trajectory replay using GPBF-LEARN, in particular,
is a powerful technique that requires little prior knowledge
of the system and operates with dynamics and observation
noise.

Possible extensions of this work include the incorpora-
tion of parametric models to improve learning and general-
ization. Finally, the latent model underlying GPBF-LEARN

is by no means restricted to GP-BayesFilters. It can be
applied to improve learning quality whenever there is no
accurate ground truth data available for training Gaussian
processes.

Acknowledgements We would like to thank Michael Chung and
Deepak Verma for their help in running the slotcar experiments. We
want to thank Louis LeGrand for his support of the Intel InertiaDot
IMU. Acknowledgment goes out to Yoshinobu Kawahara for provid-
ing sample code for KCCA subspace identification method. This work
was supported in part by ONR MURI grants number N00014-07-1-
0749 and N00014-09-1-1052, and by the NSF under contract numbers
IIS-0812671 and BCS-0508002.

Appendix: N4SID

N4SID is a system identification algorithm that was devel-
oped Peter Van Overschee and Bart De Moor in 1994. It can
be used to identify the parameters and latent state of a linear
dynamical system assuming the following system model:

xt+1 = Axt + But + ρx, (31)

yt = Cxt + ρy, (32)

where ρx and ρy represent Gaussian noise.

Table 5 The N4SID algorithm

Algorithm N4SID (Y,U,n, i):

1: Construct Hankel matrices
2: Perform oblique projection
3: Eigendecompose projection
4: Recover latent states X

5: Find least squared solution for system matrices
6: Calculate covariance matrices
7: return system matrices A,B,C,

covariance matrices R,Q, and latent states X

The latent states are derived via operations on the block
Hankel matrices of the future outputs, future inputs, and past
input/outputs, respectively:

Yf =
⎡

⎣
yi+1 yi+2 . . . yi+j

. . . . . . . . . . . .

y2i−1 y2i . . . y2i+j−2

⎤

⎦ , (33)

Uf =
⎡

⎣
ui+1 ui+2 . . . ui+j

. . . . . . . . . . . .

u2i−1 u2i . . . u2i+j−2

⎤

⎦ , (34)

Wp =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u0 u1 . . . uj−1
...

...
...

...

ui−1 ui . . . ui+j−2

y0 y1 . . . yj−1
...

...
...

...

yi−1 yi . . . yi+j−2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (35)

where i is the number of timesteps into the past and future
considered by the algorithm and j is the total number of
timesteps minus 2i.

At a very high level, the intuition behind this algorithm
is to project the future outputs Yf along future inputs Uf

and onto the past inputs and outputs Wp (this is called an
oblique projection (Meyer 2000)). This projection finds the
best prediction of future outputs based on inputs and past
outputs. A set of approximate latent states is then found by
a spectral decomposition of the resulting projection. Finally
the parameters of the linear dynamical system are recovered
by regression using the latent states and Hankel matrices.

The steps of the N4SID algorithm are detailed in Table 5,
where n is the desired dimensionality of the latent states.
The system parameters returned by N4SID are unbiased and
can be used for state estimation within the context of a linear
Kalman filter.

References

Abbeel, P., Dolgov, D., Ng, A., & Thrun, S. (2008). Apprenticeship
learning for motion planning with application to parking lot nav-



22 Auton Robot (2011) 30: 3–23

igation. In Proc. of the IEEE/RSJ international conference on in-
telligent robots and systems, IROS.

Boots, B., Siddiqi, S., & Gordon, G. (2009). Closing the learning-
planning loop with predictive state representations. http://arxiv.
org/abs/0912.2385

Bowling, M., Wilkinson, D., Ghodsi, A., & Milstein, A. (2005). Sub-
jective localization with action respecting embedding. In Proc. of
the international symposium of robotics research, ISRR.

Coates, A., Abbeel, P., & Ng, A. (2008). Learning for control from
multiple demonstrations. In Proc. of the international conference
on machine learning, ICML.

Deisenroth, M., Huber, M., & Hanebeck, U. (2009). Analytic moment-
based Gaussian process filtering. In Proc. of the international con-
ference on machine learning, ICML (pp. 225–232). New York:
ACM.

Ekvall, S., & Kragic, D. (2004). Interactive grasp learning based on hu-
man demonstration. In Proc. of the IEEE international conference
on robotics & automation, ICRA (pp. 3519–3524).

Engel, Y., Szabo, P., & Volkinshtein, D. (2006). Learning to control
an octopus arm with Gaussian process temporal difference meth-
ods. In Advances in neural information processing systems, NIPS
(Vol. 18).

Ferris, B., Hähnel, D., & Fox, D. (2006). Gaussian processes for signal
strength-based location estimation. In Proc. of robotics: science
and systems, RSS.

Ferris, B., Fox, D., & Lawrence, N. (2007). WiFi-SLAM using
Gaussian process latent variable models. In Proc. of the interna-
tional joint conference on artificial intelligence, IJCAI.

Grimes, D., & Rao, R. (2008). Learning nonparametric policies by im-
itation. In Proc. of the IEEE/RSJ international conference on in-
telligent robots and systems, IROS (pp. 2022–2028).

Hsu, E., Pulli, K., & Popović, J. (2005). Style translation for human
motion. ACM Transactions on Graphics, 24, 1082–1089.

Hsu, E., da Silva, M., & Popovic, J. (2007). Guided time warp-
ing for motion editing. In Symposium on computer animation
’07 proceedings (pp. 45–52). Aire-la-Ville: Eurographics Associ-
ation.

Kawahara, Y., Yairi, T., & Machida, K. (2007). A kernel subspace
method by stochastic realization for learning nonlinear dynamical
systems. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances
in neural information processing systems (Vol. 19, pp. 665–672).
Cambridge: MIT Press.

Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most
likely heteroscedastic Gaussian process regression. In Proc. of the
international conference on machine learning, ICML.

Ko, J., & Fox, D. (2008). GP-BayesFilters: Bayesian filtering using
Gaussian process prediction and observation models. In Proc. of
the IEEE/RSJ international conference on intelligent robots and
systems, IROS.

Ko, J., & Fox, D. (2009). Learning GP-Bayesfilters via Gaussian
process latent variable models. In Proc. of robotics: science and
systems, RSS.

Ko, J., Klein, D., Fox, D., & Hähnel, D. (2007). Gaussian processes
and reinforcement learning for identification and control of an au-
tonomous blimp. In Proc. of the IEEE international conference on
robotics & automation, ICRA.

Ko, J., Klein, D., Fox, D., & Hähnel, D. (2007). GP-UKF: Unscented
Kalman filters with Gaussian process prediction and observation
models. In Proc. of the IEEE/RSJ international conference on in-
telligent robots and systems, IROS.

Lawrence, N. (2003). Gaussian process latent variable models for vi-
sualization of high dimensional data. In Advances in neural infor-
mation processing systems, NIPS.

Lawrence, N. (2005). Probabilistic non-linear principal component
analysis with Gaussian process latent variable models. Journal of
Machine Learning Research, 6, 1783–1816.

Lawrence, N., & Moore, A. J. (2007). Hierarchical Gaussian process
latent variable models. In Proc. of the international conference on
machine learning, ICML.

Lawrence, N., & Quiñonero Candela, J. (2006). Local distance preser-
vation in the GP-LVM through back constraints. In Proc. of the
international conference on machine learning, ICML.

Littman, M., Sutton, R., & Singh, S. (2001). Predictive representations
of state. In Advances in neural information processing systems,
NIPS (Vol. 14, pp. 1555–1561). Cambridge: MIT Press.

Ljung, L. (1987). System identification. New York: Prentice Hall.
Meyer, C. D. (Ed.) (2000). Matrix analysis and applied linear algebra.

Philadelphia: Society for Industrial and Applied Mathematics.
Nguyen-Tuong, D., Seeger, M., & Peters, J. (2008). Local Gaussian

process regression for real time online model learning and con-
trol. In Advances in neural information processing systems, NIPS
(Vol. 22).

Plagemann, C., Fox, D., & Burgard, W. (2007). Efficient failure de-
tection on mobile robots using Gaussian process proposals. In
Proc. of the international joint conference on artificial intelli-
gence, IJCAI.

Rabiner, L., Rosenberg, A., & Levinson, S. (1978). Considerations in
dynamic time warping algorithms for discrete word recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing,
26(6), 575–582.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel
machines. In Advances in neural information processing systems,
NIPS.

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for
machine learning. Cambridge: MIT Press.

Schmill, M., Oates, T., & Cohen, P. (1999). Learned models for con-
tinuous planning. In Proceedings of uncertainty 99: the 7th in-
ternational workshop on artificial intelligence and statistics (pp.
278–282). Los Altos: Kaufmann.

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon, B., Gloren-
nec, P., Hjalmarsson, H., & Juditsky, A. (1995). Nonlinear black-
box modeling in system identification: a unified overview. Auto-
matica, 31, 1691–1724.

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes us-
ing pseudo-inputs. In Advances in neural information processing
systems, NIPS (Vol. 18).

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cam-
bridge: MIT Press. ISBN 0-262-20162-3.

Urtasun, R., Fleet, D., & Fua, P. (2006). Gaussian process dynamical
models for 3D people tracking. In Proc. of the IEEE computer
society conference on computer vision and pattern recognition,
CVPR.

Van Overschee, P., & De Moor, B. (1996). Subspace identification
for linear systems: theory, implementation, applications. Norwell:
Kluwer Academic.

Verdult, V., Suykens, J., Boets, J., Goethals, I., De Moor, B., & Leu-
ven, K. (2004). Least squares support vector machines for kernel
in nonlinear state-space identification. In Proceedings of the 16th
international symposium on mathematical theory of networks and
systems, MTNS2004.

Wang, J., Fleet, D., & Hertzmann, A. (2008). Gaussian process dynam-
ical models for human motion. In IEEE transactions on pattern
analysis and machine intelligence, PAMI.

Zhou, F., & De la Torre, F. (2009). Canonical time warping for align-
ment of human behavior. In Advances in neural information
processing systems, NIPS.

http://arxiv.org/abs/0912.2385
http://arxiv.org/abs/0912.2385


Auton Robot (2011) 30: 3–23 23

Jonathan Ko is a graduate student
at the Department of Computer Sci-
ence at the University of Washing-
ton, Seattle, as a student of Prof. Di-
eter Fox. His main interest is in ma-
chine learning for robotic systems,
in particular, Gaussian processes for
modeling of dynamical systems. He
won the Sarcos Best Student Paper
Award in IROS 2007 for his paper
titled “GP-UKF: Unscented Kalman
Filters with Gaussian Process Pre-
diction and Observation Models”.

Dieter Fox is Associate Professor in
the Computer Science & Engineer-
ing Department at the University of
Washington, Seattle, and Director
of the Intel Labs Seattle. He ob-
tained his Ph.D. from the University
of Bonn, Germany. Before joining
UW, he spent two years as a post-
doctoral researcher at the CMU Ro-
bot Learning Lab. His research fo-
cuses on probabilistic state estima-
tion in robotics and activity recogni-
tion. Dr. Fox has published over 100
technical papers and is co-author of
the text book “Probabilistic Robot-

ics”. He was program co-chair of the Twenty-Third Conference on Ar-
tificial Intelligence (AAAI-08) and has been on the editorial board of
the Journal of Artificial Intelligence Research and the IEEE Transac-
tions on Robotics. He has received several awards for his research, in-
cluding an NSF CAREER award and best paper awards at robotics and
Artificial Intelligence conferences.


	Learning GP-BayesFilters via Gaussian process latent variable models
	Abstract
	Introduction
	Related work
	Preliminaries
	Gaussian process regression
	Gaussian process latent variable models
	GP-BayesFilters

	GPBF-Learn
	Weak labels
	GP dynamics models
	Optimization
	GPBF-Learn algorithm
	Time alignment
	Trajectory replay via GPBF-Learn

	Experiments
	Incorporating noisy and spare labels
	Noisy labels
	Sparse labels

	GPBF-Learn for system identification
	Learning the latent states
	Tracking in latent states
	Comparison with kernel CCA method

	Unique features of GPBF-Learn
	Time alignment in 1D
	Simple trajectory replay
	Advanced trajectory replay


	Conclusion
	Acknowledgements
	Appendix: N4SID
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


