
Toward Object Discovery and Modeling via 3-D Scene Comparison

Evan Herbst Peter Henry Xiaofeng Ren Dieter Fox

Abstract— The performance of indoor robots that stay in

a single environment can be enhanced by gathering detailed

knowledge of objects that frequently occur in that environment.

We use an inexpensive sensor providing dense color and depth,

and fuse information from multiple sensing modalities to detect

changes between two 3-D maps. We adapt a recent SLAM

technique to align maps. A probabilistic model of sensor

readings lets us reason about movement of surfaces. Our

method handles arbitrary shapes and motions, and is robust

to lack of texture. We demonstrate the ability to find whole

objects in complex scenes by regularizing over surface patches.

I. INTRODUCTION

Suppose a mobile robot with an always-on camera makes
multiple visits to a location, continuously running SLAM.
There is information in the difference between two maps
made at different times. We use the PrimeSensor, an RGB-
D camera that provides dense registered color and depth
measurements, to detect objects by means of their movement
in 3-D between two maps of the same location.

At a high level this problem is similar to laser scan
registration, for which van de Ven et al. [19] have shown
it is possible to jointly infer clustering within scans and
association between scans. They point out that the efficiency
of inference depends heavily on the number of elements to be
clustered and associated. Therefore we need to select a small
number of surfaces by combining surface elements and, prior
to inference, culling those least likely to be part of movable
objects. In this work we call this process object discovery.

Object discovery in 2-D has been studied by both the com-
puter vision and the robotics communities. In vision, motion
segmentation has been used for object discovery assuming
highly visually textured surfaces. Bhat et al. [1] assume each
surface has enough SIFT matches that RANSAC will find a
model for it. That isn’t the case for us, partly because our
objects occupy relatively little of each image; also we wish
to handle textureless objects.

Scene segmentation without motion is difficult, and most
work has made restrictive assumptions. Biswas et al. estimate
object shape models and object-cluster memberships for pre-
segmented object instances in 2-D occupancy grid maps [3].
They assume the number of objects is known and that each
connected component of occupied cells is one object. Wolf
and Sukhatme perform SLAM for long periods of time by

E. Herbst, P. Henry and D. Fox are with the University of Washington,
Department of Computer Science & Engineering, Seattle, WA 98195.
X. Ren and D. Fox are with Intel Labs Seattle, Seattle, WA 98105.

This work was funded in part by an Intel grant, by ONR MURI grants
N00014-07-1-0749 and N00014-09-1-1052, by the NSF under contract IIS-
0812671, and through the Robotics Consortium sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement W911NF-10-2-0016.

maintaining two occupancy grids, one for static and one
for movable objects, to identify cells occupied by movable
objects at any given time [20]. Connected components is
also the standard approach to segmenting objects in 3-
D; for example, [16] assumes all objects are on a table,
fits a plane to the table and takes each large remaining
connected component of 3-D points to be an object. Several
authors have segmented objects by fitting geometric solids
to point clouds using the method of [17]. This method was
developed to approximate a very dense cloud with a small
number of models; its applicability to object modeling is less
obvious, since a shape that can be fit well by a moderate
number of geometric solids is generally better explained by
a single higher-level model, e.g. a train engine. Since we are
discovering objects, we don’t have a database of predefined
object models to fit, so we use only relatively low-level cues.
We improve on previous segmentation efforts by identifying
surface patches likely to have moved between two scenes.
We use ray casting with a probabilistic model of sensor
measurements that is robust to sensor noise and that enables
us to fuse information from multiple sensor modalities.

Probabilistic measurement models are common in robot
localization [7] and mapping [18]. This is natural: generative
models are appealing for work with sensors because often we
can accurately describe the process of measurement genera-
tion, and Bayesian models appeal when we need to combine
many sensor readings. Hähnel et al. add dynamic object
estimation to SLAM and use expectation-maximization to
label each measurement static or dynamic [9]. Kim et al.
probabilistically fuse information from multiple depth sen-
sors and cameras for dense 3-D reconstruction [13]. We
use a generative sensor measurement model with similar
sensor modalities to those of [13], but discard some of their
independence assumptions.

Probabilistic sensor models have also been used for change
detection. Kaestner et al. [12] use a model of laser measure-
ments to find changes in outdoor scenes. They perform global
alignment of laser scans using iterated closest points (ICP)
and detect changes using statistical significance testing for
each measurement independently.

Our algorithm aligns the frames of each RGB-D video
using SLAM, then reconstructs each scene as a dense set
of surface elements (Section II). Our measurement model
(Section III) tells us how likely each surface element is
to have moved between two scenes. In Section IV-A we
employ the model to detect differences between scenes and
in Section IV-B we spatially regularize to find large surface
regions that may belong to movable objects.

(a) (b) (c)
Fig. 1: (a), (b) reconstruction of two scenes; (c) their superimposition after alignment.

(a) (b)
Fig. 2: Zoom into the edge of the table from Fig. 1: (a) after SIFT
RANSAC alignment; (b) after additional ICP alignment.

II. SCENE RECONSTRUCTION AND ALIGNMENT

The inputs to our system are two or more RGB-D videos
representing separate visits to the same location. From each
sequence we generate a geometrically consistent 3-D recon-
struction, or scene. Objects can move between visits but are
assumed static during each visit.

A. Scene Reconstruction / SLAM
We build on RGB-D Mapping [10], a SLAM technique

for generating dense 3-D maps. At a high level, RGB-D
Mapping performs (1) pairwise frame alignment by visual
odometry, (2) loop-closure detection and (3) global path
optimization. In our off-line setting, we first compute vi-
sual features for all video frames. We choose SIFT as the
descriptor, because accuracy is more important than speed
to our application. Each visual feature is assigned the depth
of the nearest pixel. The 3-D transformation between each
pair of adjacent frames is estimated using RANSAC, using
Horn’s method [11] to fit models.

Loop-closure detection selects a subset of frames to be
keyframes and speeds up the search by only matching pairs
of keyframes. The same RANSAC algorithm as before is
used to estimate the 3-D transformation between matching
keyframes. Each time-adjacent frame pair and each pair
of matched keyframes generates an edge in a pose graph,
described by the transform produced by RANSAC. We use
a pose-graph optimizer to globally adjust camera poses.
The constraints used by this optimizer do not encode all
the information from feature matching, so the optimization
may introduce local inconsistencies. Therefore, we improve
on RGB-D Mapping by following pose-graph optimization
with bundle adjustment, again using 3-D-augmented SIFT
descriptors. Bundle adjustment improves local consistency
without disrupting global consistency.

Each frame consists of 250,000 colored 3-D points. Repre-
senting a scene by the concatenation of these point clouds is
redundant, unwieldy and noisy. Following global registration,

we convert points to surfels [14] to reduce map size and
smooth evidence from multiple frames. Each 3-D point from
each frame is assigned to a surfel, either an existing one or
a newly created one if there is no existing surfel close to the
point. Fig. 1 shows two reconstructions of a location.

We probabilistically model the position, color and orienta-
tion of each surfel, keeping uncertainty information as well
as MAP values. A Gaussian over position can be updated
recursively during reconstruction, and we compute distribu-
tions over color and normal after reconstruction. We exclude
from differencing each surfel that has high uncertainty in any
of these attributes.

The rest of our algorithm will require the surface to be
representable as a finite set of local samples. We choose
to use surfels for this paper, but the algorithm would work
equally well with meshes or samples from implicit surfaces.

B. Scene Alignment

Assuming moved objects are a small part of each scene, we
fit a single rigid transformation to the sets of point features
in each pair of scenes using RANSAC. We compute SIFT
features, assign each the 3-D location of the nearest depth
point in its frame, and transform each image’s features into
a scene-global frame. This allows us to compute a transform
between the sets of all features in each scene, which is more
robust than the alternative of computing transformations be-
tween individual frames of different scenes and picking one
to be the global transform. These transforms are inaccurate
due to depth noise, so we furthermore run ICP, using the
point-to-plane error of [5]. We ignore 30% of the worst-
aligned points when calculating error, to account for the
movable objects we expect. As an example of our global
alignments, Fig. 1 shows the superimposition of two aligned
scenes. A typical example of the improvement achieved by
ICP is shown in Fig. 2.

III. MEASUREMENT MODEL FOR RGB-D CAMERAS

We now introduce a sensor model for RGB-D cameras.
Our model incorporates information from both depth and
color, taking the correlations between the different sensor
modalities into account.

RGB-D cameras provide a dense matrix of pixels, each
measuring the color and distance of the closest surface in the
pixel direction [10]. We make use of dense depth information
to locally estimate surface normals and define a virtual

(a) (b) (c) (d)
Fig. 3: (a) Probability of a depth measurement zd given no knowledge about the environment (red) and given a model in which the
closest surface patch along the pixel beam is at 3 m (blue). (b) Probability of measuring distance zd given that the known surface caused
(red) or did not cause (blue) the measurement. (c) Probability that the surface at z∗d = 3 caused the measurement zd. This probability
serves as a weighting function for the mixture components of the color and orientation models. (d) Probability that the expected surface is
missing given a depth measurement zd. The model parameters used to make these plots are different from those used in our experiments.

measurement z = �zd, zc, zα�, where zd is the depth value of
the pixel, zc the color, and zα the orientation of the detected
surface. Our probabilistic model for pixel measurements is
motivated by beam-based models for distance sensors such
as laser range finders or sonar sensors, extending these to
incorporate the additional color and local shape information
provided by RGB-D cameras.

As will become clear in Section IV, we need to consider
two cases, one in which there is no knowledge about the
environment and one in which we have a 3-D reconstruction
of the environment we expect to see.

A. No Scene / Surface Information

We now model an RGB-D pixel measurement z if there is
no prior information about surfaces in the scene. We assume
that in absence of any surface information, the depth, color,
and orientation measurement components are independent:

p(z) = p(zd, zc, zα) ≈ p(zd)p(zc)p(zα) (1)

Following models developed for range sensors such as laser
scanners and sonar sensors [18], [8], the distribution over
depth measurements given no information about surfaces is
a mixture between an exponential and a uniform distribution:

p(zd) =

�
wshort

wrand

�T

·
�

pshort(zd)
prand(zd)

�

pshort(zd) =

�
η λshort e−λshortzd if zd ≤ zmax

0 otherwise

prand(zd) =

� 1
zmax

if zd < zmax

0 otherwise
, (2)

where pshort models the probability that the pixel detects
a surface before reaching maximum range, and prand is a
uniform distribution over the measurement range. wshort and
wrand are mixture weights and λshort and η are the scale
parameter of the exponential distribution and its normalizer,
respectively. An example for this mixture distribution is
represented by the red line in Fig. 3(a).

Given no map of the environment, we model the color
and orientation distributions p(zc) and p(zα) as uniform
distributions over the color and orientation spaces.

B. Known Scene / Surface
We now assume that a scene surface map is available.

Given the location of the depth camera, we can use ray
tracing to determine the distance, color, and local orienta-
tion of the closest surface along the pixel direction. This
information can be encoded in an expected measurement
z∗ = �z∗d , z∗c , z∗α�. Conditioning on the expected measure-
ment and separating the individual components of the pixel
measurement, we apply the chain rule:

p(z | z∗) = p(zd, zc, zα | z∗)
= p(zd | z∗)p(zc | zd, z∗)p(zα | zd, zc, z∗)
≈ p(zd | z∗d)p(zc | zd, z∗)p(zα | zd, z∗) . (3)

In the last step we assume that the orientation zα is inde-
pendent of the color zc. This model is similar to that of
[13], which combines three cues—depth, color, and image
gradients—for 3-D reconstruction. However, while they as-
sume independence of the components, we explicitly model
the dependences between color, orientation, and depth. As
we will show below, this results in more accurate models
since, given a surface patch, the distance provides additional
information about the expected orientation and color.

We now derive models for the three components. The
model for the depth value p(zd | z∗d) is almost identical to
that of existing models for laser or sonar beams. Here, we
stay close to the one given by Thrun and colleagues [18],
who model p(zd | z∗d) as a mixture of four distributions 1.
We use three of their components 2:

p(zd | z∗d) =

whit

wshort

wrand

T

·

phit(zd | z∗d)
pshort(zd | z∗d)
prand(zd | z∗d)

 (4)

phit represents the case in which the measurement hits the
expected surface, and the other two components are just
like those modeling unknown surfaces, with the exponential
distribution cut off at the expected distance. The distribution

1We actually use the more correct but less intuitive model of [7].
2We do not explicitly model maximum-range measurements, since these

correspond to uninformative noise in our RGB-D camera and can be
ignored without substantial loss of expressiveness. Incorporating max range
if necessary would be straightforward.

for the first case is a Gaussian centered at the expected
distance:

phit(zd | z∗d) =
�

η N (zd; z∗d ,σ
2
hit) if zd ≤ zmax

0 otherwise (5)

Here zmax is the maximum measurement range and η is a
normalizer. σ2

hit is the distance measurement noise, which is
a function of z∗d , of the obliqueness of the viewing angle
to the expected surface, and of the error in stereo depth
estimation as a function of depth (we use a stereo noise
model since our depth camera technology is based on stereo).
Intuitively, the more obliquely the camera views a surface,
the less accurate the measurement of that surface will be; we
model this by

σhit =
σ0(z∗d)

sin(π/2− θ)
,

where θ is the angle between the viewing direction and
the expected surface’s normal. An example for the mixture
distribution is given by the blue line in Fig. 3(a). Fig. 3(d)
visualizes the posterior p(m | zd, z∗d) resulting from ignoring
color and orientation.

We now turn to the models for the color and orientation
components of a measurement, respectively p(zc | zd, z∗)
and p(zα | zd, z∗). The color model obviously should depend
on z∗c , the color of the expected surface. However, the
additional conditioning on zd allows us to use the depth
value to determine whether the measurement was actually
caused by the expected surface or by some other surface
(due to moving objects, for example). To do so, we introduce
a binary random variable h whose value is whether the
expected surface caused the measurement.

p(zc | zd, z∗) = p(zc | zd, z∗, h) p(h | zd, z∗)
+ p(zc | zd, z∗,¬h) p(¬h | zd, z∗) (6)

follows directly by conditioning on h. We can model the first
component of this mixture by a Gaussian with mean at the
expected color:

p(zc | zd, z∗, h) ∼ N (z∗c ,σ
2
col) (7)

We model the other mixture component in (6), p(zc |
zd, z∗,¬h), by a uniform distribution over the color space.

To determine the weights of these two mixture compo-
nents, we apply Bayes’ rule to p(h | zd, z∗) and p(¬h |
zd, z∗), yielding

p(h | zd, z∗) ∝ p(zd | h, z∗)p(h | z∗) (8)
p(¬h | zd, z∗) ∝ p(zd | ¬h, z∗)p(¬h | z∗) (9)

with the same constant of proportionality in both. Here,
p(zd | h, z∗) and p(zd | ¬h, z∗) are special cases of the
distance model given in (4): p(zd | h, z∗) is the Gaussian
component phit, and p(zd | ¬h, z∗) is a mixture of the other
two components pshort and prand.

p(h | z∗) in (8) can be computed as
� zmax

0
phit(zd|z∗)
p(zd|z∗) dzd.

Example distributions for p(zd | h, z∗) and p(zd | ¬h, z∗)
are given in Fig. 3(b). Plugging these distributions into the

weighting function (8) results in the plot shown in Fig. 3(c).
Again, this distribution serves as a weighting function for the
mixture components in the color model (6). As a result, the
measured color zc should be similar to the expected color z∗c
if the depth measurement zd is close to the surface distance
z∗d , and uniformly distributed otherwise.

The derivation of the orientation model p(zα | zd, z∗) is
analogous and omitted for brevity. We model orientation
by a von Mises-Fisher distribution, a common choice of
distribution over a hypersphere because it has a closed-form
pdf [2]. We use parameters µ = z∗α and κ = 60.

One way to balance evidence from these three components
is to change the effective number of observations [18]. We
use the reweighting

p(z | z∗) = p(zd | z∗d)αp(zc | zd, z∗)βp(zα | zd, z∗)γ . (10)

For all experiments below we use α = 1,β = 25, γ = 5
to allow the color and normal components to override the
depth component when the observed and expected depths are
similar. These numbers are an educated guess, and results are
robust to a wide range of values.

IV. SCENE DIFFERENCING

A. Pointwise Motion Estimation

We are now equipped to detect differences between two
3-D maps. Consider a single surface patch in the first scene.
Patch s = �sx, sc, sα� is described by its location sx, color
sc, and surface orientation sα. Using the alignment technique
described in Section II, we can determine all camera poses of
the second scene relative to s. Based on these camera poses
we identify for each camera frame the pixel that points at
that surface patch (if the patch is in the camera’s field of
view). From the camera pose and the surface descriptor s we
can also compute the expected measurement z∗. We wish to
determine for each s the probability that it moved away from
its location in the first scene.

Let zs denote the set of measurements taken in the second
scene associated with a specific surface patch s in the
first scene, and let z∗s denote the expected measurements
computed from zs and s. We denote by m the Boolean
variable representing whether s moved. By Bayes’ rule,

p(m | zs, z∗s) =
p(m, z∗s)p(zs | m, z∗s)

p(zs, z∗s)
(11)

≈ p(m)p(z∗s)p(zs | m, z∗s)

p(zs | z∗s)p(z∗s)
(12)

∝ p(m)
I�

i=1

p(zi | m, z∗i) , (13)

where I is the number of frames in the second scene, p(m)
comes from prior knowledge (we usually use .1 because few
of our surfels move) and

p(zi | m, z∗i) =

�
p(zi | z∗i), m = 0
p(zi), m = 1

. (14)

The idea behind (14) is that if the surface did not move,
the measurement follows the surface-based model (3). If the
surface patch moved, however, we have no knowledge about
what to expect, so we use the prior model (1).

The pointwise motion probabilities computed for the sur-
face patches of the left scene in Fig. 1 are shown in Fig. 5(a).
The changed objects are detected as high-probability areas,
using the combination of depth, color, and orientation cues.
Furthermore, the grey areas appropriately represent surface
regions that are occluded in the second scene (Fig. 1(b)).
However, due to sensor noise and imperfect alignment, the
individual motion probabilities are still noisy.

B. Spatial Regularization
To improve spatial consistency we generate a Markov

random field with a node for each surface patch. Each
node has two choices of label: moved and not moved. For
efficiency we use only pairwise cliques in the MRF so that
we can use graph cuts [4] for inference. The data energy for
the MRF is straightforwardly calculated from the output of
the pointwise model:

Ed(l) =

�
log(1− p(m | z, z∗)), l = m
log(p(m | z, z∗)), l = ¬m (15)

For the smoothness energy we use the Potts model, weighted
by the curvature of the local region to discourage cuts in low-
curvature areas:

Eb(si, sj , l1, l2) = ws

�
1√

max(κi,κj ,κ0)
, l1 �= l2

0, l1 = l2
(16)

Here si and sj are surface patches and l1 and l2 their labels.
κi is the previously computed local curvature at si. κ0 is a
constant representing the minimum curvature beyond which
all surfaces can be described as “very flat”; we set it to
1 m−1. We set the smoothness weight ws by optimization
over two scene pairs (not the ones visualized in Fig. 5 and
Fig. 6). The result of applying this MRF to the probabilities
displayed in Fig. 5(a) is shown in Fig. 5(b).

V. EXPERIMENTS

We evaluate our sensor model and demonstrate the ability
to discover and model objects in a tabletop setting. In each
experiment, the RGB-D camera was carried by hand to
generate partial coverage of the scene.

A. Depth-Dependent Color Model
Our color and orientation models take the expected color

and orientation into account, but also model dependence on
the expected vs. measured distance of the surface patch. In
this experiment we demonstrate the advantage of our model
over a sensor model that ignores this dependence (as that
of [13]). The left two panels in Fig. 4 show top views of
an experiment in which a white object is placed on the
table in scene 1 (Fig. 4(a)) and is then occluded from the
camera viewpoints by a white box in scene 2 (Fig. 4(b)).
Fig. 4(c) shows the motion probabilities coming from a
color model that does not model dependence on depth (a

depth-independent mixture between a Gaussian and uniform
color model). The model erroneously is certain that the white
object in the left scene did not move (note the nearly black
outline of the object). However, the second scene provides
no evidence about this area since it is fully occluded by the
white box. As can be seen in Fig. 4(d), our depth-dependent
color model generates the correct probabilities, having near
0.5 probability in the occluded area.

B. Detecting Moved Objects

In Fig. 5 we show results on the complex scene pair of
Fig. 1. Each scene contains a spray bottle and a cylindrical
object in about the same location, such that simple nearest-
neighbor point search would consider them the same objects.
Due to our use of color and orientation information, we
correctly detect changed surfaces at these locations in both
scenes. One of the objects is also occluded, necessitating the
use of our depth-dependent color model. In Fig. 5(a) and
Fig. 5(c) we show the raw probabilities p(m | zd, z∗) from
our sensor model. Labels after regularization are shown in
Fig. 5(b) for the first scene and Fig. 5(d) for the second scene,
demonstrating that we find all movable objects with high
accuracy despite using only low-level cues. We extract each
connected component of same-label surface patches as a 3-D
model and show the foreground (object) models in Fig. 7(a),
along with the merge of the two background segments, which
fills in some holes in each individual table.

Fig. 6 gives results for another scene pair. In the tvtable
dataset, small objects move around on a cluttered table.
In Fig. 7(b) we show four extracted foreground connected
components along with the merged backgrounds; again we
have filled in some holes on the table. We do not show
foreground components that are very small, of which there
are one in Fig. 5 and three in Fig. 6. We provide 3-D
model files for these scenes, and the extracted objects,
at http://www.cs.washington.edu/robotics/
projects/object-discovery/. PLY files can be
opened using Meshlab [6].

C. Quantitative Results

We manually annotated which surfels moved for each
scene pair in a set of four scenes. (Occluded points were
marked not moved.) Performance numbers for these scene
pairs are given in table I. Precision and recall were calculated
with respect to surfels annotated as moved, since those are
a small minority of surfels and are the most salient surfels
for most applications of differencing.

precision recall accuracy baseline % error

accuracy reduction

average .965 .800 .990 .968 68.8
min .911 .662 .980 .954

TABLE I: Performance statistics aggregated over 12 scene pairs
after spatial regularization. “Baseline” refers to the classifier that
labels all surfels not moved. “Error reduction” is our improvement
w.r.t. the baseline error rate. To pick regularization parameters we
optimized a modified F-1 score giving extra importance to precision.

(a) (b) (c) (d)
Fig. 4: Depth-dependent color model. The white object in the left scene (a) is occluded by the white box in the second scene (b). A
depth-independent model (c) generates a very high probability that the white object did not move. Our color model (d) correctly captures
the occlusion and generates motion probabilities near 0.5 in the occluded area. In this and further figures, green represents points either
not seen during mapping or seen in one map but not the other so that differencing is not possible. In (c) and (d), the floor has also been
removed for clarity. Grayscale pixels give p(m | z): the darker, the higher the probability of movement.

(a) (b) (c) (d)
Fig. 5: (a) surfel-wise differencing and (b) regularization results for the first scene of Fig. 1; (c), (d) similarly for the second scene.

(a) (b) (c)

(d) (e) (f)
Fig. 6: (a), (d) two scenes from the tvtable dataset; (b), (e) surfel-wise differencing results for the two scenes; (c), (f) regularization
results. A few surfels shown in the surfelwise result do not appear in the final output due to culling we perform prior to regularization.
Three large occluded areas in (b) and (e) show as medium gray (movedness uncertain).

D. Timing
In table II we break down the time spent by our system

on the scenes of Fig. 6 (differencing both ways). These two

videos have 360 and 500 frames respectively; the maps con-
tain 650k and 620k surfels respectively. Subsampling frames
would speed up mapping, reconstruction and differencing.

Fig. 7: Objects extracted from the scene pairs of Fig. 1 and Fig. 6, and the merged background components of each pair of scenes. In
the right panel some of the background is faded for clarity.

There are a number of other ways to speed up mapping,
but in our experience they are all very data-dependent; we
used settings conservative enough to work in a relatively
large number of cases at the expense of speed. Alignment
could be sped up by subsampling the set of features given
to RANSAC; here again we are conservative. The machine
used has 16 hardware threads, and various parts of our
system make use of this; in particular differencing is almost
embarrassingly parallel.

Stage Time

preprocessing 400s
mapping 600s (mostly bundle adjustment)
reconstruction 360s
alignment 140s (100s w/o ICP)
differencing 180s
regularization 24s

TABLE II: Time spent in each stage of our algorithm for the scene
pair shown in Fig. 6.

VI. CONCLUSION

We have described a method to determine movable parts
of a scene based on differencing with another scene. Our
method makes no assumption on overall object shape, texture
of surfaces, or large motion relative to object size. It also
models and finds occluded surfaces. Phrasing the differenc-
ing problem in terms of a probabilistic model of sensor
readings provides robustness to noisy data as well as a princi-
pled way to combine information from multiple sensors. The
method relies on 3-D reconstruction, whose accuracy and
robustness could use improvement; the difficulty of making
good geometric maps is our largest obstacle. Our algorithm
can also find large moving objects, such as furniture; see the
website (given in Section V-B) for an example.

We plan to use the movement detection techniques pre-
sented here together with matching of surfaces among mul-
tiple scenes to improve object localization. With our differ-
encing technique it is straightforward to combine evidence
from multiple scenes to improve the input to spatial regu-
larization. Matching can be initialized using point-feature
matches for highly textured areas and point-cloud-based
techniques for untextured regions. Then evidence about intra-
scene and inter-scene similarity can be combined, perhaps

using random fields similar to those of [19], to identify
objects common to multiple scenes.

REFERENCES

[1] P. Bhat, K. Zheng, N. Snavely, A. Agarwala, M. Agrawala, M. Cohen,
and B. Curless. Piecewise image registration in the presence of large
motions. In CVPR, 2006.

[2] C. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2007.

[3] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object
mapping in dynamic environments with mobile robots. In IROS, 2002.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. PAMI, 1999.

[5] Y. Chen and G. Medioni. Object modelling by registration of multiple
range images. Image Vision Computing, 10(3):145–155, 1992.

[6] P. Cignoni. Meshlab. http://meshlab.sourceforge.net/.
[7] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile

robots in dynamic environments, 1999.
[8] D. Fox, W. Burgard, and S. Thrun. Markov localization for reliable

robot navigation and people detection. In Modelling and Planning for
Sensor-Based Intelligent Robot Systems, LNCS. Springer, 1999.

[9] D. Haehnel, R. Triebel, W. Burgard, and S. Thrun. Map building with
mobile robots in dynamic environments. In ICRA, 2003.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using depth cameras for dense 3-D modeling of indoor environments.
In ISER, 2010.

[11] B. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society A, 1987.

[12] R. Kaestner, S. Thrun, M. Montemerlo, and M. Whalley. A non-rigid
approach to scan alignment and change detection using range sensor
data. In Symposium on Field and Service Robotics, 2005.

[13] Y. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun.
Multi-view image and TOF sensor fusion for dense 3-D reconstruction.
In 3DIM, 2009.

[14] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface
elements as rendering primitives. In SIGGRAPH, 2000.

[15] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard. Unsupervised
learning of 3-D object models from partial views. In ICRA, 2009.

[16] R. Rusu, N. Blodow, Z. Marton, and M. Beetz. Close-range scene
segmentation and reconstruction of 3-D point cloud maps for mobile
manipulation in domestic environments. In IROS, 2009.

[17] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for point-cloud
shape detection. Computer Graphics Forum, 2007.

[18] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[19] J. van de Ven, F. Ramos, and G. Tipaldi. An integrated probabilistic
model for scan matching, moving object detection and motion estima-
tion. In ICRA, 2010.

[20] D. Wolf and G. Sukhatme. Online simultaneous localization and
mapping in dynamic environments. In ICRA, 2004.

