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Problem Description

* Goal: identify and model objects using change over
time

= Handle textureless objects
= Avoid appearance/shape priors

* Represent a location as static + dynamic parts




Object Discovery from Range Data

[Shin et al, ICRA10, RSS10]: ICP initialized with local 3-D
feature matches

[Ruhnke et al, ICRA09]: 2-D feature matches in
generated views

Single scenes
Focus on detecting repetitive structure, model merging

No visual information ;
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Two-Scene Segmentation (ICRA11)

* Pointwise change detection

= probabilistic sensor measurement model

= |ncorporate depth, color, surface orientation

= Handle occlusion

= View-based: accumulate evidence from different viewpoints

* MRF over scene points to reduce noise

* Limitations
= Can only make use of two scenes
= No notion of segment persistence



Multiscene Segmentation

* Extra scenes provide extra constraints
* MRF to assign change labels wrt all scenes at once
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* Data cost based on change detection
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* Smoothness cost: Hamming distance weighted by curvature
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Segmentation Results

* Concatenated pairwise MRFs vs. multiscene MRF

two-scene MRFs multiscene MRF

* Over 39M points (12 scenes), 25% reduction in each of
type I/1l errors in change detection



Object Discovery

* QOutput of segmentation step:
= Partial 3-D models
= Many 2-D views of each 3-D segment
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* Goal: group these segments by object



Object Discovery: Spectral Clustering

* Given pairwise similarities (edge weights in a graph
whose nodes are segments)
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* Minimize the normalized cut criterion E W,
arg min(cut(A) + cut(Z)) ,where Cut(A)= 1A, JEA
ACV E W,

= Minimize similarity across clusters
= Maximize similarity within each cluster

Need a similarity measure over segments



Segment Similarity Scores

* 2-D matching with whole-segment features
= Spatial pyramid of local descriptors
= Score is descriptor vector distance

* 3-D matching with ICP
= Use color to limit correspondences

= Random restarts; score is lowest Euclidean error
achieved

* 3-D matching using beam-based sensor model
= Advantages: multiple cues; occlusion reasoning

= Same ICP random restarts
= Score based on pointwise change probabilities
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Evaluating Segment Similarity Scores

* Labeled which segments are same object
* Precision/recall wrt same-object pairs

* Sliding threshold to get P/R curve

Dataset A: 48 segments; 8 objects Dataset B: 64 segments; 15 objects
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Evaluating Object Discovery

* Labeled which segments are same object
* Precision/recall wrt same-object pairs

* Sliding threshold to get P/R curve

Dataset A: 48 segments; 8 objects Dataset B: 64 segments; 15 objects
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Object Discovery Result
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Recap + Future Work

RGB-D object discovery from many scenes

Both segmentation and discovery based on
probabilistic sensor model

Segmentation using changes across all scenes

Next step: active vision to diagnose and fix
matching problems in real time
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