
1

Gaussian Processes for Data-Efficient Learning
in Robotics and Control

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen

Abstract—Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven
learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement
learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real
systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning
approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or
specific knowledge about the underlying dynamics. In this article, we follow a different approach and speed up learning by extracting
more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system.
By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model
errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an
unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

Index Terms—Policy Search, Robotics, Control, Gaussian Processes, Bayesian Inference, Reinforcement Learning

F

1 INTRODUCTION

One of the main limitations of many current reinforce-
ment learning (RL) algorithms is that learning is pro-
hibitively slow, i.e., the required number of interactions
with the environment is impractically high. For example,
many RL approaches in problems with low-dimensional
state spaces and fairly benign dynamics require thou-
sands of trials to learn. This data inefficiency makes
learning in real control/robotic systems impractical and
prohibits RL approaches in more challenging scenarios.

Increasing the data efficiency in RL requires either
task-specific prior knowledge or extraction of more in-
formation from available data. In this article, we assume
that expert knowledge (e.g., in terms of expert demon-
strations [48], realistic simulators, or explicit differential
equations for the dynamics) is unavaiable. Instead, we
carefully model the observed dynamics using a general
flexible nonparametric approach.

Generally, model-based methods, i.e., methods which
learn an explicit dynamics model of the environment, are
more promising to efficiently extract valuable informa-
tion from available data [5] than model-free methods,
such as Q-learning [55] or TD-learning [52]. The main
reason why model-based methods are not widely used in
RL is that they can suffer severely from model errors, i.e.,
they inherently assume that the learned model resembles
the real environment sufficiently accurately [49], [48], [5].

• M. P. Deisenroth is with the Department of Computing, Imperial College
London, UK, and with the Department of Computer Science, TU Darm-
stadt, Germany.

• D. Fox is with the Department of Computer Science & Engineering,
University of Washington, USA.

• C. E. Rasmussen is with the Department of Engineering, University of
Cambridge, UK.

Model errors are especially an issue when only a few
samples and no informative prior knowledge about the
task are available. Fig. 1 illustrates how model errors
can affect learning. Given a small data set of observed
transitions (left), multiple transition functions plausibly
could have generated them (center). Choosing a single
deterministic model has severe consequences: Long-term
predictions often leave the range of the training data in
which case the predictions become essentially arbitrary.
However, the deterministic model claims them with full
confidence! By contrast, a probabilistic model places a
posterior distribution on plausible transition functions
(right) and expresses the level of uncertainty about the
model itself.

When learning models, considerable model uncer-
tainty is present, especially early on in learning. Thus,
we require probabilistic models to express this uncer-
tainty. Moreover, model uncertainty needs to be in-
corporated into planning and policy evaluation. Based
on these ideas, we propose PILCO (Probabilistic Infer-
ence for Learning Control), a model-based policy search
method [15], [16]. As a probabilistic model we use non-
parametric Gaussian processes (GPs) [47]. PILCO uses
computationally efficient deterministic approximate in-
ference for long-term predictions and policy evaluation.
Policy improvement is based on analytic policy gradi-
ents. Due to probabilistic modeling and inference PILCO
achieves unprecedented learning efficiency in continu-
ous state-action domains and, hence, is directly applica-
ble to complex mechanical systems, such as robots.

In this article, we provide a detailed overview of
the key ingredients of the PILCO learning framework.
In particular, we assess the quality of two different
approximate inference methods in the context of policy
search. Moreover, we give a concrete example of the

2

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−2

0

2

(x
t
, u

t
)

f(
x

t,
u

t)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−2

0

2

(x
t
, u

t
)

f(
x

t,
u

t)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−2

0

2

(x
t
, u

t
)

f(
x

t,
u

t)

Fig. 1. Effect of model errors. Left: Small data set of observed transitions from an idealized one-dimensional
representations of states and actions (xt, ut) to the next state xt+1 = f(xt, ut). Center: Multiple plausible deterministic
models. Right: Probabilistic model. The probabilistic model describes the uncertainty about the latent function by a
probability distribution on the set of all plausible transition functions. Predictions with deterministic models are claimed
with full confidence, while the probabilistic model expresses its predictive uncertainty by a probability distribution.

importance of Bayesian modeling and inference for fast
learning from scratch. We demonstrate that PILCO’s un-
precedented learning speed makes it directly applicable
to realistic control and robotic hardware platforms.

This article is organized as follows: After discussing
related work in Sec. 2, we describe the key ideas of
the PILCO learning framework in Sec. 3, i.e., the dynam-
ics model, policy evaluation, and gradient-based policy
improvement. In Sec. 4, we detail two approaches for
long-term predictions for policy evaluation. In Sec. 5, we
describe how the policy is represented and practically
implemented. A particular cost function and its natural
exploration/exploitation trade-off are discussed in Sec. 6.
Experimental results are provided in Sec. 7. In Sec. 8, we
discuss key properties, limitations, and extensions of the
PILCO framework before concluding in Sec. 9.

2 RELATED WORK

Controlling systems under parameter uncertainty has
been investigated for decades in robust and adaptive
control [35], [4]. Typically, a certainty equivalence prin-
ciple is applied, which treats estimates of the model pa-
rameters as if they were the true values [58]. Approaches
to designing adaptive controllers that explicitly take
uncertainty about the model parameters into account are
stochastic adaptive control [4] and dual control [23]. Dual
control aims to reduce parameter uncertainty by explicit
probing, which is closely related to the exploration prob-
lem in RL. Robust, adaptive, and dual control are most
often applied to linear systems [58]; nonlinear extensions
exist in special cases [22].

The specification of parametric models for a particular
control problem is often challenging and requires intri-
cate knowledge about the system. Sometimes, a rough
model estimate with uncertain parameters is sufficient to
solve challenging control problems. For instance, in [3],
this approach was applied together with locally optimal
controllers and temporal bias terms for handling model
errors. The key idea was to ground policy evaluations
using real-life trials, but not the approximate model.

All above-mentioned approaches to finding controllers
require more or less accurate parametric models. These
models are problem specific and have to be manually
specified, i.e., they are not suited for learning models

for a broad range of tasks. Nonparametric regression
methods, however, are promising to automatically ex-
tract the important features of the latent dynamics from
data. In [49], [7] locally weighted Bayesian regression
was used as a nonparametric method for learning these
models. To deal with model uncertainty, in [7] model
parameters were sampled from the parameter poste-
rior, which accounts for temporal correlation. In [49],
model uncertainty was treated as noise. The approach
to controller learning was based on stochastic dynamic
programming in discretized spaces, where the model
errors at each time step were assumed independent.

PILCO builds upon the idea of treating model uncer-
tainty as noise [49]. However, unlike [49], PILCO is a
policy search method and does not require state space
discretization. Instead closed-form Bayesian averaging
over infinitely many plausible dynamics models is pos-
sible by using nonparametric GPs.

Nonparametric GP dynamics models in RL were pre-
viously proposed in [46], [30], [17], where the GP train-
ing data were obtained from “motor babbling”. Unlike
PILCO, these approaches model global value functions to
derive policies, requiring accurate value function mod-
els. To reduce the effect of model errors in the value func-
tions, many data points are necessary as value functions
are often discontinuous, rendering value-function based
methods in high-dimensional state spaces often statis-
tically and computationally impractical. Therefore, [19],
[46], [57], [17] propose to learn GP value function models
to address the issue of model errors in the value function.
However, these methods can usually only be applied
to low-dimensional RL problems. As a policy search
method, PILCO does not require an explicit global value
function model but rather searches directly in policy
space. However, unlike value-function based methods,
PILCO is currently limited to episodic set-ups.

3 MODEL-BASED POLICY SEARCH

In this article, we consider dynamical systems

xt+1 = f(xt,ut) +w , w ∼ N (0,Σw) , (1)

with continuous-valued states x ∈ RD and controls
u ∈ RF , i.i.d. Gaussian system noise w, and unknown
transition dynamics f . The policy search objective is to

3

Algorithm 1 PILCO

1: init: Sample controller parameters θ ∼ N (0, I).
Apply random control signals and record data.

2: repeat
3: Learn probabilistic (GP) dynamics model, see

Sec. 3.1, using all data
4: repeat
5: Approximate inference for policy evaluation, see

Sec. 3.2: get Jπ(θ), Eq. (9)–(11)
6: Gradient-based policy improvement, see

Sec. 3.3: get dJπ(θ)/ dθ, Eq. (12)–(16)
7: Update parameters θ (e.g., CG or L-BFGS).
8: until convergence; return θ∗

9: Set π∗ ← π(θ∗)
10: Apply π∗ to system and record data
11: until task learned

find a policy/controller π : x 7→ π(x,θ) = u, which
minimizes the expected long-term cost

Jπ(θ) =
∑T

t=0
Ext

[c(xt)] , x0 ∼ N (µ0,Σ0) , (2)

of following π for T steps, where c(xt) is the cost of
being in state x at time t. We assume that π is a function
parametrized by θ.1

To find a policy π∗, which minimizes (2), PILCO
builds upon three components: 1) a probabilistic GP
dynamics model (Sec. 3.1), 2) deterministic approximate
inference for long-term predictions and policy evalu-
ation (Sec. 3.2), 3) analytic computation of the policy
gradients dJπ(θ)/ dθ for policy improvement (Sec. 3.3).
The GP model internally represents the dynamics in (1)
and is subsequently employed for long-term predictions
p(x1|π), . . . , p(xT |π), given a policy π. These predictions
are obtained through approximate inference and used
to evaluate the expected long-term cost Jπ(θ) in (2).
The policy π is improved based on gradient informa-
tion dJπ(θ)/ dθ. Alg. 1 summarizes the PILCO learning
framework.

3.1 Model Learning
PILCO’s probabilistic dynamics model is implemented
as a GP, where we use tuples (xt,ut) ∈ RD+F as
training inputs and differences ∆t = xt+1 − xt ∈ RD as
training targets.2 A GP is completely specified by a mean
function m(·) and a positive semidefinite covariance
function/kernel k(· , ·). In this paper, we consider a
prior mean function m ≡ 0 and the covariance function

k(x̃p, x̃q)=σ2
f exp

(
− 1

2 (x̃p−x̃q)>Λ−1(x̃p−x̃q)
)
+δpqσ

2
w

(3)

1. In our experiments in Sec. 7, we use a) nonlinear parametrizations
by means of RBF networks, where the parameters θ are the weights
and the features, or b) linear-affine parametrizations, where the pa-
rameters θ are the weight matrix and a bias term.

2. Using differences as training targets encodes an implicit prior
mean function m(x) = x. This means that when leaving the training
data, the GP predictions do not fall back to 0 but they remain constant.

with x̃ := [x>u>]>. We defined Λ := diag([`21, . . . , `
2
D+F])

in (3), which depends on the characteristic length-scales
`i, and σ2

f is the variance of the latent transition func-
tion f . Given n training inputs X̃ = [x̃1, . . . , x̃n] and
corresponding training targets y = [∆1, . . . ,∆n]>, the
posterior GP hyper-parameters (length-scales `i, signal
variance σ2

f , and noise variance σ2
w) are learned by

evidence maximization [34], [47].
The posterior GP is a one-step prediction model, and

the predicted successor state xt+1 is Gaussian distributed

p(xt+1|xt,ut) = N
(
xt+1 |µt+1,Σt+1

)
(4)

µt+1 = xt + Ef [∆t] , Σt+1 = varf [∆t] , (5)

where the mean and variance of the GP prediction are

Ef [∆t] = mf (x̃t) = k>∗ (K + σ2
wI)−1y = k>∗ β , (6)

varf [∆t] = k∗∗ − k>∗ (K + σ2
wI)−1k∗ , (7)

respectively, with k∗ := k(X̃, x̃t), k∗∗ := k(x̃t, x̃t), and
β := (K + σ2

wI)−1y, where K is the kernel matrix with
entries Kij = k(x̃i, x̃j).

For multivariate targets, we train conditionally inde-
pendent GPs for each target dimension, i.e., the GPs are
independent for given test inputs. For uncertain inputs,
the target dimensions covary [44], see also Sec. 4.

3.2 Policy Evaluation
To evaluate and minimize Jπ in (2) PILCO uses long-
term predictions of the state evolution. In particular, we
determine the marginal t-step-ahead predictive distri-
butions p(x1|π), . . . , p(xT |π) from the initial state dis-
tribution p(x0), t = 1, . . . , T . To obtain these long-term
predictions, we cascade one-step predictions, see (4)–(5),
which requires mapping uncertain test inputs through
the GP dynamics model. In the following, we assume
that these test inputs are Gaussian distributed. For nota-
tional convenience, we omit the explicit conditioning on
the policy π in the following and assume that episodes
start from x0 ∼ p(x0) = N

(
x0 |µ0,Σ0

)
.

For predicting xt+1 from p(xt), we require a joint
distribution p(x̃t) = p(xt,ut), see (1). The control ut =
π(xt,θ) is a function of the state, and we approximate
the desired joint distribution p(x̃t) = p(xt,ut) by a
Gaussian. Details are provided in Sec. 5.5.

From now on, we assume a joint Gaussian distribution
distribution p(x̃t) = N

(
x̃t | µ̃t, Σ̃t

)
at time t. To compute

p(∆t) =

∫∫
p(f(x̃t)|x̃t)p(x̃t) df dx̃t , (8)

we integrate out both the random variable x̃t and the
random function f , the latter one according to the pos-
terior GP distribution. Computing the exact predictive
distribution in (8) is analytically intractable as illustrated
in Fig. 2. Hence, we approximate p(∆t) by a Gaussian.

Assume the mean µ∆ and the covariance Σ∆ of the
predictive distribution p(∆t) are known3. Then, a Gaus-
sian approximation to the desired predictive distribution

3. We will detail their computations in Secs. 4.1–4.2.

4

∆
t

(xt, ut)

p
(x

t
,
u
t
)

p(∆t)

Ground truth
Moment matching
Linearization

Fig. 2. GP prediction at an uncertain input. The input
distribution p(xt,ut) is assumed Gaussian (lower left
panel). When propagating it through the GP model (upper
left panel), we obtain the shaded distribution p(∆t), upper
right panel. We approximate p(∆t) by a Gaussian (upper
right panel), which is computed by means of either mo-
ment matching (blue) or linearization of the posterior GP
mean (red). Using linearization for approximate inference
can lead to predictive distributions that are too tight.

p(xt+1) is given as N
(
xt+1 |µt+1,Σt+1

)
with

µt+1 = µt + µ∆ , (9)
Σt+1 = Σt + Σ∆ + cov[xt,∆t] + cov[∆t,xt] . (10)

Note that both µ∆ and Σ∆ are functions of the mean
µu and the covariance Σu of the control signal.

To evaluate the expected long-term cost Jπ in (2), it
remains to compute the expected values

Ext
[c(xt)] =

∫
c(xt)N

(
xt |µt,Σt

)
dxt , (11)

t = 1, . . . , T , of the cost c with respect to the predic-
tive state distributions. We choose the cost c such that
the integral in (11) and, thus, Jπ in (2) can computed
analytically. Examples of such cost functions include
polynomials and mixtures of Gaussians.

3.3 Analytic Gradients for Policy Improvement
To find policy parameters θ, which minimize Jπ(θ) in
(2), we use gradient information dJπ(θ)/ dθ. We require
that the expected cost in (11) is differentiable with respect
to the moments of the state distribution. Moreover, we
assume that the moments of the control distribution µu
and Σu can be computed analytically and are differen-
tiable with respect to the policy parameters θ.

In the following, we describe how to analytically com-
pute these gradients for a gradient-based policy search.
We obtain the gradient dJπ/ dθ by repeated application
of the chain-rule: First, we move the gradient into the
sum in (2), and with Et := Ext [c(xt)] we obtain

dJπ(θ)

dθ
=
∑T

t=1

dEt
dθ

,

dEt
dθ

=
dEt

dp(xt)

dp(xt)

dθ
:=

∂Et
∂µt

dµt
dθ

+
∂Et
∂Σt

dΣt

dθ
, (12)

where we used the shorthand notation dEt/ dp(xt) =
{dEt/ dµt,dEt/ dΣt} for taking the derivative of Et with
respect to both the mean and covariance of p(xt) =

N
(
xt |µt,Σt

)
. Second, as we will show in Sec. 4, the

predicted mean µt and covariance Σt depend on the
moments of p(xt−1) and the controller parameters θ. By
applying the chain-rule to (12), we obtain then

dp(xt)

dθ
=

∂p(xt)

∂p(xt−1)

dp(xt−1)

dθ
+
∂p(xt)

∂θ
, (13)

∂p(xt)

∂p(xt−1)
=

{
∂µt

∂p(xt−1)
,

∂Σt

∂p(xt−1)

}
. (14)

From here onward, we focus on dµt/ dθ, see (12), but
computing dΣt/ dθ in (12) is similar. For dµt/ dθ, we
compute the derivative

dµt
dθ

=
∂µt
∂µt−1

dµt−1
dθ

+
∂µt
∂Σt−1

dΣt−1

dθ
+
∂µt
∂θ

. (15)

Since dp(xt−1)/ dθ in (13) is known from time step t− 1
and ∂µt/∂p(xt−1) is computed by applying the chain-
rule to (17)–(20), we conclude with

∂µt
∂θ

=
∂µ∆

∂p(ut−1)

∂p(ut−1)

∂θ
=
∂µ∆

∂µu

∂µu
∂θ

+
∂µ∆

∂Σu

∂Σu

∂θ
. (16)

The partial derivatives of µu and Σu, i.e., the mean and
covariance of p(ut), used in (16) depend on the policy
representation. The individual partial derivatives in (12)–
(16) depend on the approximate inference method used
for propagating state distributions through time. For
example, with moment matching or linearization of the
posterior GP (see Sec. 4 for details) the desired gradients
can be computed analytically by repeated application of
the chain-rule. The Appendix derives the gradients for
the moment-matching approximation.

A gradient-based optimization method using estimates
of the gradient of Jπ(θ) such as finite differences or
more efficient sampling-based methods (see [43] for an
overview) requires many function evaluations, which
can be computationally expensive. However, since in
our case policy evaluation can be performed analytically,
we profit from analytic expressions for the gradients,
which allows for standard gradient-based non-convex
optimization methods, such as CG or BFGS, to determine
optimized policy parameters θ∗.

4 LONG-TERM PREDICTIONS

Long-term predictions p(x1), . . . , p(xT) for a given pol-
icy parametrization are essential for policy evaluation
and improvement as described in Secs. 3.2 and 3.3,
respectively. These long-term predictions are computed
iteratively: At each time step, PILCO approximates the
predictive state distribution p(xt+1) by a Gaussian, see
(9)–(10). For this approximation, we need to predict with
GPs when the input is given by a probability distribution
p(x̃t), see (8). In this section, we detail the computations
of the mean µ∆ and covariance matrix Σ∆ of the GP
predictive distribution, see (8), as well as the cross-
covariances cov[x̃t,∆t] = cov

[
[x>t ,u

>
t]>,∆t

]
, which are

required in (9)–(10). We present two approximations to

5

predicting with GPs at uncertain inputs: Moment match-
ing [15], [44] and linearization of the posterior GP mean
function [28]. While moment matching computes the first
two moments of the predictive distribution exactly, their
approximation by explicit linearization of the posterior
GP is computationally advantageous.

4.1 Moment Matching

Following the law of iterated expectations, for target
dimensions a = 1, . . . , D, we obtain the predictive mean

µa∆ = Ex̃t
[Efa [fa(x̃t)|x̃t]] = Ex̃t

[mfa(x̃t)]

=

∫
mfa(x̃t)N

(
x̃t | µ̃t, Σ̃t

)
dx̃t = β>a qa , (17)

βa = (Ka + σ2
wa

)−1ya , (18)

with qa = [qa1 , . . . , qan]>. The entries of qa ∈ Rn are
computed using standard results from multiplying and
integrating over Gaussians and are given by

qai =

∫
ka(x̃i, x̃t)N

(
x̃t | µ̃t, Σ̃t

)
dx̃t (19)

= σ2
fa |Σ̃tΛ

−1
a + I|− 1

2 exp
(
− 1

2ν
>
i (Σ̃t + Λa)−1νi

)
,

where we define

νi := (x̃i − µ̃t) (20)

as the difference between the training input x̃i and the
mean of the test input distribution p(xt,ut).

Computing the predictive covariance matrix Σ∆ ∈
RD×D requires us to distinguish between diagonal el-
ements σ2

aa and off-diagonal elements σ2
ab, a 6= b: Using

the law of total (co-)variance, we obtain for target di-
mensions a, b = 1, . . . , D

σ2
aa = Ex̃t

[
varf [∆a|x̃t]

]
+ Ef,x̃t [∆

2
a]− (µa∆)2 , (21)

σ2
ab = Ef,x̃t [∆a∆b]−µa∆µb∆ , a 6= b , (22)

respectively, where µa∆ is known from (17). The off-
diagonal terms σ2

ab do not contain the additional term
Ex̃t [covf [∆a,∆b|x̃t]] because of the conditional indepen-
dence assumption of the GP models: Different target
dimensions do not covary for given x̃t.

We start the computation of the covariance matrix with
the terms that are common to both the diagonal and the
off-diagonal entries: With p(x̃t) = N

(
x̃t | µ̃t, Σ̃t

)
and the

law of iterated expectations, we obtain

Ef,x̃t
[∆a∆b] = Ex̃t

[
Ef [∆a|x̃t]Ef [∆b|x̃t]

]
(6)
=

∫
ma
f (x̃t)m

b
f (x̃t)p(x̃t) dx̃t (23)

because of the conditional independence of ∆a and ∆b

given x̃t. Using the definition of the GP mean function
in (6), we obtain

Ef,x̃t
[∆a∆b] = β>aQβb , (24)

Q :=

∫
ka(x̃t, X̃)> kb(x̃t, X̃)p(x̃t) dx̃t . (25)

Using standard results from Gaussian multiplications
and integration, we obtain the entries Qij of Q ∈ Rn×n

Qij = |R|−
1
2 ka(x̃i, µ̃t)kb(x̃j , µ̃t) exp

(
1
2z
>
ijT
−1zij

)
(26)

where we define

R := Σ̃t(Λ
−1
a + Λ−1b) + I , T := Λ−1a + Λ−1b + Σ̃

−1
t ,

zij := Λ−1a νi + Λ−1b νj ,

with νi defined in (20). Hence, the off-diagonal entries of
Σ∆ are fully determined by (17)–(20), (22), and (24)–(26).

From (21), we see that the diagonal entries contain the
additional term

Ex̃t

[
varf [∆a|x̃t]

]
=σ2

fa − tr
(
(Ka+σ2

wa
I)−1Q

)
+ σ2

wa
(27)

with Q given in (26) and σ2
wa

being the system noise
variance of the ath target dimension. This term is the
expected variance of the function, see (7), under the
distribution p(x̃t).

To obtain the cross-covariances cov[xt,∆t] in (10), we
compute the cross-covariance cov[x̃t,∆t] between an
uncertain state-action pair x̃t ∼ N (µ̃t, Σ̃t) and the cor-
responding predicted state difference xt+1 − xt = ∆t ∼
N (µ∆,Σ∆). This cross-covariance is given by

cov[x̃t,∆t] = Ex̃t,f [x̃t∆
>
t]−µ̃tµ>∆ , (28)

where the components of µ∆ are given in (17), and µ̃t
is the known mean of the input distribution of the state-
action pair at time step t.

Using the law of iterated expectation, for each state
dimension a = 1, . . . , D, we compute Ex̃t,f [x̃t ∆a

t] as

Ex̃t,f [x̃t ∆a
t] = Ex̃t

[x̃tEf [∆a
t |x̃t]] =

∫
x̃tm

a
f (x̃t)p(x̃t) dx̃t

(6)
=

∫
x̃t

(n∑
i=1

βai k
a
f (x̃t, x̃i)

)
p(x̃t) dx̃t , (29)

where the (posterior) GP mean function mf (x̃t) was
represented as a finite kernel expansion. Note that x̃i
are the state-action pairs, which were used to train the
dynamics GP model. By pulling the constant βai out of
the integral and changing the order of summation and
integration, we obtain

Ex̃t,f [x̃t ∆a
t]

=

n∑
i=1

βai

∫
x̃t c1N (x̃t|x̃i,Λa)︸ ︷︷ ︸

=kaf (x̃t,x̃i)

N (x̃t|µ̃t, Σ̃t)︸ ︷︷ ︸
p(x̃t)

dx̃t , (30)

where we define c1 := σ2
fa

(2π)
D+F

2 |Λa|
1
2 with x̃ ∈

RD+F , such that kaf (x̃t, x̃i) = c1N
(
x̃t | x̃i,Λa

)
is an

unnormalized Gaussian probability distribution in x̃t,
where x̃i, i = 1, . . . , n, are the GP training inputs.
The product of the two Gaussians in (30) yields a new
(unnormalized) Gaussian c−12 N

(
x̃t |ψi,Ψ

)
with

c−12 = (2π)−
D+F

2 |Λa + Σ̃t|−
1
2

× exp
(
− 1

2 (x̃i − µ̃t)>(Λa + Σ̃t)
−1(x̃i − µ̃t)

)
,

Ψ = (Λ−1a + Σ̃
−1
t)−1 , ψi = Ψ(Λ−1a x̃i + Σ̃

−1
t µ̃t) .

6

By pulling all remaining variables, which are indepen-
dent of x̃t, out of the integral in (30), the integral
determines the expected value of the product of the two
Gaussians, ψi. Hence, we obtain

Ex̃t,f [x̃t ∆a
t]=

∑n

i=1
c1c
−1
2 βaiψi , a = 1, . . . , D ,

covx̃t,f [x̃t,∆
a
t]=

∑n

i=1
c1c
−1
2 βaiψi−µ̃tµa∆ , (31)

for all predictive dimensions a = 1, . . . , E. With c1c
−1
2 =

qai , see (19), and ψi = Σ̃t(Σ̃t+Λa)−1x̃i+Λ(Σ̃t+Λa)−1µ̃t
we simplify (31) and obtain

covx̃t,f [x̃t,∆
a
t] =

n∑
i=1

βaiqaiΣ̃t(Σ̃t+Λa)−1(x̃i−µ̃t) , (32)

a = 1, . . . , E. The desired covariance cov[xt,∆t] is a
D × E submatrix of the (D + F) × E cross-covariance
computed in to (32).

A visualization of the approximation of the predictive
distribution by means of exact moment matching is
given in Fig. 2.

4.2 Linearization of the Posterior GP Mean Function
An alternative way of approximating the predictive dis-
tribution p(∆t) by a Gaussian for x̃t ∼ N

(
x̃t | µ̃t, Σ̃t

)
is to linearize the posterior GP mean function. Fig. 2
visualizes the approximation by means of linearizing the
posterior GP mean function.

The predicted mean is obtained by evaluating the pos-
terior GP mean in (5) at the mean µ̃t of the input
distribution, i.e.,

µa∆ = Ef [fa(µ̃t)] = mfa(µ̃t) = β>a ka(X̃, µ̃t) , (33)

a = 1, . . . , E, where βa is given in (18).
To compute the GP predictive covariance matrix Σ∆,

we explicitly linearize the posterior GP mean function
around µ̃t. By applying standard results for mapping
Gaussian distributions through linear models, the pre-
dictive covariance is given by

Σ∆ = V Σ̃tV
> + Σw , (34)

V =
∂µ∆

∂µ̃t
= β>

∂k(X̃, µ̃t)

∂µ̃t
. (35)

In (34), Σw is a diagonal matrix whose entries are
the noise variances σ2

wa
plus the model uncertainties

varf [∆a
t |µ̃t] evaluated at µ̃t, see (7). This means, model

uncertainty no longer depends on the density of the data
points. Instead it is assumed to be constant. Note that the
moments computed in (33)–(34) are not exact.

The cross-covariance cov[x̃t,∆t] is given by Σ̃tV , where
V is defined in (35).

5 POLICY

In the following, we describe the desired properties of
the policy within the PILCO learning framework. First, to
compute the long-term predictions p(x1), . . . , p(xT) for

−5 0 5

−1

0

1

2

x

π̃
(x
)

(a) Preliminary policy π̃ as a func-
tion of the state.

−5 0 5

−1

0

1

2

x

π
(x
)

(b) Policy π = σ(π̃(x)) as a func-
tion of the state.

Fig. 3. Constraining the control signal. Panel (a) shows
an example of an unconstrained preliminary policy π̃ as a
function of the state x. Panel (b) shows the constrained
policy π(x) = σ(π̃(x)) as a function of the state x.

policy evaluation, the policy must allow us to compute
a distribution over controls p(u) = p(π(x)) for a given
(Gaussian) state distribution p(x). Second, in a realistic
real-world application, the amplitudes of the control
signals are bounded. Ideally, the learning system takes
these constraints explicitly into account. In the following,
we detail how PILCO implements these desiderata.

5.1 Predictive Distribution over Controls
During the long-term predictions, the states are given by
a probability distribution p(xt), t = 0, . . . , T . The prob-
ability distribution of the state xt induces a predictive
distribution p(ut) = p(π(xt)) over controls, even when
the policy is deterministic. We approximate the distribu-
tion over controls using moment matching, which is in
many interesting cases analytically tractable.

5.2 Constrained Control Signals
In practical applications, force or torque limits are
present and must be accounted for during plan-
ning. Suppose the control limits are such that u ∈
[−umax,umax]. Let us consider a preliminary policy π̃ with
an unconstrained amplitude. To account for the control
limits coherently during simulation, we squash the pre-
liminary policy π̃ through a bounded and differentiable
squashing function, which limits the amplitude of the
final policy π. As a squashing function, we use

σ(x) = 9
8 sin(x) + 1

8 sin(3x) ∈ [−1, 1] , (36)

which is the third-order Fourier series expansion of a
trapezoidal wave, normalized to the interval [−1, 1]. The
squashing function in (36) is computationally convenient
as we can analytically compute predictive moments for
Gaussian distributed states. Subsequently, we multiply
the squashed policy by umax and obtain the final policy

π(x) = umaxσ(π̃(x)) ∈ [−umax,umax] , (37)

an illustration of which is shown in Fig. 3. Although the
squashing function in (36) is periodic, it is almost always
used within a half wave if the preliminary policy π̃ is
initialized to produce function values that do not exceed
the domain of a single period. Therefore, the periodicity
does not matter in practice.

7

To compute a distribution over constrained control
signals, we execute the following steps:

p(xt) 7→ p(π̃(xt)) 7→ p(umaxσ(π̃(xt))) = p(ut) . (38)

First, we map the Gaussian state distribution p(xt)
through the preliminary (unconstrained) policy π̃. Thus,
we require a preliminary policy π̃ that allows for closed-
form computation of the moments of the distribution
over controls p(π̃(xt)). Second, we squash the approx-
imate Gaussian distribution p(π̃(x)) according to (37)
and compute exactly the mean and variance of p(π̃(x)).
Details are given in the Appendix. We approximate
p(π̃(x)) by a Gaussian with these moments, yielding the
distribution p(u) over controls in (38).

5.3 Representations of the Preliminary Policy
In the following, we present two representations of
the preliminary policy π̃, which allow for closed-form
computations of the mean and covariance of p(π̃(x))
when the state x is Gaussian distributed. We consider
both a linear and a nonlinear representations of π̃.

5.3.1 Linear Policy
The linear preliminary policy is given by

π̃(x∗) = Ax∗ + b , (39)

where A is a parameter matrix of weights and b is an
offset vector. In each control dimension d, the policy in
(39) is a linear combination of the states (the weights are
given by the dth row in A) plus an offset bd.

The predictive distribution p(π̃(x∗)) for a state distri-
bution x∗ ∼ N (µ∗,Σ∗) is an exact Gaussian with mean
and covariance

Ex∗ [π̃(x∗)] = Aµ∗ + b , covx∗ [π̃(x∗)] = AΣ∗A
> , (40)

respectively. A drawback of the linear policy is that it
is not flexible. However, a linear controller can often be
used for stabilization around an equilibrium.

5.3.2 Nonlinear Policy: Deterministic Gaussian Process
In the nonlinear case, we represent the preliminary
policy π̃ by

π̃(x∗)=

N∑
i=1

k(mi,x∗)(K + σ2
πI)−1t = k(M ,x∗)

>α , (41)

where x∗ is a test input, α = (K + 0.01I)−1t, where
t plays the role of a GP’s training targets. In (41),
M = [m1, . . . ,mN] are the centers of the (axis-aligned)
Gaussian basis functions

k(xp,xq) = exp
(
− 1

2 (xp − xq)>Λ−1(xp − xq)
)
. (42)

We call the policy representation in (41) a deterministic GP
with a fixed number of N basis functions. Here, “deter-
ministic” means that there is no uncertainty about the
underlying function, that is, varπ̃[π̃(x)] = 0. Therefore,
the deterministic GP is a degenerate model, which is

functionally equivalent to a regularized RBF network.
The deterministic GP is functionally equivalent to the
posterior GP mean function in (6), where we set the
signal variance to 1, see (42), and the noise variance to
0.01. As the preliminary policy will be squashed through
σ in (36) whose relevant support is the interval [−π2 ,

π
2],

a signal variance of 1 is about right. Setting additionally
the noise standard deviation to 0.1 corresponds to fixing
the signal-to-noise ratio of the policy to 10 and, hence,
the regularization.

For a Gaussian distributed state x∗ ∼ N (µ∗,Σ∗), the
predictive mean of π̃(x∗) as defined in (41) is given as

Ex∗ [π̃(x∗)] = α>a Ex∗ [k(M ,x∗)]

= α>a

∫
k(M ,x∗)p(x∗) dx∗ = α>a ra , (43)

where for i = 1, . . . , N and all policy dimensions a =
1, . . . , F

rai = |Σ∗Λ−1a + I|−
1
2

× exp(− 1
2 (µ∗ −mi)

>(Σ∗ + Λa)−1(µ∗ −mi)) .

The diagonal matrix Λa contains the squared length-
scales `i, i = 1, . . . , D. The predicted mean in (43) is
equivalent to the standard predicted GP mean in (17).

For a, b = 1, . . . , F , the entries of the predictive covari-
ance matrix are computed according to

covx∗ [π̃a(x∗), π̃b(x∗)]

= Ex∗ [π̃a(x∗)π̃b(x∗)]− Ex∗ [π̃a(x∗)]Ex∗ [π̃b(x∗)] ,

where Ex∗ [π̃{a,b}(x∗)] is given in (43). Hence, we focus
on the term Ex∗ [π̃a(x∗)π̃b(x∗)], which for a, b = 1, . . . , F
is given by

Ex∗ [π̃a(x∗)π̃b(x∗)] = α>a Ex∗ [ka(M ,x∗)kb(M ,x∗)
>]αb

= α>aQαb .

For i, j = 1, . . . , N , we compute the entries of Q as

Qij =

∫
ka(mi,x∗)kb(mj ,x∗)p(x∗) dx∗

= ka(mi,x∗)kb(mj ,x∗)|R|−
1
2 exp(z>ijT

−1zij) ,

R = Σ∗(Λ
−1
a + Λ−1b) + I , T = Λ−1a + Λ−1b + Σ−1∗ ,

zij = Λ−1a (µ∗ −mi) + Λ−1b (µ∗ −mj) .

Combining this result with (43) fully determines the
predictive covariance matrix of the preliminary policy.

Unlike the predictive covariance of a probabilistic GP,
see (21)–(22), the predictive covariance matrix of the de-
terministic GP does not comprise any model uncertainty
in its diagonal entries.

5.4 Policy Parameters
In the following, we describe the policy parameters for
both the linear and the nonlinear policy4.

4. For notational convenience, with a (non)linear policy we mean
the (non)linear preliminary policy π̃ mapped through the squashing
function σ and subsequently multiplied by umax.

8

Algorithm 2 Computing the Successor State Distribution
1: init: xt ∼ N (µt,Σt)
2: Control distribution p(ut) = p(umaxσ(π̃(xt,θ)))
3: Joint state-control distribution p(x̃t) = p(xt,ut)
4: Predictive GP distribution of change in state p(∆t)
5: Distribution of successor state p(xt+1)

5.4.1 Linear Policy
The linear policy in (39) possesses D+1 parameters per
control dimension: For control dimension d there are D
weights in the dth row of the matrix A. One additional
parameter originates from the offset parameter bd.

5.4.2 Nonlinear Policy
The parameters of the deterministic GP in (41) are the
locationsM of the centers (DN parameters), the (shared)
length-scales of the Gaussian basis functions (D length-
scale parameters per target dimension), and the N tar-
gets t per target dimension. In the case of multivariate
controls, the basis function centers M are shared.

5.5 Computing the Successor State Distribution
Alg. 2 summarizes the computational steps required to
compute the successor state distribution p(xt+1) from
p(xt). The computation of a distribution over controls
p(ut) from the state distribution p(xt) requires two steps:
First, for a Gaussian state distribution p(xt) at time t a
Gaussian approximation of the distribution p(π̃(xt)) of
the preliminary policy is computed analytically. Second,
the preliminary policy is squashed through σ and an
approximate Gaussian distribution of p(umaxσ(π̃(xt)))
is computed analytically in (38) using results from
the Appendix. Third, we analytically compute a Gaus-
sian approximation to the joint distribution p(xt,ut) =
p(xt, π(xt)). For this, we compute (a) a Gaussian approx-
imation to the joint distribution p(xt, π̃(xt)), which is
exact if π̃ is linear, and (b) an approximate fully joint
Gaussian distribution p(xt, π̃(xt),ut). We obtain cross-
covariance information between the state xt and the
control signal ut = umaxσ(π̃(xt)) via

cov[xt,ut]=cov[xt, π̃(xt)]cov[π̃(xt), π̃(xt)]
−1cov[π̃(xt),ut] ,

where we exploit the conditional independence of xt
and ut given π̃(xt). Then, we integrate π̃(xt) out to
obtain the desired joint distribution p(xt,ut). This leads
to an approximate Gaussian joint probability distribution
p(xt,ut) = p(xt, π(xt)) = p(x̃t). Fourth, with the approx-
imate Gaussian input distribution p(x̃t), the distribution
p(∆t) of the change in state is computed using the
results from Sec. 4. Finally, the mean and covariance of
a Gaussian approximation of the successor state distri-
bution p(xt+1) are given by (9) and (10), respectively.

All required computations can be performed analyti-
cally because of the choice of the Gaussian covariance
function for the GP dynamics model, see (3), the repre-
sentations of the preliminary policy π̃, see Sec. 5.3, and
the choice of the squashing function, see (36).

6 COST FUNCTION

In our learning set-up, we use a cost function that
solely penalizes the Euclidean distance d of the current
state to the target state. Using only distance penalties is
often sufficient to solve a task: Reaching a target xtarget
with high speed naturally leads to overshooting and,
thus, to high long-term costs. In particular, we use the
generalized binary saturating cost

c(x) = 1− exp
(
− 1

2σ2
c
d(x,xtarget)

2
)
∈ [0, 1] , (44)

which is locally quadratic but saturates at unity for large
deviations d from the desired target xtarget. In (44), the
geometric distance from the state x to the target state is
denoted by d, and the parameter σc controls the width
of the cost function.5

In classical control, typically a quadratic cost is as-
sumed. However, a quadratic cost tends to focus atten-
tion on the worst deviation from the target state along
a predicted trajectory. In the early stages of learning the
predictive uncertainty is large and, therefore, the policy
gradients, which are described in Sec. 3.3 become less
useful. Therefore, we use the saturating cost in (44) as a
default within the PILCO learning framework.

The immediate cost in (44) is an unnormalized Gaus-
sian with mean xtarget and variance σ2

c , subtracted from
unity. Therefore, the expected immediate cost can be
computed analytically according to

Ex[c(x)] =

∫
c(x)p(x) dx (45)

= 1−
∫

exp
(
− 1

2 (x− xtarget)
>T−1(x− xtarget)

)
p(x) dx ,

where T−1 is the precision matrix of the unnormalized
Gaussian in (45). If the state x has the same representa-
tion as the target vector, T−1 is a diagonal matrix with
entries either unity or zero, scaled by 1/σ2

c . Hence, for
x ∼ N (µ,Σ) we obtain the expected immediate cost

Ex[c(x)] = 1− |I + ΣT−1|−1/2

× exp(− 1
2 (µ− xtarget)

>S̃1(µ− xtarget)) , (46)

S̃1 := T−1(I + ΣT−1)−1 . (47)

The partial derivatives ∂
∂µt
Ext

[c(xt)],
∂
∂Σt

Ext
[c(xt)] of

the immediate cost with respect to the mean and the
covariance of the state distribution p(xt) = N (µt,Σt),
which are required to compute the policy gradients
analytically, are given by

∂Ext
[c(xt)]

∂µt
= −Ext

[c(xt)] (µt − xtarget)
>S̃1 , (48)

∂Ext
[c(xt)]

∂Σt
= 1

2Ext
[c(xt)] (49)

×
(
S̃1(µt − xtarget)(µt − xtarget)

> − I
)
S̃1 ,

respectively, where S̃1 is given in (47).

5. In the context of sensorimotor control, the saturating cost function
in (44) resembles the cost function in human reasoning as experimen-
tally validated by [31].

9

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

state

cost function

peaked state distribution
wide state distribution

(a) When the mean of the state
is far away from the target, un-
certain states (red, dashed-dotted)
are preferred to more certain states
with a more peaked distribution
(black, dashed). This leads to initial
exploration.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

state

cost function

peaked state distribution
wide state distribution

(b) When the mean of the state is
close to the target, peaked state
distributions (black, dashed) cause
less expected cost and, thus, are
preferable to more uncertain states
(red, dashed-dotted), leading to ex-
ploitation close to the target.

Fig. 4. Automatic exploration and exploitation with the
saturating cost function (blue, solid). The x-axes describe
the state space. The target state is the origin.

6.1 Exploration and Exploitation
The saturating cost function in (44) allows for a natural
exploration when the policy aims to minimize the ex-
pected long-term cost in (2). This property is illustrated
in Fig. 4 for a single time step where we assume a
Gaussian state distribution p(xt). If the mean of p(xt)
is far away from the target xtarget, a wide state distribution
is more likely to have substantial tails in some low-
cost region than a more peaked distribution as shown in
Fig. 4(a). In the early stages of learning, the predictive
state uncertainty is largely due to propagating model
uncertainties forward. If we predict a state distribution
in a high-cost region, the saturating cost then leads to
automatic exploration by favoring uncertain states, i.e.,
states in regions far from the target with a poor dynamics
model. When visiting these regions during interaction
with the physical system, subsequent model learning
reduces the model uncertainty locally. In the subsequent
policy evaluation, PILCO will predict a tighter state dis-
tribution in the situations described in Fig. 4.

If the mean of the state distribution is close to the
target as in Fig. 4(b), wide distributions are likely to have
substantial tails in high-cost regions. By contrast, the
mass of a peaked distribution is more concentrated in
low-cost regions. In this case, the policy prefers peaked
distributions close to the target, leading to exploitation.

To summarize, combining a probabilistic dynamics
model, Bayesian inference, and a saturating cost leads
to automatic exploration as long as the predictions are
far from the target—even for a policy, which greedily
minimizes the expected cost. Once close to the target, the
policy does not substantially deviate from a confident
trajectory that leads the system close to the target.6

7 EXPERIMENTAL RESULTS

In this section, we assess PILCO’s key properties and
show that PILCO scales to high-dimensional control prob-

6. Code is available at http://mloss.org/software/view/508/.

lems. Moreover, we demonstrate the hardware applica-
bility of our learning framework on two real systems.
In all cases, PILCO followed the steps outlined in Alg. 1.
To reduce the computational burden, we used the sparse
GP method of [50] after 300 collected data points.

7.1 Evaluation of Key Properties
In the following, we assess the quality of the approx-
imate inference method used for long-term predictions
in terms of computational demand and learning speed.
Moreover, we shed some light on the quality of the Gaus-
sian approximations of the predictive state distributions
and the importance of Bayesian averaging. For these
assessments, we applied PILCO to two nonlinear control
tasks, which are introduced in the following.

7.1.1 Task Descriptions
We considered two simulated tasks (double-pendulum
swing-up, cart-pole swing-up) to evaluate important
properties of the PILCO policy search framework: learn-
ing speed, quality of approximate inference, importance
of Bayesian averaging, and hardware applicability. In the
following we briefly introduce the experimental set-ups.

7.1.1.1 Double-Pendulum Swing-Up with Two
Actuators: The double pendulum system is a two-link
robot arm with two actuators, see Fig. 5. The state x is
given by the angles θ1, θ2 and the corresponding angular
velocities θ̇1, θ̇2 of the inner and outer link, respectively,
measured from being upright. Each link was of length
1 m and mass 0.5 kg. Both torques u1 and u2 were
constrained to [−3, 3] Nm. The control signal could be
changed every 100 ms. In the meantime it was constant
(zero-order-hold control). The objective was to learn a
controller that swings the double pendulum up from an
initial distribution p(x0) around µ0 = [π, π, 0, 0]> and
balances it in the inverted position with θ1 = 0 = θ2.
The prediction horizon was 2.5 s.

target

u1

u2

d

Fig. 5. Double
pendulum with
two actuators
applying torques
u1 and u2. The
cost function
penalizes the
distance d to the
target.

The task is challenging since its
solution requires the interplay of
two correlated control signals. The
challenge is to automatically learn
this interplay from experience. To
solve the double pendulum swing-
up task, a nonlinear policy is re-
quired. Thus, we parametrized the
preliminary policy as a deterministic
GP, see (41), with 100 basis functions
resulting in 812 policy parameters.
We chose the saturating immediate
cost in (44), where the Euclidean dis-
tance between the upright position
and the tip of the outer link was
penalized. We chose the cost width
σc = 0.5, which means that the tip
of the outer pendulum had to cross
horizontal to achieve an immediate
cost smaller than unity.

http://mloss.org/software/view/508/

10

7.1.1.2 Cart-Pole Swing-Up: The cart-pole system
consists of a cart running on a track and a freely swing-
ing pendulum attached to the cart. The state of the sys-
tem is the position x of the cart, the velocity ẋ of the cart,
the angle θ of the pendulum measured from hanging
downward, and the angular velocity θ̇. A horizontal
force u ∈ [−10, 10] N could be applied to the cart. The
objective was to learn a controller to swing the pendu-
lum up from around µ0 = [x0, ẋ0, θ0, θ̇0]> = [0, 0, 0, 0]>

and to balance it in the inverted position in the middle of
the track, i.e., around xtarget = [0, ∗, π, ∗]>. Since a linear
controller is not capable of solving the task [45], PILCO
learned a nonlinear state-feedback controller based on a
deterministic GP with 50 basis functions (see Sec. 5.3.2),
resulting in 305 policy parameters to be learned.

In our simulation, we set the masses of the cart and
the pendulum to 0.5 kg each, the length of the pendulum
to 0.5 m, and the coefficient of friction between cart
and ground to 0.1 Ns/m. The prediction horizon was
set to 2.5 s. The control signal could be changed every
100 ms. In the meantime, it was constant (zero-order-
hold control). The only knowledge employed about the
system was the length of the pendulum to find appropri-
ate orders of magnitude to set the sampling frequency
(10 Hz) and the standard deviation of the cost function
(σc = 0.25 m), requiring the tip of the pendulum to move
above horizontal not to incur full cost.

7.1.2 Approximate Inference Assessment
In the following, we evaluate the quality of the pre-
sented approximate inference methods for policy eval-
uation (moment matching as described in Sec. 4.1) and
linearization of the posterior GP mean as described
in Sec. 4.2) with respect to computational demand
(Sec. 7.1.2.1) and learning speed (Sec. 7.1.2.2).

7.1.2.1 Computational Demand: For a single time
step, the computational complexity of moment matching is
O(n2E2D), where n is the number of GP training points,
D is the input dimensionality, and E the dimension of
the prediction. The most expensive computations are the
entries of Q ∈ Rn×n, which are given in (26). Each entry
Qij requires evaluating a kernel, which is essentially a
D-dimensional scalar product. The values zij are cheap
to compute and R needs to be computed only once. We
end up with O(n2E2D) since Q needs to be computed
for all entries of the E×E predictive covariance matrix.

For a single time step, the computational complexity of
linearizing the posterior GP mean function is O(n2DE). The
most expensive operation is the determination of Σw in
(34), i.e., the model uncertainty at the mean of the input
distribution, which scales in O(n2D). This computation
is performed for all E predictive dimensions, resulting
in a computational complexity of O(n2DE).

Fig. 6 illustrates the empirical computational effort for
both linearization of the posterior GP mean and exact
moment matching. We randomly generated GP models
in D = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50 dimensions and
GP training set sizes of n = 100, 250, 500, 1000 data

5 10 15 20 25 30 35 40 45 50

10
−2

10
0

10
2

State space dimensionality

C
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

100 Training Points
250 Training Points
500 Training Points
1000 Training Points

(a) Linearizing the mean function.

5 10 15 20 25 30 35 40 45 50

10
−2

10
0

10
2

State space dimensionality

C
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

100 Training Points
250 Training Points
500 Training Points
1000 Training Points

(b) Moment matching.

Fig. 6. Empirical computational demand for approximate
inference and derivative computation with GPs for a single
time step, shown on a log scale. (a): Linearization of the
posterior GP mean. (b): Exact moment matching.

points. We set the predictive dimension E = D. The
CPU time (single core) for computing a predictive state
distribution and the required derivatives are shown
as a function of the dimensionality of the state. Four
graphs are shown for set-ups with 100, 250, 500, and
1000 GP training points, respectively. Fig. 6(a) shows the
graphs for approximate inference based on linearization
of the posterior GP mean, and Fig. 6(b) shows the
corresponding graphs for exact moment matching on a
logarithmic scale. Computations based on linearization
were consistently faster by a factor of 5–10.

7.1.2.2 Learning Speed: For eight different ran-
dom initial trajectories and controller initializations,
PILCO followed Alg. 1 to learn policies. In the cart-pole
swing-up task, PILCO learned for 15 episodes, which
corresponds to a total of 37.5 s of data. In the double-
pendulum swing-up task, PILCO learned for 30 episodes,
corresponding to a total of 75 s of data. To evaluate the
learning progress, we applied the learned controllers
after each policy search (see line 10 in Alg. 1) 20 times for
2.5 s, starting from 20 different initial states x0 ∼ p(x0).
The learned controller was considered successful when
the tip of the pendulum was close to the target location
from 2 s to 2.5 s, i.e., at the end of the rollout.
• Cart-Pole Swing-Up. Fig. 7(a) shows PILCO’s aver-

age learning success for the cart-pole swing-up task
as a function of the total experience. We evaluated
both approximate inference methods for policy eval-
uation, moment matching and linearization of the
posterior GP mean function. Fig. 7(a) shows that
learning using the computationally more demand-
ing moment matching is more reliable than using
the computationally more advantageous lineariza-
tion. On average, after 15 s–20 s of experience, PILCO
reliably, i.e., in ≈ 95% of the test runs, solved the
cart-pole swing-up task, whereas the linearization
resulted in a success rate of about 83%.
Fig. 7(b) relates PILCO’s learning speed (blue bar)
to other RL methods (black bars), which solved the
cart-pole swing-up task from scratch, i.e., without
human demonstrations or known dynamics mod-
els [11], [27], [18], [56], [45]. Dynamics models
were only learned in [18], [45], using RBF networks
and multi-layered perceptrons, respectively. In all

11

10 20 30

0

20

40

60

80

100

Total experience in s

A
v
e

ra
g

e
 S

u
c
c
e

s
s
 i
n

 %

Lin
MM

(a) Average learning curves with
95% standard errors: moment
matching (MM) and posterior GP
linearization (Lin).

C KK D WP RT pilco
10

1

10
2

10
3

10
4

10
5

C: Coulom 2002

KK: Kimura & Kobayashi 1999

D: Doya 2000

WP: Wawrzynski & Pacut 2004

RT: Raiko & Tornio 2009

pilco: Deisenroth & Rasmussen 2011

R
e
q
u
ir
e
d
 i
n
te

ra
c
ti
o
n
 t
im

e
 i
n
 s

(b) Required interaction time of
different RL algorithms for learn-
ing the cart-pole swing-up from
scratch, shown on a log scale.

Fig. 7. Results for the cart-pole swing-up task. (a) Learn-
ing curves for moment matching and linearization (sim-
ulation task), (b) required interaction time for solving the
cart-pole swing-up task compared with other algorithms.

20 40 60

0

20

40

60

80

100

Total experience in s

A
v
e

ra
g

e
 S

u
c
c
e

s
s
 i
n

 %

Lin
MM

Fig. 8. Average success as a function of the total data
used for learning (double pendulum swing-up). The blue
error bars show the 95% confidence bounds of the stan-
dard error for the moment matching (MM) approximation,
the red area represents the corresponding confidence
bounds of success when using approximate inference by
means of linearizing the posterior GP mean (Lin).

cases without state-space discretization, cost func-
tions similar to ours (see (44)) were used. Fig. 7(b)
stresses PILCO’s data efficiency: PILCO outperforms
any other currently existing RL algorithm by at least
one order of magnitude.

• Double-Pendulum Swing-Up with Two Actuators.
Fig. 8 shows the learning curves for the double-
pendulum swing-up task when using either mo-
ment matching or mean function linearization for
approximate inference during policy evaluation.
Fig. 8 shows that PILCO learns faster (learning al-
ready kicks in after 20 s of data) and overall more
successfully with moment matching. Policy evalua-
tion based on linearization of the posterior GP mean
function achieved about 80% success on average,
whereas moment matching on average solved the
task reliably after about 50 s of data with a success
rate ≈ 95%.

Summary. We have seen that both approximate inference
methods have pros and cons: Moment matching requires
more computational resources than linearization, but
learns faster and more reliably. The reason why lineariza-
tion did not reliably succeed in learning the tasks is that

0 0.5 1 1.5 2 2.5

−8

−6

−4

−2

0

2

4

6

Time in s

A
n
g
le

 i
n
n
e
r

p
e
n
d
u
lu

m
 i
n
 r

a
d

Actual trajectories

Predicted trajectory

(a) Early stage of learning.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in s

A
n

g
le

 i
n

n
e

r
p

e
n

d
u

lu
m

 i
n

 r
a

d

Actual trajectories

Predicted trajectory

(b) After successful learning.

Fig. 9. Long-term predictive (Gaussian) distributions dur-
ing planning (shaded) and sample rollouts (red). (a) In the
early stages of learning, the Gaussian approximation is a
suboptimal choice. (b) PILCO learned a controller such
that the Gaussian approximations of the predictive states
are good. Note the different scales in (a) and (b).

it gets relatively easily stuck in local minima, which is
largely a result of underestimating predictive variances,
an example of which is given in Fig. 2. Propagating
too confident predictions over a longer horizon often
worsens the problem. Hence, in the following, we focus
solely on the moment matching approximation.

7.1.3 Quality of the Gaussian Approximation

PILCO strongly relies on the quality of approximate
inference, which is used for long-term predictions and
policy evaluation, see Sec. 4. We already saw differences
between linearization and moment matching; however,
both methods approximate predictive distributions by
a Gaussian. Although we ultimately cannot answer
whether this approximation is good under all circum-
stances, we will shed some light on this issue.

Fig. 9 shows a typical example of the angle of the inner
pendulum of the double pendulum system where, in
the early stages of learning, the Gaussian approximation
to the multi-step ahead predictive distribution is not
ideal. The trajectory distribution of a set of rollouts
(red) is multimodal. PILCO deals with this inappropriate
modeling by learning a controller that forces the actual
trajectories into a unimodal distribution such that a
Gaussian approximation is appropriate, Fig. 9(b).

We explain this behavior as follows: Assuming that
PILCO found different paths that lead to a target, a
wide Gaussian distribution is required to capture the
variability of the bimodal distribution. However, when
computing the expected cost using a quadratic or sat-
urating cost, for example, uncertainty in the predicted
state leads to higher expected cost, assuming that the
mean is close to the target. Therefore, PILCO uses its
ability to choose control policies to push the marginally
multimodal trajectory distribution into a single mode—
from the perspective of minimizing expected cost with
limited expressive power, this approach is desirable.
Effectively, learning good controllers and models goes
hand in hand with good Gaussian approximations.

12

TABLE 1
Average learning success with learned nonparametric

(NP) transition models (cart-pole swing-up).

Bayesian NP model Deterministic NP model
Learning success 94.52% 0%

7.1.4 Importance of Bayesian Averaging
Model-based RL greatly profits from the flexibility of
nonparametric models as motivated in Sec. 2. In the
following, we have a closer look at whether Bayesian
models are strictly necessary as well. In particular, we
evaluated whether Bayesian averaging is necessary for
successfully learning from scratch. To do so, we con-
sidered the cart-pole swing-up task with two differ-
ent dynamics models: first, the standard nonparametric
Bayesian GP model, second, a nonparametric determin-
istic GP model, i.e., a GP where we considered only the
posterior mean, but discarded the posterior model un-
certainty when doing long-term predictions. We already
described a similar kind of function representation to
learn a deterministic policy, see Sec. 5.3.2. The difference
to the policy is that in this section the deterministic GP is
still nonparametric (new basis functions are added if we
get more data), whereas the number of basis functions
in the policy is fixed. However, the deterministic GP
is no longer probabilistic because of the loss of model
uncertainty, which also results in a degenerate model.
Note that we still propagate uncertainties resulting from
the initial state distribution p(x0) forward.

Tab. 1 shows the average learning success of swing-
ing the pendulum up and balancing it in the inverted
position in the middle of the track. We used moment
matching for approximate inference, see Sec. 4. Tab. 1
shows that learning is only successful when model
uncertainties are taken into account during long-term
planning and control learning, which strongly suggests
Bayesian nonparametric models in model-based RL.

The reason why model uncertainties must be appro-
priately taken into account is the following: In the early
stages of learning, the learned dynamics model is based
on a relatively small data set. States close to the target are
unlikely to be observed when applying random controls.
Therefore, the model must extrapolate from the current
set of observed states. This requires to predict function
values in regions with large posterior model uncertainty.
Depending on the choice of the deterministic function
(we chose the MAP estimate), the predictions (point
estimates) are very different. Iteratively predicting state
distributions ends up in predicting trajectories, which
are essentially arbitrary and not close to the target state
either, resulting in vanishing policy gradients.

7.2 Scaling to Higher Dimensions: Unicycling
We applied PILCO to learning to ride a 5-DoF unicycle
with x ∈ R12 and u ∈ R2 in a realistic simulation of
the one shown in Fig. 10(a). The unicycle was 0.76 m

frame

flywheel

wheel

(a) Robotic unicycle.

1 2 3 4 5
0

20

40

60

80

100

time in s

d
is

ta
n
c
e
 d

is
tr

ib
u
ti
o
n
 i
n
 %

d ≤ 3 cm d ∈ (3,10] cm d ∈ (10,50] cm d > 50cm

(b) Histogram (after 1,000 test runs) of the
distances of the flywheel from being upright.

Fig. 10. Robotic unicycle system and simulation results.
The state space is R12, the control space R2.

high and consisted of a 1 kg wheel, a 23.5 kg frame, and
a 10 kg flywheel mounted perpendicularly to the frame.
Two torques could be applied to the unicycle: The first
torque |uw| ≤ 10 Nm was applied directly on the wheel to
mimic a human rider using pedals. The torque produced
longitudinal and tilt accelerations. Lateral stability of the
wheel could be maintained by steering the wheel toward
the falling direction of the unicycle and by applying a
torque |ut| ≤ 50 Nm to the flywheel. The dynamics of the
robotic unicycle were described by 12 coupled first-order
ODEs, see [24].

The objective was to learn a controller for riding the
unicycle, i.e., to prevent it from falling. To solve the
balancing task, we used the linear preliminary policy
π̃(x,θ) = Ax+ b with θ = {A, b} ∈ R28. The covariance
Σ0 of the initial state was 0.252I allowing each angle to
be off by about 30◦ (twice the standard deviation).

PILCO differs from conventional controllers in that
it learns a single controller for all control dimensions
jointly. Thus, PILCO takes the correlation of all control
and state dimensions into account during planning and
control. Learning separate controllers for each control
variable is often unsuccessful [37].

PILCO required about 20 trials, corresponding to an
overall experience of about 30 s, to learn a dynamics
model and a controller that keeps the unicycle upright.
A trial was aborted when the turntable hit the ground,
which happened quickly during the five random trials
used for initialization. Fig. 10(b) shows empirical results
after 1,000 test runs with the learned policy: Differently-
colored bars show the distance of the flywheel from
a fully upright position. Depending on the initial con-
figuration of the angles, the unicycle had a transient
phase of about a second. After 1.2 s, either the unicycle
had fallen or the learned controller had managed to
balance it very closely to the desired upright position.
The success rate was approximately 93%; bringing the
unicycle upright from extreme initial configurations was
sometimes impossible due to the torque constraints.

7.3 Hardware Tasks
In the following, we present results from [15], [16],
where we successfully applied the PILCO policy search

13

framework to challenging control and robotics tasks,
respectively. It is important to mention that no task-
specific modifications were necessary, besides choosing
a controller representation and defining an immediate
cost function. In particular, we used the same standard
GP priors for learning the forward dynamics models.

7.3.1 Cart-Pole Swing-Up
As described in [15], PILCO was applied to learning to
control the real cart-pole system, see Fig. 11, developed
by [26]. The masses of the cart and pendulum were
0.7 kg and 0.325 kg, respectively. A horizontal force u ∈
[−10, 10] N could be applied to the cart.

PILCO successfully learned a sufficiently good dynam-
ics model and a good controller fully automatically in
only a handful of trials and a total experience of 17.5 s,
which also confirms the learning speed of the simulated
cart-pole system in Fig. 7(b) despite the fact that the
parameters of the system dynamics (masses, pendu-
lum length, friction, delays, stiction, etc.) are different.
Snapshots of a 20 s test trajectory are shown in Fig. 11;
a video of the entire learning process is available at
http://www.youtube.com/user/PilcoLearner.

7.3.2 Controlling a Low-Cost Robotic Manipulator

Fig. 12. Low-cost robotic arm by
Lynxmotion [1]. The manipulator
does not provide any pose feed-
back. Hence, PILCO learns a con-
troller directly in the task space us-
ing visual feedback from a Prime-
Sense depth camera.

We applied PILCO
to make a low-
precision robotic
arm learn to
stack a tower of
foam blocks—fully
autonomously [16].
For this purpose,
we used the
lightweight robotic
manipulator by
Lynxmotion [1]
shown in Fig. 12.
The arm costs
approximately $370
and possesses six
controllable degrees
of freedom: base
rotate, three joints, wrist rotate, and a gripper (open/
close). The plastic arm was controllable by commanding
both a desired configuration of the six servos via
their pulse durations and the duration for executing the
command. The arm was very noisy: Tapping on the base
made the end effector swing in a radius of about 2 cm.
The system noise was particularly pronounced when
moving the arm vertically (up/down). Additionally, the
servo motors had some play.

Knowledge about the joint configuration of the robot
was not available. We used a PrimeSense depth cam-
era [2] as an external sensor for visual tracking the block
in the gripper of the robot. The camera was identical
to the Kinect sensor, providing a synchronized depth
image and a 640 × 480 RGB image at 30 Hz. Using

structured infrared light, the camera delivered useful
depth information of objects in a range of about 0.5 m–
5 m. The depth resolution was approximately 1 cm at a
distance of 2 m [2].

Every 500 ms, the robot used the 3D center of the
block in its gripper as the state x ∈ R3 to compute
a continuous-valued control signal u ∈ R4, which
comprised the commanded pulse widths for the first
four servo motors. Wrist rotation and gripper opening/
closing were not learned. For block tracking we used
real-time (50 Hz) color-based region growing to estimate
the extent and 3D center of the object, which was used
as the state x ∈ R3 by PILCO.

As an initial state distribution, we chose p(x0) =
N
(
x0 |µ0,Σ0

)
with µ0 being a single noisy measure-

ment of the 3D camera coordinates of the block in the
gripper when the robot was in its initial configuration.
The initial covariance Σ0 was diagonal, where the 95%-
confidence bounds were the edge length b of the block.
Similarly, the target state was set based on a single noisy
measurement using the PrimeSense camera. We used
linear preliminary policies, i.e., π̃(x) = u = Ax+ b, and
initialized the controller parameters θ = {A, b} ∈ R16 to
zero. The Euclidean distance d of the end effector from
the camera was approximately 0.7 m–2.0 m, depending
on the robot’s configuration. The cost function in (44)
penalized the Euclidean distance of the block in the
gripper from its desired target location on top of the
current tower. Both the frequency at which the controls
were changed and the time discretization were set to
2 Hz; the planning horizon T was 5 s. After 5 s, the robot
opened the gripper and released the block.

We split the task of building a tower into learning indi-
vidual controllers for each target block B2–B6 (bottom to
top), see Fig. 12, starting from a configuration, in which
the robot arm was upright. All independently trained
controllers shared the same initial trial.

The motion of the block in the end effector was
modeled by GPs. The inferred system noise standard
deviations, which comprised stochasticity of the robot
arm, synchronization errors, delays, image processing
errors, etc., ranged from 0.5 cm to 2.0 cm. Here, the y-
coordinate, which corresponded to the height, suffered
from larger noise than the other coordinates. The reason
for this is that the robot movement was particularly jerky
in the up/down movements. These learned noise levels
were in the right ballpark since they were slightly larger
than the expected camera noise [2]. The signal-to-noise
ratio in our experiments ranged from 2 to 6.

A total of ten learning-interacting iterations (including
the random initial trial) generally sufficed to learn both
good forward models and good controllers as shown
in Fig. 13(a), which displays the learning curve for a
typical training session, averaged over ten test runs after
each learning stage and all blocks B2–B6. The effects
of learning became noticeable after about four learning
iterations. After 10 learning iterations, the block in the
gripper was expected to be very close (approximately at

http://www.youtube.com/user/PilcoLearner

14

1 2 3 4 5 6

Fig. 11. Real cart-pole system [15]. Snapshots of a controlled trajectory of 20 s length after having learned the task. To
solve the swing-up plus balancing, PILCO required only 17.5 s of interaction with the physical system.

noise level) to the target. The required interaction time
sums up to only 50 s per controller and 230 s in total (the
initial random trial is counted only once). This speed of
learning is difficult to achieve by other RL methods that
learn from scratch as shown in Sec. 7.1.1.2.

Fig. 13(b) gives some insights into the quality of
the learned forward model after 10 controlled trials.
It shows the marginal predictive distributions and the
actual trajectories of the block in the gripper. The robot
learned to pay attention to stabilizing the y-coordinate
quickly: Moving the arm up/down caused relatively
large “system noise” as the arm was quite jerky in this
direction: In the y-coordinate the predictive marginal
distribution noticeably increases between 0 s and 2 s.
As soon as the y-coordinate was stabilized, the pre-
dictive uncertainty in all three coordinates collapsed.
Videos of the block-stacking robot are available at
http://www.youtube.com/user/PilcoLearner.

8 DISCUSSION

We have shed some light on essential ingredients for
successful and efficient policy learning: (1) a probabilistic
forward model with a faithful representation of model
uncertainty and (2) Bayesian inference. We focused on
very basic representations: GPs for the probabilistic for-
ward model and Gaussian distributions for the state
and control distributions. More expressive representa-
tions and Bayesian inference methods are conceivable to
account for multi-modality, for instance. However, even
with our current set-up, PILCO can already learn learn
complex control and robotics tasks. In [8], our framework
was used in an industrial application for throttle valve
control in a combustion engine.

PILCO is a model-based policy search method, which
uses the GP forward model to predict state sequences
given the current policy. These predictions are based
on deterministic approximate inference, e.g., moment
matching. Unlike all model-free policy search methods,
which are inherently based on sampling trajectories [14],
PILCO exploits the learned GP model to compute analytic
gradients of an approximation to the expected long-
term cost Jπ for policy search. Finite differences or more
efficient sampling-based approximations of the gradi-
ents require many function evaluations, which limits
the effective number of policy parameters [42], [14].
Instead, PILCO computes the gradients analytically and,
therefore, can learn thousands of policy parameters [15].

It is possible to exploit the learned GP model for sam-
pling trajectories using the PEGASUS algorithm [39], for
instance. Sampling with GPs can be straightforwardly

parallelized, and was exploited in [32] for learning meta
controllers. However, even with high parallelization,
policy search methods based on trajectory sampling do
usually not rely on gradients [40], [7], [30], [32] and are
practically limited by a relatively small number of a few
tens of policy parameters they can manage [38].7

In Sec. 6.1, we discussed PILCO’s natural exploration
property as a result of Bayesian averaging. It is, however,
also possible to explicitly encourage additional explo-
ration in a UCB (upper confidence bounds) sense [6]:
Instead of summing up expected immediate costs, see
(2), we would add the sum of cost standard devia-
tions, weighted by a factor κ ∈ R. Then, Jπ(θ) =∑
t

(
E[c(xt)] + κσ[c(xt)]

)
. This type of utility function is

also often used in experimental design [10] and Bayesian
optimization [33], [9], [41], [51] to avoid getting stuck in
local minima. Since PILCO’s approximate state distribu-
tions p(xt) are Gaussian, the cost standard deviations
σ[c(xt)] can often be computed analytically. For further
details, we refer the reader to [12].

One of PILCO’s key benefits is the reduction of model
errors by explicitly incorporating model uncertainty into
planning and control. PILCO, however, does not take
temporal correlation into account. Instead, model uncer-
tainty is treated as noise, which can result in an under-
estimation of model uncertainty [49]. On the other hand,
the moment-matching approximation used for approxi-
mate inference is typically a conservative approximation.

In this article, we focused on learning controllers in
MDPs with transition dynamics that suffer from system
noise, see (1). The case of measurement noise is more chal-
lenging: Learning the GP models is a real challenge since
we no longer have direct access to the state. However,
approaches for training GPs with noise on both the train-
ing inputs and training targets yield initial promising
results [36]. For a more general POMDP set-up, Gaussian
Process Dynamical Models (GPDMs) [54], [29] could be
used for learning both a transition mapping and the
observation mapping. However, GPDMs typically need
a good initialization [53] since the learning problem is
very high dimensional.

In [25], the PILCO framework was extended to allow
for learning reference tracking controllers instead of
solely controlling the system to a fixed target location.
In [16], we used PILCO for planning and control in
constrained environments, i.e., environments with obsta-
cles. This learning set-up is important for practical robot

7. “Typically, PEGASUS policy search algorithms have been using
[...] maybe on the order of ten parameters or tens of parameters; so,
30, 40 parameters, but not thousands of parameters [...]”, A. Ng [38].

http://www.youtube.com/user/PilcoLearner

15

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Total experience in s

A
v
e
ra

g
e
 d

is
ta

n
c
e
 t
o
 t
a
rg

e
t
(i
n
 c

m
)

(a) Average learning curve (block-
stacking task). The horizontal axis
shows the learning stage, the verti-
cal axis the average distance to the
target at the end of the episode.

0 1 2 3 4 5

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

time in s

x
−

c
o
o
rd

in
a
te

actual trajectory

target

predictive distribution, 95% confidence bound

0 1 2 3 4 5

−0.05

0

0.05

0.1

0.15

time in s

y
−

c
o
o
rd

in
a
te

actual trajectory

target

predictive distribution, 95% confidence bound

0 1 2 3 4 5
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

time in s

z
−

c
o

o
rd

in
a

te

actual trajectory

target

predictive distribution, 95% confidence bound

(b) Marginal long-term predictive distributions and actually incurred trajectories. The red lines show the
trajectories of the block in the end effector, the two dashed blue lines represent the 95% confidence
intervals of the corresponding multi-step ahead predictions using moment matching. The target state is
marked by the straight lines. All coordinates are measured in cm.

Fig. 13. Robot block stacking task: (a) Average learning curve with 95% standard error, (b) Long-term predictions.

applications. By discouraging obstacle collisions in the
cost function, PILCO was able to find paths around
obstacles without ever colliding with them, not even
during training. Initially, when the model was uncertain,
the policy was conservative to stay away from obstacles.
The PILCO framework has been applied in the context
of model-based imitation learning to learn controllers
that minimize the Kullback-Leibler divergence between a
distribution of demonstrated trajectories and the predic-
tive distribution of robot trajectories [20], [21]. Recently,
PILCO has also been extended to a multi-task set-up [13].

9 CONCLUSION

We have introduced PILCO, a practical model-based pol-
icy search method using analytic gradients for policy
learning. PILCO advances state-of-the-art RL methods for
continuous state and control spaces in terms of learning
speed by at least an order of magnitude. Key to PILCO’s
success is a principled way of reducing the effect of
model errors in model learning, long-term planning, and
policy learning. PILCO is one of the few RL methods
that has been directly applied to robotics without human
demonstrations or other kinds of informative initializa-
tions or prior knowledge.

The PILCO learning framework has demonstrated that
Bayesian inference and nonparametric models for learn-
ing controllers is not only possible but also practicable.
Hence, nonparametric Bayesian models can play a fun-
damental role in classical control set-ups, while avoiding
the typically excessive reliance on explicit models.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the EC’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement #270327, ONR
MURI grant N00014-09-1-1052, and Intel Labs.

REFERENCES

[1] http://www.lynxmotion.com.
[2] http://www.primesense.com.
[3] P. Abbeel, M. Quigley, and A. Y. Ng. Using Inaccurate Models

in Reinforcement Learning. In Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[4] K. J. Aström and B. Wittenmark. Adaptive Control. Dover
Publications, 2008.

[5] C. G. Atkeson and J. C. Santamarı́a. A Comparison of Direct
and Model-Based Reinforcement Learning. In Proceedings of the
International Conference on Robotics and Automation, 1997.

[6] P. Auer. Using Confidence Bounds for Exploitation-Exploration
Trade-offs. Journal of Machine Learning Research, 3:397–422, 2002.

[7] J. A. Bagnell and J. G. Schneider. Autonomous Helicopter Control
using Reinforcement Learning Policy Search Methods. In Proceed-
ings of the International Conference on Robotics and Automation, 2001.

[8] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll.
Learning Throttle Valve Control Using Policy Search. In Proceed-
ings of the European Conference on Machine Learning and Knowledge
Discovery in Databases, 2013.

[9] E. Brochu, V. M. Cora, and N. de Freitas. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to
Active User Modeling and Hierarchical Reinforcement Learning.
Technical Report TR-2009-023, Department of Computer Science,
University of British Columbia, 2009.

[10] K. Chaloner and I. Verdinelli. Bayesian Experimental Design: A
Review. Statistical Science, 10:273–304, 1995.

[11] R. Coulom. Reinforcement Learning Using Neural Networks, with
Applications to Motor Control. PhD thesis, Institut National Poly-
technique de Grenoble, 2002.

[12] M. P. Deisenroth. Efficient Reinforcement Learning using Gaussian
Processes. KIT Scientific Publishing, 2010. ISBN 978-3-86644-569-7.

[13] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-Task
Policy Search. http://arxiv.org/abs/1307.0813, July 2013.

[14] M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy
Search for Robotics, volume 2 of Foundations and Trends in Robotics.
NOW Publishers, 2013.

[15] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based
and Data-Efficient Approach to Policy Search. In Proceedings of
the International Conference on Machine Learning, 2011.

[16] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Con-
trol a Low-Cost Manipulator using Data-Efficient Reinforcement
Learning. In Proceedings of Robotics: Science and Systems, 2011.

[17] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian Process
Dynamic Programming. Neurocomputing, 72(7–9):1508–1524, 2009.

[18] K. Doya. Reinforcement Learning in Continuous Time and Space.
Neural Computation, 12(1):219–245, 2000.

[19] Y. Engel, S. Mannor, and R. Meir. Bayes Meets Bellman: The
Gaussian Process Approach to Temporal Difference Learning. In
Proceedings of the International Conference on Machine Learning, 2003.

[20] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-
based Imitation Learning by Proabilistic Trajectory Matching. In
Proceedings of the IEEE International Conference on Robotics and
Automation, 2013.

[21] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Proba-
bilistic Model-based Imitation Learning. Adaptive Behavior, 21:388–
403, 2013.

[22] S. Fabri and V. Kadirkamanathan. Dual Adaptive Control of
Nonlinear Stochastic Systems using Neural Networks. Automatica,
34(2):245–253, 1998.

[23] A. A. Fel’dbaum. Dual Control Theory, Parts I and II. Automation
and Remote Control, 21(11):874–880, 1961.

[24] D. Forster. Robotic Unicycle. Report, Department of Engineering,
University of Cambridge, UK, 2009.

16

[25] J. Hall, C. E. Rasmussen, and J. Maciejowski. Reinforcement
Learning with Reference Tracking Control in Continuous State
Spaces. In Proceedings of the IEEE International Conference on
Decision and Control, 2011.

[26] T. T. Jervis and F. Fallside. Pole Balancing on a Real Rig Using
a Reinforcement Learning Controller. Technical Report CUED/F-
INFENG/TR 115, University of Cambridge, December 1992.

[27] H. Kimura and S. Kobayashi. Efficient Non-Linear Control by
Combining Q-learning with Local Linear Controllers. In Proceed-
ings of the 16th International Conference on Machine Learning, 1999.

[28] J. Ko and D. Fox. GP-BayesFilters: Bayesian Filtering using Gaus-
sian Process Prediction and Observation Models. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2008.

[29] J. Ko and D. Fox. Learning GP-BayesFilters via Gaussian Process
Latent Variable Models. In Proceedings of Robotics: Science and
Systems, 2009.

[30] J. Ko, D. J. Klein, D. Fox, and D. Haehnel. Gaussian Processes
and Reinforcement Learning for Identification and Control of
an Autonomous Blimp. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2007.

[31] K. P. Körding and D. M. Wolpert. The Loss Function of Senso-
rimotor Learning. In J. L. McClelland, editor, Proceedings of the
National Academy of Sciences, volume 101, pages 9839–9842, 2004.

[32] A. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann. Data-
Efficient Generalization of Robot Skills with Contextual Policy
Search. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2013.

[33] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University
of Alberta, Edmonton, Alberta, 2008.

[34] D. J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[35] D. C. McFarlane and K. Glover. Lecture Notes in Control and In-
formation Sciences, volume 138, chapter Robust Controller Design
using Normalised Coprime Factor Plant Descriptions. Springer-
Verlag, 1989.

[36] A. McHutchon and C. E. Rasmussen. Gaussian Process Training
with Input Noise. In Advances in Neural Information Processing
Systems. 2011.

[37] Y. Naveh, P. Z. Bar-Yoseph, and Y. Halevi. Nonlinear Modeling
and Control of a Unicycle. Journal of Dynamics and Control,
9(4):279–296, October 1999.

[38] A. Y. Ng. Stanford Engineering Everywhere CS229—Machine
Learning, Lecture 20, 2008. http://see.stanford.edu/materials/
aimlcs229/transcripts/MachineLearning-Lecture20.html.

[39] A. Y. Ng and M. Jordan. PEGASUS: A policy search method
for large mdps and pomdps. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2000.

[40] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry. Autonomous
Helicopter Flight via Reinforcement Learning. In Advances in
Neural Information Processing Systems, 2004.

[41] M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian Processes
for Global Optimization. In Proceedings of the International Confer-
ence on Learning and Intelligent Optimization, 2009.

[42] J. Peters and S. Schaal. Policy Gradient Methods for Robotics.
In Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robotics Systems, 2006.

[43] J. Peters and S. Schaal. Reinforcement Learning of Motor Skills
with Policy Gradients. Neural Networks, 21:682–697, 2008.

[44] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Ras-
mussen. Propagation of Uncertainty in Bayesian Kernel Models—
Application to Multiple-Step Ahead Forecasting. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2003.

[45] T. Raiko and M. Tornio. Variational Bayesian Learning of Non-
linear Hidden State-Space Models for Model Predictive Control.
Neurocomputing, 72(16–18):3702–3712, 2009.

[46] C. E. Rasmussen and M. Kuss. Gaussian Processes in Rein-
forcement Learning. In Advances in Neural Information Processing
Systems 16. The MIT Press, 2004.

[47] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[48] S. Schaal. Learning From Demonstration. In Advances in Neural
Information Processing Systems 9. The MIT Press, 1997.

[49] J. G. Schneider. Exploiting Model Uncertainty Estimates for Safe
Dynamic Control Learning. In Advances in Neural Information
Processing Systems. 1997.

[50] E. Snelson and Z. Ghahramani. Sparse Gaussian Processes us-
ing Pseudo-inputs. In Advances in Neural Information Processing
Systems. 2006.

[51] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian
Process Optimization in the Bandit Setting: No Regret and Ex-
perimental Design. In Proceedings of the International Conference on
Machine Learning, 2010.

[52] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[53] R. Turner, M. P. Deisenroth, and C. E. Rasmussen. State-Space
Inference and Learning with Gaussian Processes. In Proceedings
of the International Conference on Artificial Intelligence and Statistics,
2010.

[54] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian Process
Dynamical Models for Human Motion. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(2):283–298, 2008.

[55] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
University of Cambridge, Cambridge, UK, 1989.

[56] P. Wawrzynski and A. Pacut. Model-free off-policy Reinforcement
Learning in Continuous Environment. In Proceedings of the Inter-
national Joint Conference on Neural Networks, 2004.

[57] A. Wilson, A. Fern, and P. Tadepalli. Incorporating Domain
Models into Bayesian Optimization for RL. In Proceedings of the
European Conference on Machine Learning and Knowledge Discovery
in Databases, 2010.

[58] B. Wittenmark. Adaptive Dual Control Methods: An Overview.
In In Proceedings of the IFAC Symposium on Adaptive Systems in
Control and Signal Processing, 1995.

APPENDIX A
TRIGONOMETRIC INTEGRATION

This section gives exact integral equations for trigono-
metric functions, which are required to implement the
discussed algorithms. The following expressions can be
found in the book by [1], where x ∼ N (x|µ, σ2) is
Gaussian distributed with mean µ and variance σ2.

Ex[sin(x)] =

∫
sin(x)p(x) dx = exp(−σ

2

2) sin(µ) ,

Ex[cos(x)] =

∫
cos(x)p(x) dx = exp(−σ

2

2) cos(µ) ,

Ex[sin(x)2] =

∫
sin(x)2p(x) dx

= 1
2

(
1− exp(−2σ2) cos(2µ)

)
,

Ex[cos(x)2] =

∫
cos(x)2p(x) dx

= 1
2

(
1 + exp(−2σ2) cos(2µ)

)
,

Ex[sin(x) cos(x)] =

∫
sin(x) cos(x)p(x) dx

=

∫
1
2 sin(2x)p(x) dx

= 1
2 exp(−2σ2) sin(2µ) .

APPENDIX B
GRADIENTS

In the beginning of this section, we will give a few
derivative identities that will become handy. After that
we will detail derivative computations in the context of
the moment-matching approximation.

http://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture20.html
http://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture20.html

17

B.1 Identities
Let us start with a set of basic derivative identities [2]
that will prove useful in the following:

∂|K(θ)|
∂θ

= |K|tr
(
K−1

∂K

∂θ

)
,

∂|K|
∂K

= |K|(K−1)> ,

∂K−1(θ)

∂θ
= −K−1 ∂K(θ)

∂θ
K−1 ,

∂θ>Kθ

∂θ
= θ>(K +K>) ,

∂tr(AKB)

∂K
= A>B> ,

∂|AK + I|−1

∂K
= −|AK + I|−1

(
(AK + I)−1

)>
,

∂

∂Bij
(a− b)>(A+B)−1(a− b)

= −(a− b)>
[
(A+B)−1(:,i)(A+B)−1(j,:)

]
(a− b) .

In in the last identity B(:, i) denotes the ith column of
B and B(i, :) is the ith row of B.

B.2 Partial Derivatives of the Predictive Distribution
with Respect to the Input Distribution
For an input distribution x̃t−1 ∼ N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
,

where x̃ = [x>u>]> is the control-augmented state,
we detail the derivatives of the predictive mean µ∆,
the predictive covariance Σ∆, and the cross-covariance
cov[x̃t−1,∆] (in the moment matching approximation)
with respect to the mean µ̃t−1 and covariance Σ̃t−1 of
the input distribution.

B.2.1 Derivatives of the Predictive Mean with Respect to
the Input Distribution
In the following, we compute the derivative of the
predictive GP mean µ∆ ∈ RE with respect to the
mean and the covariance of the input distribution
N
(
xt−1 |µt−1,Σt−1

)
. The function value of the predic-

tive mean is given as

µa∆ =

n∑
i=1

βaiqai , (50)

qai = σ2
fa |I + Λ−1a Σ̃t−1|−

1
2 (51)

× exp
(
− 1

2 (x̃i − µ̃t−1)>(Λa + Σ̃t−1)−1(x̃i − µ̃t−1)
)
.

B.2.1.1 Derivative with respect to the Input Mean:
Let us start with the derivative of the predictive mean
with respect to the mean of the input distribution. From
the function value in (51), we obtain the derivative

∂µa∆
∂µ̃t−1

=

n∑
i=1

βai
∂qai
∂µ̃t−1

(52)

=

n∑
i=1

βaiqai(x̃i − µ̃t−1)>(Σ̃t−1 + Λa)−1 (53)

∈ R1×(D+F) for the ath target dimension, where we used

∂qai
∂µ̃t−1

= qai(x̃i − µ̃t−1)>(Σ̃t−1 + Λa)−1 . (54)

B.2.1.2 Derivative with Respect to the Input Co-
variance Matrix: For the derivative of the predictive
mean with respect to the input covariance matrix Σt−1,
we obtain

∂µa∆
∂Σ̃t−1

=

n∑
i=1

βai
∂qai
∂Σ̃t−1

. (55)

By defining

η(x̃i, µ̃t−1, Σ̃t−1)

= exp
(
− 1

2 (x̃i − µ̃t−1)>(Λa + Σ̃t−1)−1(x̃i − µ̃t−1)
)

we obtain

∂qai
∂Σ̃t−1

= σ2
fa

(
∂|I + Λ−1a Σ̃t−1|−

1
2

∂Σ̃t−1
η(x̃i, µ̃t−1, Σ̃t−1)

+ |I + Λ−1a Σ̃t−1|−
1
2

∂

∂Σ̃t−1
η(x̃i, µ̃t−1, Σ̃t−1)

)
for i = 1, . . . , n. Here, we compute the two partial
derivatives

∂|I + Λ−1a Σ̃t−1|−
1
2

∂Σ̃t−1
(56)

= −1

2
|I + Λ−1a Σ̃t−1|−

3
2
∂|I + Λ−1a Σ̃t−1|

∂Σ̃t−1
(57)

= −1

2
|I + Λ−1a Σ̃t−1|−

3
2 |I + Λ−1a Σ̃t−1|

×
(
(I + Λ−1a Σ̃t−1)−1Λ−1a

)> (58)

= −1

2
|I + Λ−1a Σ̃t−1|−

1
2
(
(I + Λ−1a Σ̃t−1)−1Λ−1a

)> (59)

and for p, q = 1, . . . , D + F

∂

∂Σ̃
(pq)

t−1

(Λa + Σ̃t−1)−1 (60)

= − 1
2

(
(Λa + Σ̃t−1)−1(:,p)(Λa + Σ̃t−1)−1(q,:)

+ (Λa + Σ̃t−1)−1(:,q)(Λa + Σ̃t−1)−1(p,:)

)
∈ R(D+F)×(D+F) ,

where we need to explicitly account for the symmetry
of Λa + Σ̃t−1. Then, we obtain

∂µa∆
∂Σ̃t−1

=

n∑
i=1

βaiqai

(
− 1

2

(
(Λ−1a Σ̃t−1 + I)−1Λ−1a

)>
− 1

2 (x̃i − µ̃t−1)>︸ ︷︷ ︸
1×(D+F)

∂(Λa + Σ̃t−1)−1

∂Σ̃t−1︸ ︷︷ ︸
(D+F)×(D+F)×(D+F)×(D+F)

(x̃i − µ̃t−1)︸ ︷︷ ︸
(D+F)×1︸ ︷︷ ︸

(D+F)×(D+F)

)
,

(61)

where we used a tensor contraction in the last expres-
sion inside the bracket when multiplying the difference
vectors onto the matrix derivative.

18

B.2.2 Derivatives of the Predictive Covariance with Re-
spect to the Input Distribution

For target dimensions a, b = 1, . . . , E, the entries of the
predictive covariance matrix Σ∆ ∈ RE×E are given as

σ2
∆ab

= β>a
(
Q− qaq>b)βb

+ δab
(
σ2
fa − tr((Ka + σ2

wa
I)−1Q)

)
(62)

where δab = 1 if a = b and 0 otherwise.
The entries of Q ∈ Rn×n are given by

Qij = σ2
faσ

2
fb
|(Λ−1a + Λ−1b)Σ̃t−1 + I|− 1

2

× exp
(
− 1

2 (x̃i − x̃j)>(Λa + Λb)
−1(x̃i − x̃j)

)
× exp

(
− 1

2 (ẑij − µ̃t−1)>

×
(
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
(ẑij − µ̃t−1)

)
, (63)

ẑij := Λb(Λa + Λb)
−1x̃i + Λa(Λa + Λb)

−1x̃j , (64)

where i, j = 1, . . . , n.
B.2.2.1 Derivative with Respect to the Input Mean:

For the derivative of the entries of the predictive co-
variance matrix with respect to the predictive mean, we
obtain

∂σ2
∆ab

∂µ̃t−1
= β>a

(
∂Q

∂µ̃t−1
− ∂qa
∂µ̃t−1

q>b − qa
∂q>b
∂µ̃t−1

)
βb

+ δab

(
−(Ka + σ2

wa
I)−1

∂Q

∂µ̃t−1

)
, (65)

where the derivative of Qij with respect to the input
mean is given as

∂Qij
∂µ̃t−1

= Qij(ẑij − µ̃t−1)>((Λ−1a + Λ−1b)−1 + Σ̃t−1)−1 .

(66)

B.2.2.2 Derivative with Respect to the Input Co-
variance Matrix: The derivative of the entries of the pre-
dictive covariance matrix with respect to the covariance
matrix of the input distribution is

∂σ2
∆ab

∂Σ̃t−1
= β>a

(
∂Q

∂Σ̃t−1
− ∂qa
∂Σ̃t−1

q>b − qa
∂q>b
∂Σ̃t−1

)
βb

+ δab

(
−(Ka + σ2

wa
I)−1

∂Q

∂Σ̃t−1

)
. (67)

Since the partial derivatives ∂qa/∂Σ̃t−1 and ∂qb/∂Σ̃t−1
are known from Eq. (56), it remains to compute
∂Q/∂Σ̃t−1. The entries Qij , i, j = 1, . . . , n are given in
Eq. (63). By defining

c := σ2
faσ

2
fb

exp
(
− 1

2 (x̃i − x̃j)>(Λ−1a + Λ−1b)−1(x̃i − x̃j))
)

e2 := exp
(
− 1

2 (ẑij − µ̃t−1)>
(
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
× (ẑij − µ̃t−1)

)

we obtain the desired derivative

∂Qij

∂Σ̃t−1
= c

[
− 1

2 |(Λ
−1
a + Λb)

−1Σ̃t−1 + I|−
3
2

× ∂|(Λ−1a + Λb)
−1Σ̃t−1 + I|

∂Σ̃t−1
e2

+ |(Λ−1a + Λ−1b)Σ̃t−1 + I|−
1
2

∂e2

∂Σ̃t−1

]
. (68)

Using the partial derivative

∂|(Λ−1a + Λb)
−1Σ̃t−1 + I|

∂Σ̃t−1

= |(Λ−1a + Λb)
−1Σ̃t−1 + I|

×
((

(Λ−1a + Λ−1b)Σ̃t−1 + I
)−1

(Λ−1a + Λ−1b)
)>

(69)

= |(Λ−1a + Λb)
−1Σ̃t−1 + I| (70)

× tr

((
(Λ−1a + Λ−1b)Σ̃t−1 + I

)−1
(Λ−1a + Λ−1b)

∂Σ̃t−1

∂Σ̃t−1

)
the partial derivative of Qij with respect to the covari-
ance matrix Σ̃t−1 is given as

∂Qij

∂Σ̃t−1

= c

[
− 1

2 |(Λ
−1
a + Λb)

−1Σ̃t−1 + I|−
3
2

× |(Λ−1a + Λb)
−1Σ̃t−1 + I|e2

× tr

((
(Λ−1a + Λ−1b)Σ̃t−1 + I

)−1
(Λ−1a + Λ−1b)

∂Σ̃t−1

∂Σ̃t−1

)

+ |(Λ−1a + Λb)
−1Σ̃t−1 + I|−

1
2

∂e2

∂Σ̃t−1

]
(71)

= c|(Λ−1a + Λb)
−1Σ̃t−1 + I|−

1
2 (72)

×

[
− 1

2

((
(Λ−1a + Λ−1b)Σ̃t−1 + I

)−1
(Λ−1a + Λ−1b)

)>
e2

+
∂e2

∂Σ̃t−1

]
, (73)

where the partial derivative of e2 with respect to the
entries Σ

(p,q)
t−1 is given as

∂e2

∂Σ̃
(p,q)
t−1

= −1

2
(ẑij − µ̃t−1)>

∂
(
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
∂Σ̃

(p,q)
t−1

× (ẑij − µ̃t−1)e2 . (74)

The missing partial derivative in (74) is given by

∂
(
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
∂Σ̃

(p,q)
t−1

= −Ξ(pq) , (75)

where we define

Ξ(pq) = 1
2 (Φ(pq) + Φ(qp)) ∈ R(D+F)×(D+F) , (76)

19

p, q = 1, . . . , D + F with

Φ(pq) =

((
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
(:,p)

×
(
(Λ−1a + Λ−1b)−1 + Σ̃t−1

)−1
(q,:)

)
. (77)

This finally yields

∂Qij

∂Σ̃t−1
= ce2|(Λ−1a + Λb)

−1Σ̃t−1 + I|−
1
2

×

[((
(Λ−1a + Λ−1b)Σ̃t−1 + I

)−1
(Λ−1a + Λ−1b)

)>
− (ẑij − µ̃t−1)>Ξ(ẑij − µ̃t−1)

]
(78)

= − 1
2Qij

×

[((
(Λ−1a + Λ−1b)Σ̃t−1 + I

)−1
(Λ−1a + Λ−1b)

)>
− (ẑij − µ̃t−1)>Ξ(ẑij − µ̃t−1)

]
, (79)

which concludes the computations for the partial deriva-
tive in (67).

B.2.3 Derivative of the Cross-Covariance with Respect
to the Input Distribution
For the cross-covariance

covf,x̃t−1 [x̃t−1,∆
a
t] = Σ̃t−1R

−1
n∑
i=1

βaiqai(x̃i − µ̃t−1) ,

R := Σ̃t−1 + Λa ,

we obtain
∂covf,x̃t−1 [∆t, x̃t−1]

∂µ̃t−1

= Σ̃t−1R
−1

n∑
i=1

βi

(
(x̃i − µ̃t−1)

∂qi
∂µ̃t−1

+ qiI

)
(80)

∈ R(D+F)×(D+F) for all target dimensions a = 1, . . . , E.
The corresponding derivative with respect to the co-

variance matrix Σ̃t−1 is given as

∂covf,x̃t−1
[∆t, x̃t−1]

∂Σ̃t−1

=

(
∂Σ̃t−1

∂Σ̃t−1
R−1 + Σ̃t−1

∂R−1

∂Σ̃t−1

)
n∑
i=1

βaiqai(x̃i − µ̃t−1)

+ Σ̃t−1R
−1

n∑
i=1

βai(x̃i − µ̃t−1)
∂qai
∂Σ̃t−1

. (81)

REFERENCES
[1] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and

Products. Academic Press, 6th edition, July 2000.
[2] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook, October

2008. Version 20081110.

Marc Peter Deisenroth is De-
partmental Research Fellow at the
Department of Computing at Im-
perial College London. He is also
adjunct researcher at the Com-
puter Science Department at TU
Darmstadt, where he has been
Group Leader and Senior Re-
searcher from December 2011 to
August 2013. From February 2010

to December 2011, he has been a Research Associate
at the University of Washington. Marc conducted his
Ph.D. research at the Max Planck Institute for Biological
Cybernetics (2006–2007) and at the University of Cam-
bridge (2007–2009) and received his Ph.D. degree in 2009.
His research interests center around modern Bayesian
machine learning and its application to autonomous
control and robotic systems.

Dieter Fox is Professor in the
Department of Computer Science
& Engineering at the University of
Washington, where he heads the
UW Robotics and State Estimation
Lab. From 2009 to 2011, he was
also Director of the Intel Research
Labs Seattle. Dieter obtained his
Ph.D. from the University of Bonn,
Germany. Before going to UW, he

spent two years as a postdoctoral researcher at the
CMU Robot Learning Lab. Fox’ research is in artificial
intelligence, with a focus on state estimation applied
to robotics and activity recognition. He has published
over 150 technical papers and is co-author of the text
book “Probabilistic Robotics”. He is a fellow of AAAI
and a senior member of IEEE. Fox is an editor of the
IEEE Transactions on Robotics, was program co-chair of
the 2008 AAAI Conference on Artificial Intelligence, and
served as the program chair of the 2013 Robotics Science
and Systems conference.

Carl Edward Rasmussen is
Reader in Information Engineering
at the Department of Engineering
at the University of Cambridge.
He was a Junior Research Group
Leader at the Max Planck Insti-
tute for Biological Cybernetics in
Tübingen, and a Senior Research
Fellow at the Gatsby Computa-
tional Neuroscience Unit at UCL.

He has wide interests in probabilistic methods in ma-
chine learning, including nonparametric Bayesian in-
ference, and has co-authored Rasmussen and Williams
“Gaussian Processes for Machine Learning”, the MIT
Press 2006.

	Introduction
	Related Work
	Model-based Policy Search
	Model Learning
	Policy Evaluation
	Analytic Gradients for Policy Improvement

	Long-Term Predictions
	Moment Matching
	Linearization of the Posterior GP Mean Function

	Policy
	Predictive Distribution over Controls
	Constrained Control Signals
	Representations of the Preliminary Policy
	Linear Policy
	Nonlinear Policy: Deterministic Gaussian Process

	Policy Parameters
	Linear Policy
	Nonlinear Policy

	Computing the Successor State Distribution

	Cost Function
	Exploration and Exploitation

	Experimental Results
	Evaluation of Key Properties
	Task Descriptions
	Approximate Inference Assessment
	Quality of the Gaussian Approximation
	Importance of Bayesian Averaging

	Scaling to Higher Dimensions: Unicycling
	Hardware Tasks
	Cart-Pole Swing-Up
	Controlling a Low-Cost Robotic Manipulator

	Discussion
	Conclusion
	References
	Appendix A: Trigonometric Integration
	Appendix B: Gradients
	Identities
	Partial Derivatives of the Predictive Distribution with Respect to the Input Distribution
	Derivatives of the Predictive Mean with Respect to the Input Distribution
	Derivatives of the Predictive Covariance with Respect to the Input Distribution
	Derivative of the Cross-Covariance with Respect to the Input Distribution

	References

