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Abstract

Recognizing and manipulating objects is an important task for mobile robots
performing useful services in everyday environments. While existing techniques
for object recognition related to manipulation provide very good results even for
noisy and incomplete data, they are typically trained using data generated in an off-
line process. As a result, they do not enable a robot to acquire new object models
as it operates in an environment. In this paper, we develop an approach to build-
ing 3D models of unknown objects based on a depth camera observing the robot’s
hand while moving an object. The approach integrates both shape and appear-
ance information into an articulated ICP approach to track the robot’s manipulator
and the object. Objects are modeled by sets of surfels, which are small patches
providing occlusion and appearance information. Experiments show that our ap-
proach provides very good 3D models even when the object is highly symmetric
and lacks visual features and the manipulator motion is noisy. Autonomous object
modeling represents a step toward improved semantic understanding, which will
eventually enable robots to reason about their environments in terms of objects and
their relations rather than through raw sensor data.

1 INTRODUCTION
The ability to recognize and manipulate objects is important for mobile robots perform-
ing useful services in everyday environments. Over the last years, various research
groups have made substantial progress in recognition and manipulation of everyday
objects (Saxena et al., 2008; Collet Romea et al., 2009; Berenson and Srinivasa, 2008;
Ciocarlie et al., 2007; Lai and Fox, 2009; Rasolzadeh et al., 2009; Glover et al., 2009).
While the developed techniques are often able to deal with noisy data and incomplete
models, they still have limitations with respect to their usability in long-term robot de-
ployments in realistic environments. One crucial limitation is due to the fact that there
is no provision for enabling a robot to autonomously acquire new object models as it
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Figure 1: Experimental setup. We use a WAM arm with BarrettHand on a Segway
base. Mounted next to the arm on a pan-tilt unit is a PrimeSense depth camera.

operates in an environment. This is an important limitation, since no matter how exten-
sive the training data, a robot might always be confronted with a novel object instance
or type when operating in an unknown environment.

The goal of our work is to develop techniques that enable robots to autonomously
acquire models of unknown objects, thereby increasing their semantic understanding.
Ultimately, such a capability will allow robots to actively investigate their environments
and learn about objects in an incremental way, adding more and more knowledge over
time. In addition to shape and appearance information, object models could contain
information such as the weight, type, typical location, or grasp properties of the object.
Equipped with these techniques, robots can become experts in their respective environ-
ments and share information with other robots, thereby allowing for rapid progress in
robotic capabilities.

In this paper, we present a first step toward this long-term goal. Specifically, we de-
velop an approach to building a 3D surface model of an unknown object based on data
collected by a depth camera observing the robot’s hand moving the object. In contrast
to much existing work in 3D object modeling, our approach does not require a highly
accurate depth sensor or a static or unobstructed view of the object, nor does it require
an extremely precise manipulator. This point is essential because our manipulator can
experience errors of multiple centimeters caused by cable stretch (see Fig. 3). It is also
an important feature if such techniques are to be used in robots priced for consumer
use.

Recently, sensors combining RGB images with depth measurements (RGB-D sen-
sors) have come to prominence due to their gaming applications and in particular due
to the release of the Xbox 360 Kinect (Microsoft, 2010). Such sensors are now both
very affordable (around $150) and readily available, making them ideal for personal
robotics applications. In this paper, we equip our robot with an RGB-D sensor devel-
oped by PrimeSense (a reference design equivalent to the Kinect) to allow it to sense
its environment and model objects that it encounters.
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Figure 2: High level overview of our approach. As sensor data come in, we incremen-
tally update the configuration and object model estimates.

We develop a Kalman filter that uses depth and visual information to track the con-
figuration of the robot’s manipulator along with the object in the robot’s hand. By
doing so, our approach can compensate for errors in manipulator and object state es-
timates arising from factors such as noise in the manipulator’s joint sensors and poor
kinematic modeling. Over time, an increasingly complete 3D model of the object is
generated by extracting points from each RGB-D frame and aligning them according
to the tracked hand and object position. The approach integrates the frames into a con-
sistent surface model using surfels, small discs which represent local surface patches.
Experiments show that our approach can generate good models even for objects that
are highly symmetric, such as coffee cups, and objects lacking visual texture.

Fig. 2 presents a simplified outline of our approach. On each frame, new sensor data
are fed into a Kalman filter, which produces pose estimates of the manipulator, object,
and sensor. The Kalman filter tracking is based on RANSAC feature matching and an
Iterative Closest Point variant. These estimates enable segmentation of the object from
the RGB-D frame and its alignment with the existing object model. The model can
then be updated based on the new sensor data.

Our work provides the following contributions:

• We propose a framework for simultaneously tracking a robotic manipulator and
a grasped object while constructing a 3D model of the object. We also show how
this system can be integrated with other components to perform autonomous
object modeling: An unknown object can be picked up, modeled, placed back
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down, and regrasped so as to fill in holes caused by manipulator occlusion.

• We present a novel Iterative Closest Point (ICP) variant useful for performing
tracking in RGB-D data sequences. We build upon a standard point-to-plane
error metric, demonstrating extensions for sparse feature matching, dense color
matching, and priors provided by a Kalman filter. Additionally, we show how to
use the surfel representation to provide occlusion information to ICP.

• We propose an algorithm for merging multiple surfaces consisting of local sur-
face patches after loop closure. Our algorithm attempts to find a consensus be-
tween the surfaces to avoid redundancy among patches.

This paper is organized as follows. In the next section, we provide an overview
of related work. We then describe our Kalman filter approach to tracking a robot’s
manipulator and an object grasped by the hand in Section 3. We also introduce a novel
version of articulated ICP suitable to our tracking task. In Section 4, we go into detail
on the modeling process. Section 5 presents experimental results demonstrating the
quality of both the tracking and modeling components of our algorithm. Finally, we
conclude in Section 6.

2 RELATED WORK
The existing work in tracking and modeling addresses subsets of the problem we are
trying to solve; however, no paper addresses them all. We make use of depth, visual,
and encoder information to provide a tracking and modeling solution for enabling ac-
tive object exploration for personal robotics. Below, we discuss a number of areas of
research related to our own work.

2.1 Robotics for Object Modeling
Broadly speaking, object modeling techniques in robotics can be divided into two cat-
egories: ones where a sensor is moved around a stationary object and ones where the
object is picked up and moved in front of a sensor. The first category avoids the difficult
problem of robotic grasping and can be applied even to objects too large or delicate to
be picked up. The second category, into which our technique falls, has the advantages
of being able to move the object to see previously occluded sides and also lends itself
to extracting further properties such as weight and stiffness.

The first category of papers is closely related to the problem of 3D mapping as it
involves motion of a depth sensor in a stationary scene. Triebel et al. (Triebel et al.,
2004) mount a SICK laser range finder on a four DOF manipulator for 3D volumetric
modeling and exploration. They use the manipulator encoder values for sensor pose
estimation. Other approaches for environment and object modeling with a depth sensor
include Henry et al.’s RGB-D mapping (Henry et al., 2010) and Strobl et al.’s Self-
Referenced DLR 3D-Modeller (Strobl et al., 2009). Both use visual feature tracking as
the primary means of camera pose estimation. The former uses ICP to improve pose
estimates, while the latter uses an IMU to provide better image flow predictions.
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In the second category, Kraft et al. (Kraft et al., 2008) model contours of objects us-
ing a robotic manipulator and a stereo camera. The representations they learn, however,
are not complete surface models but rather sparse sets of oriented 3D points along con-
tours. Another important difference to our approach is that the authors assume precise
camera to robot calibration and precisely known robot state at all times. We believe
these assumptions to be too restrictive for the technique to be generally applicable.

Ude et al. (Ude et al., 2008) use robotic manipulation to generate training examples
for object recognition. Their approach involves generating motion sequences to achieve
varied views of an object, segmenting the object from images, and extracting training
examples for a vision-based classifier. Unlike Kraft’s work, their paper assumes neither
known camera calibration nor precisely known joint angles. However, the paper does
not deal with constructing 3D models and therefore does not require precise object
pose.

Similarly, Li and Kleeman (Li and Kleeman, 2009) use a robotic manipulator to
achieve varied views of an object for visual recognition. They store SIFT features for
frames at discrete rotation angles and perform detection by matching the features of an
input image against each viewpoint of each modeled object. The authors mention that
such models could be useful for object pose estimation. We assert that this requires
estimating the motion of the object between viewpoints using techniques such as those
we propose in this paper.

2.2 In Hand Object Modeling
An area of research having a lot of recent interest is object modeling where the object
is held and manipulated by a human hand. This problem is more difficult than the one
we address because the there are no longer encoders to provide an (approximate) hand
pose. Additionally, the appearance of human hands vary from person to person and the
human hand is capable of much more intricate motions than a robotic hand. For these
reasons, the hand is typically ignored. Typically, these algorithms only rely on the use
of visual data or depth data but not both, and to our knowledge none explicitly try to
track the hand as a means of improving alignment.

In the case of ProFORMA (Pan et al., 2009), the goal is to acquire and track models
via a webcam. While visual features alone work fine for some objects, many everyday
objects lack sufficient texture for this type of tracking.

Weise et al. (Weise et al., 2009) use 3D range scans and model objects using sur-
fels but rely solely on ICP with projection-based correspondences to provide align-
ment. Their alignment technique is very much similar to that of Rusinkiewicz et
al. (Rusinkiewicz et al., 2002) with the exception that the alignment is performed be-
tween a partial object model and the current frame rather than between the last two
frames. Because they rely on geometric matching only, these techniques tend to fail
for objects exhibiting rotational symmetries as many household objects do.

2.3 Articulated Tracking
A number of techniques exist for human hand-tracking; however, many of them make
use of only 2D information such as silhouettes and edge detections (Athitsos and
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Sclaroff, 2003; Sudderth et al., 2004). Some require pre-computed databases and may
only detect configurations within that database (Athitsos and Sclaroff, 2003) and others
are far from real-time algorithms. Given that we are using 3D sensors and that we wish
to track the manipulator in real time through a continuous space of joint angles, such
approaches are unsuitable.

In the area of human body tracking, the work of Ganapathi et al. (Ganapathi et al.,
2010) is quite promising: The authors perform tracking using a time-of-flight sensor at
close to real-time by taking advantage of GPUs. Their approach involves evaluating the
likelihood of hypotheses by ray-tracing a model and comparing to the observed depth
measurements. Additionally, parts detections can inform the search to allow recovery
from failures from occlusion or fast motion. These challenges are somewhat different
from those we face in our problem. Because our work focuses on robotic tracking, the
motions are largely known, relatively slow, and with relatively little occlusion. Our
challenge lies in precise and consistent pose estimation of the end effector and object
model to facilitate object modeling. We therefore focus on incorporating many sources
of information into our matching procedure rather than on fast evaluations of a purely
depth-based metric.

Articulated ICP is an appealing option because of its speed, its use of 3D informa-
tion, and the fact that it is readily modified to suit specific tasks, demonstrated by the
wealth of existing ICP variants (see Section 2.4). It has been used in articulated pose
estimation in the past (Pellegrini et al., 2008; Mündermann et al., 2007); however, to
the best of our knowledge, it has not been integrated with Kalman filters, which pro-
vide the advantages of smoothing and estimating uncertainties. These uncertainties are
crucial as they can be fed back into ICP to reflect the accumulated knowledge of the
state (Section 3.2.3).

The work of Kashani et al. on tracking the state of heavy machinery (Kashani et al.,
2010) combines particle filters with ICP. Their use of particle filters, however, is not to
guide ICP’s search. Rather, it provides a coarse initial registration through importance
sampling over a broader set of hypotheses than ICP itself would be likely to search. It
is also worth noting that the feasibility of this approach is largely due to their search
space being limited to just three degrees of freedom.

2.4 ICP Variants
In this paper, we introduce a number of extensions to ICP, resulting in the error function
we present in Section 3. Other works have also introduced modifications to the ICP
algorithm to incorporate additional matching criteria.

A common approach is to augment each point in the two point clouds with addi-
tional attributes. The correspondence selection step then finds closest point pairs in this
higher dimensional space. This approach has been applied to color (Johnson and Kang,
1997), geometric descriptors (Sharp et al., 2002), and image descriptors (Lemuz-López
and Arias-Estrada, 2006). The downsides of this approach are that it requires the de-
scriptors to be computed for every point, and the dimensionality of the nearest neighbor
search increases. In comparison, our algorithm only requires SIFT descriptors at de-
tected keypoints, and the nearest neighbor search occurs in only three dimensions.
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Other approaches for incorporating additional attributes include matching only a
subset of the points that have a specific attribute value (Druon et al., 2006) and con-
straining correspondences to be within a hard threshold with respect to attribute sim-
ilarity (Godin et al., 2001). The most similar approach to ours uses projection-based
correspondence selection but moves the projection along the image gradient to better
match intensities (Weik, 1997). We have found that projection-based correspondence
selection struggles with long, thin objects such as our robot’s fingers. We therefore
opt to use nearest neighbor-based correspondence selection and to augment our error
function to encourage color agreement.

Feature matching has also been used to find initializations for ICP (Johnson, 1997;
Lemuz-López and Arias-Estrada, 2006). Due to our tight Kalman filter integration, we
already have a natural choice of initialization. We instead use our feature correspon-
dences in the ICP error function, forcing the algorithm to consider these constraints
during the final alignment.

2.5 Reconstruction
For the graphics community, obtaining accurate 3D shapes of objects is a primary
research objective and has been extensively studied. Many researchers have applied
range sensing of various kinds (e.g. (Curless and Levoy, 1996; Pai et al., 2001)) and
can recover amazing details by combining elaborate hardware with meticulous experi-
mental setup, such as that in the Digital Michelangelo Project (Levoy et al., 2000). In
comparison, although we are recovering shape and appearance information, we do so
using cheap, noisy sensors and standard robotic hardware. Our goal is to robustly and
efficiently model objects and to apply such knowledge in recognition and manipulation.

In this paper we primarily perform reconstruction using a surface-element (or sur-
fel) based approach. Surfels, originally used as a rendering primitive (Pfister et al.,
2000), are oriented discs representing local surface patches on an object. They have
been used with much success in reconstruction (e.g. (Habbecke and Kobbelt, 2007;
Weise et al., 2009)) largely due to their conceptual simplicity and ease of implemen-
tation. In this paper, we base much of the reconstruction itself on the approach of
Weise et al. We will go into more detail on surfels and surfel-based reconstruction in
Section 4.

3 MANIPULATOR AND OBJECT TRACKING
Our goal is to acquire 3D models of objects grasped by a robot’s manipulator. To do
so, we must determine alignments between a (partial) object model and each sensor
frame. Existing techniques for in-hand modeling either ignore the manipulator entirely
and rely on object geometry or texture to provide alignment (Pan et al., 2009; Weise
et al., 2009), or they rely on the known manipulator motion as the sole means of reg-
istration (Kraft et al., 2008; Sato et al., 1997). We argue that the first approach will
fail for symmetric and/or textureless objects, while the second relies too heavily on, for
example, the accuracy of the joint encoders, the kinematic modeling, and the extrin-
sic sensor calibration. As a demonstration of this second fact, we show in Fig. 3 that
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Figure 3: Pictured here is our arm in four configurations. For clarity, we have at-
tached a ping pong ball to the end of the manipulator (highlighted with circles). In
each configuration, the encoders along with forward kinematics predict the same hand
pose; however, the center-to-center distance between the two farthest ball positions is
approximately 8 cm.

encoder values along with forward kinematics are not always sufficiently precise for
object modeling. Many of the factors contributing to the inaccuracies seen in the figure
are less prominent in higher precision robots for industrial applications, but because
we wish our techniques to be applicable to affordable, in-home robots, we choose not
to sidestep the issue with high-precision hardware.

As an alternative to these object-tracking only and encoder only techniques, we
propose to instead make use of multiple sources of information (namely encoders and
RGB-D frames of both the manipulator and object) and to rely on each to the extent
that it is reliable. We assume that the robot is equipped with a 3D depth sensor that
observes the robot’s manipulation space, producing 3D, colored point-clouds of the
robot’s manipulator and the object grasped by the hand. Fig. 4 shows an example
image along with depth information of a BarrettHand holding a box. This sensor is used
for both tracking and object modeling. To use such a 3D point cloud for tracking, we
assume that the robot possesses a 3D model of its manipulator. Such a model can either
be generated from design drawings or measured in an offline process. The 3D model
allows us to generate an expected point cloud measurement for any configuration of the
manipulator. In our current system, we perform a one-time ray-casting on an existing
model of the WAM Arm and BarrettHand included with OpenRAVE (Diankov, 2010).
In the future, we plan to investigate techniques similar to Sturm et al. (Sturm et al.,
2009) to instead learn these models.

Here, we present a Kalman filter based approach having the following benefits: 1)
It does not rely solely on the accuracy of the arm and is therefore applicable to a much
broader class of robotic hardware. We demonstrate that our technique can function
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Figure 4: (left) A BarrettHand holding a box. (right) Rendering of the depth map
provided by our depth camera.

even in the absence of encoder data; 2) Since the proposed technique tracks the arm
in addition to the object, it can find proper alignments for geometrically- and visually-
featureless object regions; 3) The algorithm reasons about the object in hand (both its
motion and the occlusion it causes), which we show improves manipulator tracking;
and 4) Explicitly tracking the hand leads to straight-forward hand removal from sensor
data for object model update. Finally, although we focus in this paper on the benefits
of the manipulator tracking technique for object modeling, the technique can be used
in any situation where a more precise estimate of a robot’s hand pose is desirable.

3.1 Kalman Filter Tracking
We use a Kalman filter for tracking because it helps maintain temporal consistency
as well as providing estimates of uncertainty. The algorithm, shown in Table 1, takes
as input the previous time step mean and covariance, surfel clouds representing the
manipulator and object, and joint angles reported by the encoders of the manipulator.
At a high level, the algorithm uses the measured joint angles in a motion-based update
(Steps 2 - 4), uses articulated ICP to provide a measurement of the system state (Step
5), updates the object model (Step 6), and performs a measurement-based state update
(Steps 7-9).

In particular, our Kalman filter state consists of three components:

• The manipulator joint angles θ̂.

• The transformation T̂calib, representing an adjustment to the initial robot to cam-
era calibration, which transforms the base of the manipulator into the 3D sensor
frame.

• The transformation T̂obj , representing an adjustment to the location of the object
relative to the palm of the hand. It transforms the object point cloud into the
reference frame of the palm.

The adjustment transformations T̂calib and T̂obj are initialized to identity trans-
formations and are encoded as quaternions and translations. The initial state of the
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1: Hand object tracker(µk−1,Σk−1,Sm,Sobj ,Pz, θ̃k, θ̃k−1):

2: uk = θ̃k − θ̃k−1 //motion reported by encoders
3: µ̄k = µk−1 + Buk //motion update of mean
4: Σ̄k = Σk−1 + Rk //motion update of covariance
5: µ̂k = Articulated ICP

(
Sm,Sobj ,Pz, µ̄k, Σ̄k

)
6: S ′obj = Segment and merge object(Sm,Sobj ,Pz, µ̂k)

7: Kk = Σ̄k + (Σ̄k + Qk)−1 //Kalman gain
8: µk = µ̄k + Kk(µ̂k − µ̄k) //measurement update of mean
9: Σk = (I −Kk)Σ̄k //measurement update of covariance

10: return µk,Σk,S ′obj

Table 1: Kalman filter for joint manipulator and object tracking.

Kalman filter has associated with it a covariance matrix representing the uncertainties
in the initial angles, the camera calibration, and the placement of the palm relative to
the first object point-cloud.

As given in Step 2, the motion update uk is based upon the difference in the re-
ported joint angles since the previous time step. The prediction step of the Kalman
filter then generates the predicted state µ̄k in Step 3. The matrix B simply projects the
joint angle update into the higher dimensional space of the Kalman filter state. Associ-
ated with this update step is noise in the motion distributed according to the covariance
matrix Rk (Step 4). If the camera is assumed fixed (as in our case), then Rk does not
contribute any new uncertainty to those components of the state. The components of
Rk representing uncertainty in the object’s motion allow our algorithm to handle slight
slippage of the object. In Section 3.3, we discuss how we use these components to
enable regrasping the object.

If the calibration and the object’s pose relative to the palm are assumed fixed (that
is, if the object is grasped firmly), then Rk will not contribute any new uncertainty to
those components of the state. Alternatively, one may include those terms in Rk in
order to compensate for movement of the camera or the object inside the hand.

In Step 5, the function Articulated ICP matches the surfel models of the manipu-
lator and object into the observed point cloud and returns an estimate, µ̂k, of the state
vector that minimizes the mis-match between these clouds. Details of this algorithm
are given in Section 3.2.

Segment and merge object uses the output of Articulated ICP to extract points
from the current measurement, Pz , that belong to the object. To do so, it uses the
ICP result µ̂k to appropriately transform the manipulator surfel model Sm into the cor-
rect joint angles and into the sensor’s reference frame. Sm is then used to identify
points in Pz generated by the manipulator via simple distance checking. This hand
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Figure 5: Because we explicitly track the robot’s arm, we can remove it from the current
measurement Pz by simply checking 3D distances to the arm model.

removal procedure is demonstrated in Fig. 5.
The points belonging to the object in the hand can then be identified due to their

physical relation to the end effector. This technique has the added benefit that it does
not require a static background as many vision-based algorithms do. The resulting
points are then integrated into Sobj with update rules we will describe in Section 4.

Steps 7 through 9 are standard Kalman filter correction steps, where we take ad-
vantage of the fact that Articulated ICP already generates an estimate of the state, µ̂k,
thereby allowing the simplified correction in Step 8. Qk represents the uncertainty
in the ICP result µ̂k. While techniques do exist for estimating this matrix (e.g. by
using the Jacobian matrix of the ICP error function), their estimates are based on the
local neighborhood of the solution. If ICP finds only a local optimum, such estimates
could drastically underestimate the degree to which the ICP solution is incorrect. We
therefore set Qk manually and leave online estimation as future work.

3.2 Articulated ICP
We now describe the function Articulated ICP used in Step 5 of the tracking algorithm.
Articulated ICP is an iterative approach to estimating joint angles by attempting to
minimize an error function over two point clouds. As shown in Table 1, we use the
result of the articulated ICP algorithm as a noisy state observation.

We begin with a review of the ICP algorithm for rigid objects. The input to ICP
are two 3D point-clouds, a source cloud Ps =

{
p1s, . . . , p

M
s

}
and a target cloud Pt ={

p1t , . . . , p
N
t

}
. The goal is to find a transformation T ∗ (3D rotation and translation)

which aligns the point-clouds as follows:

T ∗ = argmin
T

M∑
i=1

min
pj
t∈Pt

wi

∣∣∣T (pis)− p
j
t

∣∣∣2 (1)

To achieve this minimization, the ICP algorithm iterates between the inner min-
imization of finding correspondences as pairs of closest points given a transforma-
tion and the outer minimization of finding the transformation minimizing the sum of
squared residuals given the correspondences. Since ICP only converges to a local min-
imum, a good initialization for T is important.

In our context, Ps is a combined model of the object Sobj and the manipulator Sm,
and Pt contains the current observation. As in (Pellegrini et al., 2008; Mündermann
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et al., 2007), the point clouds in our articulated ICP are related to objects that consist
of multiple links connected via revolutionary joints. Specifically, each point pis ∈ Ps

has associated to it a link li in the robot’s manipulator and is specified in the local
coordinate system of that link. Given the state, x = 〈θ, Tcalib, Tobj〉, a link li in the
robot model has a unique transformation TS

li
(x) that maps its points into the reference

frame of the sensor. The object is treated as its own link, which has an offset Tobj from
the palm frame. The goal of articulated ICP is to solve for the following:

〈θ, Tcalib, Tobj〉∗ = x∗ = argmin
x

M∑
i=1

min
pj
t∈Pt

wi

∣∣∣[TS
li (x)](pis)− p

j
t

∣∣∣2 (2)

We found that the use of point-to-plane type error functions (Chen and Medioni,
1992) can help to improve the performance of ICP by preventing undesired sliding of
surfaces. When using point-to-plane, the ICP algorithm continues to select correspon-
dences in the usual way (for efficiency, we use a KD-tree over the target cloud). We
denote the index of the ith source point’s correspondence as corr(i). The difference
when using a point-to-plane metric is that the error function optimized by the outer
minimization changes from

Ept−pt(x) =

M∑
i=1

wi

∣∣∣[TS
li (x)](pis)− p

corr(i)
t

∣∣∣2 (3)

to

Ept−plane(x) =

M∑
i=1

wi(([T
S
li (x)](pis)− p

corr(i)
t ) · ncorr(i)t )2 (4)

To efficiently determine the normals
{
n1t , . . . , n

N
t

}
of the target cloud, we com-

pute eigenvectors of the covariance matrices for local neighborhoods provided by the
grid-structure of the data. The weight wi for the ith source point is based on the agree-
ment between the normals of the corresponding points (the inner product of the two).
Additionally, a weight is set to zero if the correspondence distance is over a threshold,
if the source point’s normal (provided by the surfel representation) is oriented away
from the camera, or if the line segment from the camera to the source point intersects
any other surfel (occlusion checking).

The point-to-plane error metric (4) is the starting point from which we extend artic-
ulated ICP. It has no closed form solution (even for the simple, non-articulated case),
so we use Levenberg-Marquardt to optimize the function. We now describe extensions
to the ICP error function to improve tracking by taking advantage of other available
information.

3.2.1 Sparse Feature Matching

Provided we can find a set of sparse feature correspondences F between 3D points in
the source and target clouds, we can add them to the optimization by including an extra
error term:
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Efeature(x) =
∑

(fs,ft)∈F

|[T (x)](fs)− ft|2 (5)

Here, T (x) refers to the transformation for the object link because, as we will
explain momentarily, we only track features lying on the object. An important point
to note is that (5) uses a point-to-point style error function, which provides a stronger
constraint than a point-to-plane function.

These fixed, feature-based correspondences enable the use of visual information to
improve matching. As an example, for objects that are geometrically featureless (e.g.
planar or uniformly curved like a cup), the error function (4) is unable to disambiguate
between the correct state and one in which the object model is shifted along the target
surface. If the surface is textured, visual features can provide the correct within-plane
shift; this is due to the use of a point-to-point error metric in (5).

Our feature-matching approach consists of maintaining a model containing loca-
tions (in the coordinate system of Sobj) and descriptors of features lying on the object.
In each frame, we extract a new set of visual features and determine the 3D location of
the features from the depth data. We then find matches between the model features and
the current frame features using RANSAC to ensure geometric consistency. Provided
there are some minimum number of geometrically consistent feature matches, we use
the additional error term.

To maintain the object feature model, we take an approach similar to Kawewong
et al. (Kawewong et al., 2009). Features detected in each frame are matched against
features from the previous frame. Only features with matches going back a specified
number of frames and lying within the segmented out object are used in updating the
object feature model. This avoids cluttering the model with non-stable features arising
from factors such as specular highlights. Stable features with geometrically consistent
matches to the feature model will result in updates to the corresponding feature in the
model (running averages of position and descriptor). Stable features without matches
are added into the model as new feature points. In our implementation, we use Sift-
GPU (Wu, 2007) for feature detection.

3.2.2 Dense Color Matching

Sparse feature matching is a very effective technique when there are sufficiently many
and sufficiently distinctive features for matching. Unfortunately, these conditions do
not always hold. Not all objects have large quantities of distinctive features. Addition-
ally, we are limited in image resolution and in the minimum distance of the object from
the camera by our sensor. So for smaller objects, we typically cannot use the error term
(5).

Even when distinctive visual features cannot be found, there is still useful informa-
tion in the RGB image. We add the following additional error term to encourage colors
in the object model to align with similarly colored pixels in the image:

Ecolor(x) =

|Sobj |∑
i=1

wi

∣∣∣∣(C ◦ proj ◦ T (x))(pis)− ci
∣∣∣∣2
c

(6)
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We use the notation (x, y) = proj(p) to denote the projection of a 3-D point p
into the sensor’s image plane and C(x, y) to denote the (interpolated, or if needed,
extrapolated) color value for a point in the image plane. As we will explain in further
detail in Section 4, each surfel in the object model Sobj has a color associated with it.
We denote the color of the ith model point pis as ci. Thus, (6) penalizes differences
between a surfel’s color and the color at its projection.

In principal, ||.||c could be any distance function over colors. In our current im-
plementation, it is simply the magnitude of the intensity difference between the two
colors. The weight wi in (6) is 1 if the surfel has a correspondence corr(i) in the
point-to-plane matching (i.e. non-zero weight in (4)) and 0 otherwise. This prevents
non-visible regions from being projected into the image.

Before (6) is evaluated, we first smooth the image, which has two benefits. First,
it helps reduce image noise. Second, it introduces color gradients where there would
otherwise be hard color boundaries. This provides the optimizer with a gradient to
follow.

An important aspect to consider when performing color-based matching is that of
lighting variation. One problem we came across is that specular highlights move across
an object as it is being rotated. To prevent them from disturbing the color matching, we
ignore any terms for which ci or its correspondence in the target frame has an intensity
over a pre-defined threshold. This heuristic is quite simple but helps prevent highlights
from being drawn toward each other.

Other considerations for changes in illumination could further improve the robust-
ness of color matching in ICP. For instance, projecting patches of points rather than one
at a time would allow for the use of a metric based on normalized cross-correlation.

3.2.3 Prior State Information

Finally, we include one last error term encoding our prior knowledge about the state:

Eprior(x) = (x− µ̄k)Σ̄−1k (x− µ̄k) (7)

The use of this term helps influence ICP to make more coherent choices when
the registration is ambiguous. For instance, if the robot rotates a solid-colored cup, a
solution having the cup remain still while the hand moves will appear just as valid to
the ICP error function (4) as would one in which the cup rotates along with the hand.
The Kalman filter covariance Σ̄k encodes our uncertainties in the system’s degrees of
freedom and can be used to help resolve such ambiguities.

Another scenario where the use of this prior term is desirable is when the robot’s
hand is visible but its arm is largely out of frame. Multiple sets of joint angles give
the proper hand pose and therefore the same ICP error but they are not all equally
consistent with the rest of the tracking sequence.

Although there are clearly important reasons for including this error term in ICP,
it should also be noted that this prior has the potential to affect the performance of the
Kalman filter. µ̂k is supposed to be an independent estimate of the true state, but our
prior biases it toward the existing µ̄k.
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Figure 6: Two grasps of the same object. With just a single grasp, the resulting object
model has holes. Any given part of the object is visible in at least one of the grasps.

With the inclusion of these additional terms, our overall ICP error function becomes

E(x) = Ept−plane(x) + α1Efeature(x) + α2Ecolor(x) + α3Eprior(x) (8)

The αs are relative weights for the components of the error function, which we set
heuristically.

3.3 Handling Multiple Grasps
As described so far, the tracking procedure does not allow for regrasping of objects —
an important step since the manipulator occludes parts of the object (see Fig. 6). Most
notably, we assume the object moves (roughly) with the hand, which would not be true
during a regrasp procedure.

To continue manipulator and object tracking during transitions between grasps, we
use a switching Kalman filter with three states:

1. The robot is firmly grasping the object.

2. The robot is grasping or releasing the object.

3. The object is sitting on a table between grasps.

An advantage of performing the object modeling using a robot is that the we have
knowledge of when it will grasp or release and we therefore always know which state
the Kalman filter should be in.

The first state is the most common and the one we have focused on so far. The pri-
mary difference in the second state is that the object may wobble or slide in unexpected
ways. We therefore modify the motion covariance Rk by softening the constraint on
the object pose relative to the manipulator.

In the third state, the object is expected to remain fixed relative to the robot’s base
rather than the manipulator. In this state, the object pose components are reinterpreted
as being relative to the base.
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Figure 7: One of the error modes of our depth sensor. Depicted here is a point cloud of
the lip of a mug against a light blue background. Along both edges shown, extra depth
points appear and are colored by the scene’s background. Additionally, the sensor has
quantization errors and tends to fill in small holes.

The first state is the only one in which Segment and merge object is performed.
Even during the grasped state, the modeling procedure is not done while the object is
being raised from or lowered to the table.

The use of a switching Kalman filter allows the robot to examine an object using
one grasp, put the object down, regrasp it, and examine it again, thereby filling in holes
from the first grasp. In Section 5, we demonstrate example models built from multiple
grasps.

4 OBJECT MODELING
We now describe the representation underlying our object models and the key steps
involved in updating object models based on new data.

4.1 Surfels
Our choice of surfels (Habbecke and Kobbelt, 2007; Weise et al., 2009) as a represen-
tation was strongly influenced by the constraints of our problem. Our depth sensor,
while versatile, does suffer from certain types of noise. In particular, we must be able
to compensate for quantization errors, filling in of holes, and expansion of objects by
extra pixels (Fig. 7). Therefore, it is crucial that we be able to revise the models not
just by adding points but also by keeping running estimates of their locations and by
removing spurious points (how surfels accomplish these properties is explained in Sec-
tion 4.2).

Additionally, the problem at hand involves tracking the robot’s manipulator, some
of which may be occluded by the object or itself. We wish to be able to reason ex-
plicitly about the visibility of any particular point in Sm or Sobj before assigning it a
correspondence. Doing so prevents irrelevant model points from negatively impacting
the alignment.

16



Surfels fit all of these requirements and are very easy to work with. As we explain
below, the addition, update, and removal rules for surfels are quite simple and robust.
While other representations such as triangle meshes could provide the occlusion in-
formation we need, the update rules can be substantially more inefficient and difficult
to implement because of the need to maintain explicit connections between vertices.
Surfels, on the other hand, can be updated independently of each other and if desired
can be later converted to a mesh in a post-processing step.

A surfel is essentially a circular surface patch. The properties of a surfel si include
its position pi, its normal ni, and its radius ri. The radius, as described by Weise et
al., is set such that as viewed from the camera position, it would fill up the area of
one pixel. As the camera gets closer to the surface, surfels are automatically resized,
providing an elegant means for selecting the appropriate resolution, and further, for
using varying levels of detail across a single surface.

One can associate additional attributes to surfels such as “visibility confidence” vi.
The possible viewing angles of a surfel are divided into 64 bins over a hemisphere.
The confidence is the number of such bins from which the surfel has been seen at
least once. This provides a better measure of confidence than simply the number of
frames in which a surfel has been seen because a patch seen from the same angle may
consistently produce the same faulty reading.

For visualization purposes and for dense color matching (Section 3.2.2), we also
keep track of the color ci of the surfel. We use the heuristic of using the color from
frame with the most perpendicular viewing angle to the surfel so far.

4.2 Model Update
After performing the segmentation described in Section 3, we use surfel update rules
similar to Weise et al. (Weise et al., 2009) to modify the object model Sobj . Each
surfel location pi is projected into the image plane. We then use bilinear interpolation
to determine the point p∗i and normal n∗i at that same location in the current frame. pi
has a depth di and p∗i has a depth d∗i ; the difference di − d∗i is used to determine the
update rule that is used. In the following rules, we will say that a sensor reading p∗i is a
valid object reading if it is part of the object (as determined by the object segmentation
in Section 3.1) and n∗i does not deviate from the camera direction by more than θmax.

1. |di − d∗i | ≤ dmax: If p∗i is a valid object reading and ni does not deviate from
the camera direction by more than θmax, then the surfel is updated. This is done
by computing running averages of the surfel location and normal and updating
the grid of viewing directions. Additionally, if the new measurement was taken
from a closer location, then the radius of the surfel is updated accordingly. If the
conditions do not hold, then we do nothing.

2. di − d∗i < −dmax: In this case, the observed point is behind the surfel. If the
visibility confidence vi is below vhigh, then the existing surfel is considered an
outlier and removed. If vi is at least vhigh, then the reading is considered an
outlier and is ignored.
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3. di − d∗i > dmax: Then the observed point is in front of the model surfel si, so
we do not update the surfel.

After surfel update comes the surfel addition step. For each pixel in the object seg-
ments, a new surfel is added if there are no existing surfels with normals toward the
camera either in front of or close behind the reading. This is a simple heuristic; how-
ever, it allows us to acquire models of objects which have two surfaces close together
such as the inside and outside of a coffee mug. Finally, there is one more removal
step. Any surfel with vi < vstarve that has not been seen within the last tstarve frames
is removed. This is very effective at removing erroneous surfels without the need to
return to a viewing angle capable of observing the surfel patch. More details on the
parameters in this approach and reasonable values for them can be found in (Weise
et al., 2009).

4.3 Loop Closure
We also base our loop closure on the techniques developed by Weise et al. (Weise
et al., 2009). The approach involves maintaining a graph, whose nodes are a subset
of the surfels in the object model. An edge in the graph indicates that the nodes were
both visible and used for registration in the same frame. We refer the interested reader
to (Weise et al., 2009) for a more detailed description of the procedure.

The most important operation on the graph is the computation of connected compo-
nents when ignoring currently non-visible nodes. These components represent surfaces
from separate passes over the visible region. To prevent all of the loop closure error
from occurring in a single frame when a second connected component comes into view,
only one connected component can be matched into each frame. The error is distributed
over the whole structure in a separate relaxation step.

As illustrated in Fig. 8(a), the relaxation step is triggered when two connected com-
ponents both individually explain some minimum percentage of the object pixels in a
frame (surfels maintain connections to nearby nodes and can therefore be associated
with connected components). At this point, there is some number L of connected com-
ponents (usually just two), each with associated surfels. These component surfaces are
surfel clouds denoted SC1, . . . ,SCL.

Each of the L component clouds is registered into the current frame using ICP,
yielding transformations TS

C1, . . . , T
S
CL bringing the surfels in each component into

the sensor frame. The tracking algorithm described in Section 3 implicitly defines a
transformation TS

obj of the whole object into the sensor frame through its mean state
vector. By combining these two transformations, we come to a local, adjustment trans-
formation to each component which makes it align to the sensor data when TS

obj is
applied: T adj

Ci = (TS
obj)
−1 ∗ TS

Ci.
We cannot simply transform each visible surfel by its appropriate T adj transform

because this would break the surface at the boundaries between visible and non-visible
surfels. Instead, Weise et al. propose an optimization over node poses which trades off
the T adj constraints and relative node pose constraints.

If T init
i and T init

j are the pre-loop closure poses of the ith and jth nodes respec-
tively, then the pose of the jth node within the coordinate system of the ith node is
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(a) (b) (c)

(d) (e)

Figure 8: Illustration of the loop closure and merging procedures. (a) Two connected
components overlap enough to trigger a loop closure, (b) TORO brings the components
into alignment, (c,d) Each surfel is updated to a consensus position and orientation
based on nearby surfels in the other component, (e) A new surface is constructed,
removing redundancy; preference is given to high confidence surfels.

T init
i→j = (T init

i )−1 ∗ T init
j . Utilizing constraints of this form in the relaxation step

forces the solution to respect the relative node poses at the boundaries and to spread
the error over the entire structure.

We use TORO (Grisetti et al., 2007), an open-source pose graph optimization tool,
to optimize over node poses with the following constraints:

• For each node i, if it is in some connected component Cj, its pose in the ob-
ject coordinate frame is constrained to be T adj

Cj ∗ T init
i with identity information

matrix.

• For each node i and each of its k (we use k = 4) closest connected nodes j, the
relative transformation between nodes is constrained to be T init

i→j with identity
information matrix.

The result of the TORO optimization is a new pose for every node in the graph.
Poses of non-node surfels are subsequently determined through the interpolation pro-
cess described in (Weise et al., 2009). The result will look something like Fig. 8(b).

4.4 Surface Merging
After the loop closure procedure completes, the object model will have multiple over-
lapping surfaces. In particular, there will be overlaps among the surfaces SC1, . . . ,SCL,
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1: Consensus surfel clouds(S1, . . . ,SL):

2: S ′1, . . . ,S ′L = S1, . . . ,SL
3: for i ∈ {1, . . . , L}
4: for j ∈ {1, . . . , |Si|}
5: depthSum = 0

6: normalSum = nj

7: numSurfaces = 1

8: for k ∈ {1, . . . , L} , k 6= i

9: S = surfels in range(Sk,pj ,r)
10: if |S| > 0

11: depthSum += avg dist along normal(S,nj)
12: normalSum += avg normal(S)
13: numSurfaces += 1
14: p′j = pj + (depthSum/numSurfaces) ∗ nj
15: n′j = normalize(normalSum)

16: return S ′1, . . . ,S ′L

Table 2: Consensus surfel algorithm. Transforms multiple surfel clouds to obtain cor-
rected surfel positions and normals. This algorithm can be followed by a surfel removal
removal step to give a single, consensus surfel cloud.

which we illustrate in Fig. 8(b). One could simply allow this overlap to persist, but it
is more desirable to instead try to find a consensus among the layers to further aver-
age out measurement noise as in Fig. 8(e). A single-layered surface also avoids giving
overlapping regions extra weight in (4) caused by higher point density.

Our approach is to first use the algorithm shown in Table 2 to transform each surfel
into the consensus position and normal of the surfaces within a distance r. The position
of a surfel is adjusted along its normal direction to match the average distance along
this normal to each surface. The normal is set to the average of the normals found for
each of the nearby surfaces. These averages can alternatively be weighted averages,
where the weights are determined by the average visibility confidence of surfels being
considered. These are omitted from Table 2 for readability. This consensus procedure
is similar to the one used in mesh zippering (Turk and Levoy, 1994).

After the consensus procedure, we are faced with the problem of redundant surfels.
Because it is not as straightforward to merge attributes such as viewing direction grids
(which may not be aligned in their discretizations), we would like to be careful about
which surfels (and therefore which attributes) we include in the updated model.
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We choose to use visibility confidence as measure of which surfels to retain when
there is redundancy. We construct a new surfel cloud by first sorting the surfels from
all surfaces by visibility confidence. Each surfel, in order of decreasing confidence,
is added if a line segment extending from +r to −r in its normal direction does not
intersect any surfels already in the new cloud. This results in a final surfel cloud having
only a single layer of surfels. A summary of the loop closure and merging procedure
can be seen in Fig. 8.

5 EXPERIMENTS AND RESULTS
The robot used in our experiments is shown in Fig. 1. The basic setup consists of a
WAM Arm and BarrettHand mounted on a Segway. The depth camera is located to the
side and above the robot manipulator so as to provide a good view of the manipulator
workspace. The specific depth camera we use, developed by PrimeSense (PrimeSense,
2010), was mainly developed for gaming and entertainment applications. It provides
pixel colors and depth values at 640x480 resolution, at 30 frames per second.

We collected depth camera data and joint angle sequences of the moving system. In
all but the last experiments, which use Next Best View planning, the manipulator grasps
and trajectories were specified manually and the objects were grasped only once. One
example of a hand-specified trajectory can be seen in Extension 1. Using multiple
grasps to generate complete object models is discussed briefly in Section 5.3.

Our current implementation of the algorithm described in Section 3.1 runs at 2 to 3
frames per second. We are confident that the update rate of the system can be increased
to 10 frames per second using a more optimized implementation and taking advantage
of GPU hardware. To simulate such a higher update rate, we played back the datasets
at approximately one fifth of the real time. We have found that by skipping frames, we
are able to operate in real time, but the resulting models are not as detailed.

The tracking requires a few parameters, which we set heuristically. First are the
α weights in (8). We set α1 to 5 to give features correspondences higher weight than
regular correspondences. This is desirable because we have more reason to believe the
feature correspondences and because features are somewhat sparse, so there aren’t as
many terms in the summation. α2 is set to .0001, which we select by giving equal
weight to a 1 mm spatial error as a 10% color error, which could naturally arise from
lighting variation. Finally, we set α3 to .005, which corresponds roughly (given the
typical number of correspondences we have) to equating one standard deviation from
the prior to a few millimeters of misalignment for each correspondence.

For the Kalman filter, we use diagonal covariance matrices and set the variances
empirically. We initialize the uncertainties in joint angles to 5 ◦, camera translation and
rotation to .03 m and .01 respectively (rotation uncertainty using L2 distance of nor-
malized quaternions), and object translation and rotation to .01 m and .01. The motion
uncertainties are 2 ◦ for the joints angles and .005 m and .01 for the object translation
and rotation (the camera is assumed fixed). Finally, the measurement uncertainties are
4 ◦ for the joint angles, .02 m and .01 for the camera translation and rotation, and .01
m and .02 for the object translation and rotation. The measurement uncertainties are
purposely large to reflect that we never truly know if ICP has found the correct solution
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Figure 9: (left) Drift resulting from 2.0 ◦/
√
s noise. Actual sensor data in true color,

tracking result in red, and noisy joint angles in blue. (right) Surfel model produced at
this level of noise.

and so the Kalman filter does not grow overconfident.

5.1 Joint Manipulator and Object Tracking
In this experiment, we evaluate the ability of our technique to track the position of the
robot hand. Specifically, we investigate if our system would enable accurate tracking
of a low cost manipulator equipped with position feedback far less accurate than that
of the WAM arm. To do so, we use the WAM controller’s reported angles as ground
truth. Though these angles are far from perfect, they provide a common comparison
point for the different noise settings. To simulate an arm with greater inaccuracies, we
included normally distributed additive noise of varying magnitude.

To provide an intuitive feel for the units involved, we show in Fig. 9 an example of
the deviation between reported and observed manipulator after 20 seconds of motion at
a 2.0 ◦/

√
s noise level. In Fig. 10, we demonstrate that our tracking algorithm can han-

dle large amounts of noise in the reported angles without losing accuracy in tracking
the end effector. Red dots in Fig. 10 show errors for the uncorrected, noisy pose esti-
mates. Green dots, along with 95% confidence intervals, show tracking results when
ignoring the object in the robot’s hand. Blue dots are results for our joint tracking ap-
proach, when modeling the object and tracking it along with the manipulator. Each dot
represents the end effector positioning error at the end of the tracking sequence, aver-
aged over multiple runs and multiple arm motions. Although the noise associated with
the encoder readings increases along the x-axis, we do not change the motion model
covariance Rk; however, adjusting Rk to better reflect the true uncertainties involved
would only improve the results we present here.

As can be seen, modeling the object further increases the robustness to noise. With
arm only tracking, large variations in end effector accuracy (indicative of frequent
failures) begins around 3.0 ◦/

√
s, while comparable failure levels do not occur until

3.4 ◦/
√
s for the joint tracking. This is because we can both explicitly reason about

the modeled object occluding the fingers and use the object as an additional surface to
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Figure 10: Distance of the end effector from the ground truth as a function of the per
joint angle drift rate. Notice that the tracking errors begin earlier when only the arm and
not the object is tracked. Horizontal offset of ‘Joint Tracking’ is for display purposes
only.

match. An example model generated for the coffee mug under high noise conditions is
shown in Fig. 9. When comparing this model to one built without additional noise (see
Fig. 12), it becomes apparent that our approach successfully compensates for motion
noise.

Additionally, we ran experiments on the same data sets ignoring the encoders
entirely and assuming a constant velocity motion model for Step 2 of Table 1 (i.e.
uk = µk−1 − µk−2). This is not the same as ignoring the arm; the arm is still tracked
and still provides benefits such as disambiguating the rotation of symmetric objects as
described in Section 3. In these experiments, we found end effector errors of 2.15 cm,
which is almost identical to the errors when using the true encoder values. This both
attests to the accuracy of our ICP-based alignment procedure and suggests that our
approach may be applicable to domains where encoder information is not available.

Besides factors such as cable stretch, which simply cause encoder values to dis-
agree with the true joint angles, there may be other sources of noise. One such example
is inaccuracies in the robot model. To test our algorithms resilience to model inaccu-
racies, we altered our robot model by shortening the upper arm by 1.0 cm. We then
re-ran the experiments from Fig. 10 to determine how combinations of both modeling
and encoder errors affect our tracking algorithm. These results are shown in Fig. 11.
The end effector error increases to about 2.5 cm with the shortening of the arm, but our
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Figure 11: Tracking accuracy when using an arm model with a shortened upper arm.
Our algorithm is able to track the end effector even in the presence of both robot mod-
eling errors and discrepancies between encoder values and true joint angles.

algorithm is able to reliably track the hand up to at least 2.5 ◦/
√
s. Notice that again,

the joint tracking remains resilient to higher levels of encoder noise than the arm-only
tracking.

5.2 Object Modeling
In this set of experiments, we investigate how our algorithm performs in terms of the
quality of the resulting objects.

First, we examine the ability of our algorithm to model rotationally symmetric ob-
jects and objects lacking distinctive geometric regions. Many existing object modeling
algorithms such as (Weise et al., 2009) rely on being able to geometrically match an
object model into the new frame. In this experiment, object segmentations from our
joint tracking algorithm were fed to ICP to be aligned without any information about
the hand motion. The resulting clouds are compared with the output of our system in
Fig. 12. As can be seen in the figure, ICP is unable to recover the proper transforma-
tions because of the ambiguity in surface matching. It should be noted that for the mug
case in particular, systems like ProFORMA (Pan et al., 2009), which rely on tracking
visual features would also be incapable of tracking or modeling the object.

We note that the presence of the color error term (6) can help improve the object
models. The left image in Fig. 13 shows a pre-loop closure model of a can generated
without the dense color error term, while the middle image shows the model built when
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Figure 12: Shown here are a can and a mug aligned with ICP alone on the left of
each image and our algorithm on the right. Due to the high level of symmetry in these
objects, ICP is unable to find the correct alignments between sensor frames, resulting
in largely useless object models.

Figure 13: (left) Pre-loop closure can model without use of the dense color error term,
(middle) with color error term, (right) with color error term after loop closure and
surface merging.

using color. The model generated using color has noticeably less accumulated vertical
misalignment.

We have also found that surfels are a very compact and elegant solution to main-
taining object models. Besides the benefits of occlusion-checking and incremental up-
date, multiple measurements can be merged into a single surfel, and the arrangement is
cleaner and more visually appealing. Fig. 14 illustrates the difference between raw data
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Figure 14: Comparison between aggregated point clouds and surfel models generated
from the same data and the same frame alignments.

Figure 15: Surfel models and their respective meshed versions. Meshing can fill in
small gaps between surfels such as the rim of the coffee can that was partially occluded
by the palm. On the other hand, it struggles with thin surfaces like the top of the orange
juice box and can smooth out sharp corners.

point clouds and surfel models. Shown on the right are the surfel patches belonging
to two separate objects. The two panels on the left show the raw, colored point clouds
from which the surfels were generated. The raw clouds contained on the order of one
million points and were randomly downsampled for visualization purposes. The surfel
clouds contain on the order of ten thousand surfels.

The surfel models we have obtained in our online process contain accurate infor-
mation of both surface positions and normals, and can be readily converted to meshes
in a post-processing step. We use the open-source Meshlab software, first applying
the Poisson Reconstruction algorithm (Kazhdan et al., 2006) to obtain a surface mesh
from the oriented point cloud. We then apply the Catmull-Clark subdivision to refine
the mesh. Colors for vertices are assigned using the color of the nearest surfel in the
original model.

Meshing is potentially useful as there are many existing algorithms which oper-
ate on meshes (e.g. simplification, refinement, hole filling). Many algorithms assume
meshes as inputs, including most grasping algorithms. Meshing additionally adds vi-
sual appeal, and can fill in small gaps between surfels (and in fact larger ones, but we
remove triangles with long edges to leave larger holes intact in our results). Fig. 15
shows examples of the output of the meshing procedure.

A few of the reconstructed objects are shown in Fig. 16. Rendered videos of the
models are available in Extension 2. Additionally, a video demonstrating the arm track-
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Figure 16: Triangulated surface models constructed from surfel clouds. Left column:
a router box, large Lego pieces, and a mug. Right column: a can, a clock, and a stuffed
doll. Holes in the models are due to occlusion by the hand or unseen regions due to the
trajectory.

ing and surfel model construction is available in Extension 1.
Finally, we compare dimensions of some of the objects in Fig. 16 and Fig. 17 to

measurements taken of the physical objects to better gauge the accuracy of the recon-
structions. The results are shown in Table 3, and as can be seen, the reconstructed
dimensions are typically within a few millimeters of the true dimensions.

Object Dimension Measured [cm] Reconstructed [cm] Error [cm]
Boddingtons Can Diameter 6.6 6.5 0.1
Lego Block Width 3.2 3.3 0.1
Lego Block Length 6.4 6.7 0.3
OJ Bottle Width 9.7 10.1 0.4
OJ Bottle Height 19.6 19.7 0.1
Pill Bottle Diameter 9.5 9.3 0.2
Pill Bottle Height 18.0 17.7 0.3
White Mug Diameter 9.2 9.4 0.2

Table 3: Comparison of reconstruction dimensions to measured dimensions of the orig-
inal objects.

5.3 Toward Autonomous Object Modeling
To perform autonomous grasping and modeling, we first implemented an approach,
based on the findings of Balasubramanian et al. (Balasubramanian et al., 2010), that
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Figure 17: Side-by-side comparisons showing object models before and after regrasp-
ing. From left to right: an orange juice bottle, a coffee can, and a pill bottle. The
regrasping procedure allows for holes caused by the manipulator to be filled in. In the
case of the orange juice bottle, a small hole remains as there was some overlap between
the grasp locations.

enables the robot to pick up an unknown object. The object grasp point and approach
direction are determined by first subtracting the table plane from the depth camera data
and then computing the principal component of the point cloud representing the object.
The approach is then performed orthogonal to this principal component. While this
technique is not intended as a general grasping approach, it worked well enough to
perform our initial experiments. Alternatively, one can use local visual or geometric
features as in (Saxena et al., 2008) to obtain this first grasp.

The model can be improved by allowing the robot to place the object back down
and regrasp it. To generate the second grasps and to choose which regions of the object
to examine, we use a Next Best View algorithm which is to appear in a follow-up
paper (Krainin et al., 2011). The results of this system are shown in Fig. 17. Here it
can clearly be seen that regrasping allows for filling in previously occluded regions and
that the modeling is capable of resuming, even after an exchange of grasps.

Here we have presented an end-to-end robotic system, capable of picking up an
unknown object, tracking and modeling the object in the presence of noisy joint sen-
sors, regrasping the object, and resuming modeling to fill in holes. Additionally, the
regrasp planning (Krainin et al., 2011) uses the partial object model, demonstrating
grasp planning as one application that can greatly benefit from the ability to generate
such models.

5.4 Failure Cases
Although our technique makes use of many sources of information to guide its tracking,
registration failures can still occasionally occur if many things go wrong at once. One
such scenario is shown in Fig. 18 (top). In these images, the front face of a box is
being tracked after the box has been regrasped. The combination of an uncertain grasp
location, a completely planar surface, poor lighting conditions, and an oblique viewing
angle result in the misalignment.

Another place failures can occur is in the loop closure procedure, which relies on
ICP to register each individual connected component into the current frame. For some
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Figure 18: Failure Cases: (top-left) Poor alignment after a regrasp due to factors such
as high uncertainty in the object pose, non-distinctive geometry, and poor lighting.
(top-right) RGB image from the same frame. (bottom) Poorly estimated loop closure
transformation on the lip of a mug (inconsistency circled) caused by fairly uniform
color and geometry.

objects such as the white mug in Fig. 18 (bottom), ICP may not always succeed due to
the fairly uniform color and geometry.

Finally, failures may occur during the regrasping procedure. While our tracking
algorithm can handle slight wobble, sliding, or slipping during the exchange, it cannot
currently handle large unexpected motions such as an object falling over on the table.
This is due to ICP’s requirement of being initialized close to the true state. Recovery
from an object falling over would likely require a more global search.

6 CONCLUSIONS AND FUTURE WORKS
We developed an algorithm for tracking robotic manipulators and modeling grasped
objects using RGB-D sensors. Our approach performs tracking, robot to sensor cali-
bration, and object modeling in a single Kalman filter-based framework. Experiments
show that the technique can robustly track a manipulator even when significant noise
is imposed on the position feedback provided by the manipulator or when the robot
model contains inaccuracies. The experiments also show that jointly tracking the hand
and the object grasped by the hand further increases the robustness of the approach.
The insight behind this technique is that even though an object might occlude the robot
hand, the object itself can serve as guidance for the pose estimate.
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We also introduced a tight integration of the tracking algorithm and an object mod-
eling approach. Our technique uses the Kalman filter estimate to initially locate the
object and to incorporate new observations into the object model. We use surfels as
the key representation underlying the object and manipulator models. This way, our
approach can do occlusion-based outlier rejection and adapt the resolution of the rep-
resentation to the quality of the available data.

An approach alternative to ours could be to generate an object model by moving a
camera around the object. However, this approach cannot provide information about
object parts that are not visible based on the object’s position in the environment. Fur-
thermore, our approach of investigating an object in the robot’s hand also lends itself
to extracting information about the object’s weight and surface properties.

Our key motivation for this work is in enabling robots to actively investigate objects
in order to acquire rich models for future use. Toward this goal, several open research
questions need to be addressed. We have implemented a very simple approach for
initial grasp generation, but particularly in the presence of clutter, grasp planning for
unknown objects is far from a solved problem. Also, we have shown our object models
useful for grasp planning, but we would also like to explore techniques for detecting
objects through attached features such as in the work of Collet et al. (Collet Romea
et al., 2009) so that a robot can quickly detect and grasp objects it has examined before.

In the longer run, we would like to be able to use autonomous modeling as a step
towards achieving a greater semantic understanding. For instance, if a robot can au-
tonomously construct models of new objects and detect them reliably, it can begin
extracting further information including possibly typical location, use cases, and rela-
tionships with other objects. The robot can also learn to better interact with the ob-
ject by, for example, storing grasp locations that worked well on the particular object.
Finally, allowing robots to share collected models and associated information would
enable robots to learn much more rapidly and is a problem worth exploring.
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Extension Media Type Description
1 Video A demonstration of the tracking and modeling process
2 Video Meshed models generated from single grasps of objects

A Index to Multimedia Extensions
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