
RGB-D Object Discovery via Multi-Scene Analysis

Evan Herbst Xiaofeng Ren Dieter Fox

Abstract— We introduce an algorithm for object discovery
from RGB-D (color plus depth) data, building on recent
progress in using RGB-D cameras for 3-D reconstruction. A set
of 3-D maps are built from multiple visits to the same scene.
We introduce a multi-scene MRF model to detect objects that
moved between visits, combining shape, visibility, and color
cues. We measure similarities between candidate objects using
both 2-D and 3-D matching, and apply spectral clustering
to infer object clusters from noisy links. Our approach can
robustly detect objects and their motion between scenes even
when objects are textureless or have the same shape as other
objects.

I. INTRODUCTION

Our goal is to enable robots to learn about objects in
an unsupervised way using changes in the environment.
For instance, a mobile robot that moves around a domestic
or office environment often will see a large number of
different configurations of the same movable objects at
various times. Over time, such a robot should be able to
discover and geometrically reconstruct all movable objects
in the environment along with structural components such as
walls. In addition to thus decreasing the human supervision
involved in semantic mapping, unsupervised object discovery
can improve the performance of supervised vision tasks
that use the notion of objects (e.g. [20], [24], [18]). Object
detection, recognition, segmentation, and hierarchy modeling
all require labeled object models, the process of creating
which can be at least partially automated.

As a first step toward this goal, we have introduced [14]
a technique that uses RGB-D cameras to detect changes
between two visits to a scene. It does this by building a
3-D map from the video of each visit, aligning two of these
maps, and computing for each surface element in one scene
the probability that it is also detected in the other scene. We
generate hypothesized moved objects by segmentation of a
graph over surface elements. In this work we go beyond
[14] to develop a scalable multi-scene model that jointly
and robustly reasons about moved objects. Detected object
segments are compared using a combination of 3-D and
2-D matching techniques using an RGB-D version of ICP
error metric as well as shape and visual descriptors. We use
spectral clustering to group detected segments together from
noisy pairwise similarities and discover objects as clusters.
Combining color and depth, our approach can robustly detect

E. Herbst and D. Fox are with the University of Washington, Department
of Computer Science & Engineering, Seattle, WA 98195. X. Ren and D. Fox
are with Intel Labs Seattle, Seattle, WA 98105.

This work was funded in part by an Intel grant, by the NSF under contract
IIS-0812671, and through the Robotics Consortium sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement W911NF-10-2-
0016.

objects and their motion between scenes even when objects
are textureless or have non-distinctive shapes.

After discussing related work, we develop the steps of our
algorithm in section III. Experimental results are provided in
section IV, followed by conclusions.

II. RELATED WORK

Previous work on representing the static and dynamic
parts of maps separately has been restricted to 2-D, whether
using color or depth sensors, and has generally avoided
the problem of segmentation. Biswas et al. [3], working
with planar laser scans, assume a known number of objects
and segment objects by connected components of occupied
grid cells. Haehnel et al. [12] run mapping with 2-D laser
scans, then approximate each 3-D object as the set of 3-D
measurements within a 2-D bounding box. Konolige et al.
[17] represent a map as a set of views (images) from a color
camera, and cluster views by location. Using their methods,
it is possible to represent objects indirectly by partitioning
each location’s set of views according to similarity, but they
don’t explicitly model objects or segment images, as object-
level representation is not one of their goals.

Usually computer vision work using objects acts at one
of two levels: instance and category. Object instances are
typically modeled with point features and their geometric
consistency (enforced with RANSAC [10]). Another ap-
proach is cosegmentation, which jointly finds regions in
multiple images corresponding to the same object. Joulin
et al. [15] cosegment by maximizing the margin between
object and non-object pixels over a set of images. They have
particular trouble when images have similar backgrounds.
We avoid this issue by using motion for segmentation; we
require that different scenes have the same background.

By contrast, there has been a wealth of work on object
category discovery. Grauman and Darrell [11] assign each
image a category by performing spectral clustering with a
spatially aware kernel over sets of local features. Russell
et al. [23] extract a “soup of segments”, model each as a
histogram of visual words, and perform topic discovery on
the set of segments. Graph mining techniques have also been
used: for example, Kim et al. [16] create a graph among local
features, with edges specified by feature matching.

Working with depth data, Ruhnke et al. [22] align object
views by using correspondences between local depth-map
features, without color information. Their keypoints are
corners in the depth map; they assume the shape of the
edges of the 2.5-D object views is enough to distinguish
both the object identity and the location of each point on the
object. They too ignore the problem of segmentation, using

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 4850

connected components on point clouds to produce candidate
objects. Shin et al. [25] instead do bottom-up segmentation
in a single scene. They discover objects using depth but not
color, using ICP initialized by matching spin images. They
do not demonstrate discovery of small-scale objects such as
our dense scene reconstruction allows us to find. In [27]
they extend their method to use co-occurrences of matching
segments to discover multi-segment objects.

There has also been work on instance discovery from
video. Liu and Chen [19] combine visual topic modeling
with a motion model for the foreground segment to track a
small moving object. Southey and Little [26] find multiple
objects and don’t assume they appear in all frames. They
get sparse depth points from passive stereo and approximate
motion from sparse optical flow. Rigid motions are fit to
each frame pair using local features. They oversegment each
frame and have segments vote for motions. In both cases,
motion within a single video is used for segmentation; we
use motion between multiple videos for segmentation and
use the frames of each video to provide spatial consistency.

At a high level, the algorithms of [22] and this paper are
both generate-and-test algorithms of the sort also used for 3-
D alignment (e.g. [1]), and so consist of the same four steps
as outlined in table I. We use scene differencing as much
as possible, and avoid assuming there are enough distinctive
point features for feature matching. Additional differences
are our use of color information, our multiscene optimization
for segmentation, and our fuller experiments.

Step Ruhnke et al. detail This paper detail
1. Segmentation connected components scene differencing
2. Hypothesis create 2-D views; ICP with

generation 2-D feature matching random restarts
3. Hypothesis scoring ICP error scene differencing
4. Clustering repeated Olson [21] n-cuts

TABLE I: High-level structure of this paper and [22].

III. MULTI-SCENE ANALYSIS

In sec. III-A, we describe how to reconstruct 3-D scenes
from video. In sec. III-B, we show how to use motion cues
to find possible objects. We calculate pairwise similarities,
and use them for clustering 3-D segments, in sec. III-C.

A. 3-D Reconstruction of Single Scenes

Given a set of scene visits in the form of RGB-D video
sequences, we run a modification of RGB-D Mapping [13]
on each visit to produce the set of camera poses corre-
sponding to all video frames. RGB-D Mapping consists of
1) visual odometry using SIFT features assigned to 3-D
points, 2) loop closure detection, also using SIFT with 3-D
locations, 3) pose-graph optimization over contiguous-frame
and loop-closure edges, and 4) bundle adjustment over the
whole map. The RANSAC variant we use in steps 1 and 2
optimizes reprojection error rather than 3-D error as in [13].
Another change we have made to the algorithm is to run
bundle adjustment over each contiguous-frame pair following
RANSAC in the visual odometry step.

(a) (b)

(c) (d)

Fig. 1: (a), (b) two scenes and (c), (d) the result of differencing each
against the other. Color gives pointwise probability of change, with
white at zero and black at one. We assign high change probability
to the object removed from the table in the left scene and the new
object placed on the sofa in the right scene.

As in [13], we represent surfaces using surfels, small
planar patches with color and orientation information. We
make use of uncertainty in sensor readings by fitting Gaus-
sian models for the position, color and orientation at each
surfel, as we find that this improves the performance of scene
differencing. We globally align all scenes using visual point
feature matching followed by ICP, as in [14].

B. Multi-Scene Segmentation

Pairwise segmentation: In a previous work [14], we have
introduced an algorithm to use RGB-D sensor readings to
probabilistically decide which surfels in a scene are un-
changed in a second scene. We run inference in a Markov
random field (MRF) over these probabilistic judgments to
create a binary (moved vs. not-moved) segmentation of each
scene. We use this pairwise scene differencing algorithm to
segment each visit to a scene. Fig. 1 shows a typical result
of the probabilistic stage.

Multi-scene MRF: A straightforward extension of this
approach to multiple scenes would be to compute a seg-
mentation for each pair of scenes. As a result, we would
get a so-called soup of segments for each scene, since
the pairwise segmentations are not necessarily consistent,
due largely to sensor noise effects differing widely between
scenes. Furthermore, since we want to use our segments to
reconstruct 3-D objects, we prefer to have only one segment
per object per scene to simplify the decision of which surfels
to include in each reconstructed object.

To obtain a single, maximally consistent segmentation per
scene, we combine information from differencing between
all scene pairs into a single labeling process. Instead of
labeling a surfel as 0 or 1 (moved or not moved) for each
pair of scenes, we generate a joint label vector l ∈ [0, 1]n−1

4851

(a) scene 1 (b) true segmentation (c) pairwise MRF (d) multiscene MRF

(e) scene 2 (f) true object labels (g) pairwise MRF (h) multiscene MRF

Fig. 2: (a), (e) two scenes. (b) Ground truth for which surfels in the first scene move with respect to the second (black = moved; medium
gray = not moved; light gray = not visible in (e)). Results of (c) pairwise and (d) multiscene differencing MRFs, showing which surfels
of (a) are estimated moved/not moved in (e). The multiscene MRF uses information from a total of 10 scenes, including the two shown
here. The pairwise MRF misses the shoulders of the dino (middle right of scene); the multiscene MRF does not. (f) The ground-truth
object labelings for scene (a), with each object a different color. (g) Scene segmentation obtained by assigning each surfel a bit-vector
label put together from the results of the two-scene MRF of [14]. (h) Scene segmentation output by our multiscene MRF, which is much
more accurate than that in (g). The table is discovered as an object due to moving in one of our scenes. This figure (in particular the last
row) is much better viewed in color.

for each surfel in scene i. The jth bit of this label vector
represents whether the surfel changed between scenes i
and j. To jointly reason about all surfel labels in a scene,
we perform spatial regularization using a Markov random
field (MRF). Each node corresponds to a surfel and is a
random variable ranging over the values of that surfel’s
label vector. Connections between neighbors increase spatial
consistency of label vectors by providing soft constraints on
the transitions between labels.

Our data energy for label l at surfel s of scene i is

D(s, l) =
∑
j 6=i

 p(s moved in j), vj(s) and lj = 0
1− p(s moved in j), vj(s) and lj = 1
0 ¬vj(s)

,

where j is a scene, lj is the jth bit of l, and vj(s) is true
iff surfel s was visible in any frame observed in scene j
(v stands for “visible”; surfels in i that are never seen in j
contain no evidence for having moved or not, represented
by a zero data energy term, or cost). p(s moved in j) is the
results of pairwise scene differencing.

The MRF smoothness energy imposed on neighboring
surfels is the Potts model (energy is 1 if labels differ, 0 if not).
This smoothness term on the joint label l links together all the
scenes: neighboring surfels typically correspond to the same
object and thus should move consistently w.r.t. to any other
scene. This energy is weighted by the local 3-D curvature
of the scene to discourage segment boundaries from being
placed in low-curvature areas. While such a weighting is not

perfect (for example, papers on a table can move around
without causing high-curvature edges), it gives good results
in our test scenes.

We use graph cuts to perform MAP inference in the MRF.
We then take each connected component of surfels with the
same label to be a possible object. For a set of n scenes, one
run of inference in this multiscene MRF makes use of the
same information as n runs of inference in two-scene MRFs.
An example can be found in Fig. 2.

While in this work we use only motion as a cue for
segmentation, other cues such as shape and color priors could
be included in our framework. In principle, our multiscene
MRF can combine any number of binary segmentations,
probabilistic or not, by including them as entries in the bit
vector that we use as a label.

Efficient Implementation: The label set for each surfel in
a scene has size exponential in the number of scenes. For
10 scenes of moderate size we are able to run inference in
under four hours. However, a good way to speed inference is
to reduce the label set size, as graph-cut inference (using the
expansion-move algorithm of [6]) has complexity linear in
the number of labels. Fortunately, the label vectors we create
from pairwise differencing results provide a good estimate
for which surfel moves we expect between a scene and any
other. Suppose only two objects in scene 5 move, one in
scenes 7 and 13 and the other in scenes 3, 7 and 10. Then
for scene 5 we expect to see many label vectors with 1s in the
3rd, 7th, 10th, and/or 13th components and 0s everywhere

4852

(a) (b) (c)

(d) (e) (f)

Fig. 3: examples of video frames masked by the projections of 3-D
segments into camera coordinates. These are not entire frames, but
cutouts of width about 100 pixels. We compute 2-D features over
image regions like these.

else. Therefore we discard label vectors that occur rarely
in pairwise results. Specifically, we sort label vectors of
all surfels in a scene by their frequency (estimated from
pairwise differencing) and only instantiate the most frequent
labels such that at least 95% of surfels are represented.
Fig. 4 shows the dramatic speed improvement we get via this
heuristic. Empirically we see virtually no difference between
the results with full and approximate label sets.

Scalability might still be a problem for very large scene
sets. However, we believe that object discovery will still
be possible by subsampling which scenes are considered
jointly or by maintaining a canonical “background” scene
that contains only static objects, and differencing each new
scene only against the current background scene.

C. Object Discovery

In the computer vision community, object discovery is the
process of partitioning a set of views (in our case a view is
a segment extracted from a single scene) such that those in
the same group represent the same object.

One unique aspect of our work is that we have access to
both 2-D appearance (one RGB-D view in each video frame)
and 3-D shape (reconstructed by merging a video sequence).
We can thus match observations (segments from the multi-
scene MRF) using both 2-D view-based matching and 3-D
alignment-based matching.

2-D Matching: Fig. 3 shows examples of 2-D views
extracted from the segmented 3-D scenes. To compare 3-D
segments using these views, we extract features over entire
segments, rather than matching point features calculated at
interest points (such as in [8]). We have two reasons for
this: the image regions corresponding to objects are generally
small and have few features and even fewer reliable ones
(due to region-edge effects), and some of our objects are
textureless and have no reliable point features.

We use efficient match kernel (EMK) features [5] calcu-
lated over sets of kernel descriptors [4] to represent our seg-

ments. Kernel descriptors are a generalization of histogram-
like features such as SIFT and achieve leading accuracies
on image category recognition[4]. We have both color and
depth information available, so we calculate gradient kernel
descriptors over both color and depth, and color kernel
descriptors over color. (These three descriptors had the
highest learned importance in our preliminary experiments.)
We calculate features over regions defined by projecting 3-
D segments into each camera’s frame rather than over the
whole frame. For EMK we use a three-level pyramid and
five hundred visual words.

For two 3-D segments S1 and S2, we determine for each of
S1’s frames the closest frame in S2 using logistic regression,
with L1 distances between EMK vectors as features. We
combine these frame-to-frame match scores into a single
score by taking the 90th-percentile score. This is essentially
the best score over all frame pairs, but allowing for a few
high-scoring matches due to chance.

3-D Matching: We also consider matching the 3-D seg-
ments we get from the segmentation step. We run an RGB-D
variant of iterated closest points (ICP) n times for each pair
of point clouds, initializing by setting the centroids equal
and choosing a rotation uniformly at random. For speed we
use point-to-point error [2] rather than the point-to-plane
error of [7]. Color information is used by requiring each
point to correspond to a point whose color is in the same
hue-saturation bin (we use 4 bins in hue, 4 in saturation).
We can score the result of each ICP run by taking the
average 3-D error over points if at least half the points
have correspondences, or a very large number if not. (If ICP
is unable to match a majority of points, its error will not
be a reliable measure of similarity.) Another error measure,
designed to be more accurate, is an adaptation of the output
of scene differencing [14]. We compute the probability of
change at each point x in S1 and associate each x ∈ S1 with
a point c(x) ∈ S2 as in ICP, such that some points have
no correspondences. The score J(X) for the alignment X is
then the sum of the pointwise change probabilities weighted
depending on correspondence:

J(X) = α
∑

x|c(x)∈S2

p(x) +
∑

x|c(x)=⊥

p(x),

where α = 10 works well. Using the scene differencing score
significantly improves the reliability of the ICP matching.

Spectral Clustering: The pairwise similarities computed
from 2-D and 3-D matching can be very noisy and incon-
sistent, partly due to low-resolution data, partial occlusions
of objects, and errors in differencing and segmentation.
Clustering is needed to enforce transitivity in the same-object
relationship between segments.

We use multiclass spectral clustering [28], which mini-
mizes the K-class Normalized Cuts criterion

ncutsK ({Vk}) =
1

K

K∑
t=1

link(Vt, V \Vt)
degree(Vt)

,

where the total set V is partitioned into K subsets {Vk}, link
is the sum of edge weights between two sets, and degree is

4853

the set of edge weights within a set. A discrete solution
to the K-class Normalized Cuts can be found efficiently
by finding rotations in the eigenvector space using singular
value decomposition [28]. We find that spectral clustering
overcomes many sources of noise in the pairwise links and
discovers challenging objects with large occlusions and with-
out distinctive texture or shape (see examples in Figure 7).

IV. EVALUATION

The camera was carried by a human. We test our algorithm
on two datasets, one (A) containing 10 scenes and one (B)
containing 9. The two have different sets of moved objects: B
has more textureless objects than A, and more objects overall
(15 versus 8). The average scene length is 140 frames for A
and 230 frames for B, at 10 Hz. To show the power of our
approach, we included similarly colored and shaped objects.
For example, B contains three mugs and four bowls, none
with much texture and all with white/blue color schemes.

A. Segmentation

To evaluate our segmentation algorithm, we manually
labeled objects in each scene and marked which objects
moved between each pair of scenes. We labeled only dataset
A due to time constraints. We compare the two-scene “pair-
wise” MRF of [14] to our “multiscene” technique. For space
reasons table II includes only aggregate statistics over surfels
in the 90 scene pairs in dataset A. Most surfels in any scene
pair do not move; the “always-not-moved” classifier attains
over 97% accuracy. As can be seen, multiscene reduces the
error by over 25% and increases both precision and recall
(calculated w.r.t. surfels that truly moved) noticeably. (Over
our dataset, this change in precision translates to 320,000
false positives avoided.) An example of the improvement
we see from the multiscene MRF is given in Fig. 2; five
other scene pairs in dataset A show similar improvement,
and for no scene pair is multiscene numerically or visually
significantly worse than pairwise.

algorithm # surfels accuracy precision recall FP FN
pairwise 38.7M 0.991 0.971 0.901 1.13M 3.84M

multiscene 38.7M 0.993 0.979 0.927 0.81M 2.83M

TABLE II: performance statistics for pairwise and multiscene
differencing MRFs over the set of all scene pairs in a dataset. FP
and FN are false-positive and false-negative counts. We reduce FP
by 28% and FN by 26%.

We also demonstrate the scalability of our multi-scene
formulation. The graph-cut inference we use does not re-
quire that potentials be stored in memory, which means
that inference can run in a small amount of memory even
with exponentially many labels, and that the time to set up
inference varies very little as a function of the number of
labels. Fig. 4 shows the decrease in label set size we get via
the heuristic discussed in sec. III-B as well as the resulting
inference runtime for scene 1 of dataset A. Inference setup
time is about 21 seconds (not included in the plot).

After the segmentation step, we manually removed seg-
ments that were not “real” objects, such as table legs and

2 4 6 8 10
0

100

200

300

400

500

600

scenes

sc
al

in
g

#labels naive

#labels proposed

running time (sec)

(a) (b)

Fig. 4: (a) scalability of multiscene differencing with number of
scenes. The black curve gives the number of labels used by the
naive algorithm. The green curve is the number of labels we use.
The blue curve (right on top of the green) gives runtime in seconds.
All have the same y-axis scale. (b) An example of a segment pair
that 2-D features have trouble matching. The gradient distributions
of the two 2-D segments are very different because the views are
from different orientations. The object is an umbrella. These are
crops of widths 140 and 228 pixels.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

emk

icp/icp

icp/icp+emk

icp/dif

icp/dif + ncuts

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

(b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

segments requested

F
−

1
m

ea
su

re

emk

icp/icp

icp/icp+emk

icp/dif

(c)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

segments requested

F
−

1
m

ea
su

re

(d)

Fig. 5: (a), (b) precision-recall curves for pairwise matching
on datasets A and B respectively. Blue: 2-D visual-feature-based
matching; black: ICP with ICP-error scoring; green: combined
visual features and ICP; magenta: ICP with differencing-based scor-
ing; black circle: best result of spectral clustering on differencing-
based scores. (c), (d) performance of spectral clustering on the two
datasets (same color scheme). The black circles in (a), (b) come
from the magenta curves here. F-measure is the harmonic mean of
precision and recall. True numbers of clusters are 8 and 15.

pieces of floor, as well as segments containing (parts of)
multiple “real” objects, in order to get better differentiation
among methods on relatively clean data. This left us with 48
and 64 segments for datasets A and B, respectively, out of
116 and 183 segments total.

4854

(a) (b) (c)

Fig. 6: segments from different objects (two white bowls) that
differencing thinks very likely to be the same object: (a), (b) images
of the bowl segments; (c) the point cloud alignment of the two
segments (upside down w.r.t. the other images).

B. Pairwise Segment Matching

Although our goal is clustering segments, we can also
evaluate the intermediate step of pairwise segment matching.
Each of our matching methods gives us a score for each pair
of segments. We evaluate by taking scores over a threshold
to specify true matches. We can thus calculate precision and
recall of a score over the set of all (ordered) segment pairs in
a dataset for each of a range of thresholds, and we do so in
Fig. 5. Since the 2-D and 3-D alignment methods described
in sec. III-C use very different sources of information, we
expect the combination of their scores to perform better than
either alone. As Fig. 5 shows, this is the case for both of
our datasets when we use ICP-based scoring as the 3-D
component. (To get a combined score for a segment pair,
we normalize both score distributions by mean and standard
deviation, then take a weighted average. For Fig. 5 we weight
the ICP score by 30.) Combining the differencing-based
score with the EMK score does not improve on differencing-
only scoring, so we don’t show it.

When we developed the differencing model we hoped to
build the whole object discovery pipeline on it: segmentation,
registration and matching. The fact that differencing-based
transform scoring performs so well suggests that we can
further improve matching performance by incorporating dif-
ferencing in the registration step. We would like to optimize
a differencing-based objective rather than the ICP error
measure, and in a way that correctly deals with occlusion,
rather than in a suboptimal way such as simply changing the
objective in the optimization stage of each ICP iteration.

2-D and 3-D scoring methods make many of the same
mistakes: false negatives happen for segment pairs with very
different colors or that cover different parts of an object, and
false positives happen for textureless objects of similar shape
and for textured objects of similar color. Visual features make
mistakes that ICP doesn’t on segments containing different
parts of an object—e.g. the two umbrellas in Fig. 4—because
of the difference in shape. ICP makes mistakes that EMKs
don’t on examples that have different 3-D shape but similar
2-D shape. Differencing makes many of the same mistakes
ICP scoring does, but fewer. This makes sense: differencing
error is more or less ICP error with better handling of color,
surface orientation and occlusion. An example of a false
positive is shown in Fig. 6.

For the 64 segments in dataset B, it takes about 150
minutes to compute kernel descriptors and EMK features

and 195 minutes to run matching (much of which is reading
feature vectors from disk). ICP matching runs about 150
minutes (which depends linearly on the number of random
ICP restarts), and scene differencing is another 75.

C. Object Discovery

Since all the similarities we calculate in sec. III-C are
nonsymmetric, we have a choice of how to combine them
when creating a similarity matrix. Given the scores for
segment s against segment t and for t against s, we can
set the similarity matrix entry to (the exponential of), for
example, the mean, min or max of the two. These kernels
all perform similarly when used with Normalized Cuts for
our MRF inference, suggesting that while our similarities
are not strictly symmetric, they are very close. In Fig. 5
we compare the performance of Normalized Cuts using
the score from 2-D feature matching alone, the score from
ICP alone and the combined score. Across the entire range
of possible cluster counts for both datasets, combining the
scores never decreases performance. Using the differencing-
based score further improves clustering quality across all
cluster counts. In Fig. 7 we show the clusters produced for
dataset B with number of desired clusters set to 20 (results
for other cluster numbers are similar). Even most of the
textureless segments are correctly clustered, which could not
have been accomplished using matching of 2-D features only.
Furthermore, the approach is able to distinguish the different
coffee mugs based on only slight color and shape differences.

In Table III we show the comparison of two leading
spectral clustering algorithms, the Multiclass Normalized
Cuts [28] and the Self-tuning Spectral Clustering [29]. We
use the 48 segments in dataset A and manually label all pairs
of segments as being the same object or not. Algorithms are
evaluated using precision and recall of the binary labels on
segment pairs. We vary the number of clusters from 2 to 48
and report the results with the best F-measures.

algorithm precision recall F-measure
multiclass Ncuts [28] 0.939 0.986 0.962

self-tuning spectral clustering [29] 0.538 0.837 0.655

TABLE III: comparison of spectral clustering algorithms.
Precision-recall values and F-measures are computed using ground-
truth same-object and different-object relations between segments.
Normalized Cuts performs the best in all our experiments.

V. CONCLUSIONS

We have introduced an RGB-D object discovery system
using multiple visits to a scene and shown that 3-D shape and
motion information improve both segmentation and matching
of 3-D segments. Our approach jointly analyzes multiple
scenes to consistently segment objects that move between
scenes. Segments are then combined into objects using
spectral clustering. Our experiments show that by combining
shape and color descriptors, our approach can robustly detect
objects and their motion between scenes, even when objects
are textureless or have virtually the same shape as other
objects, such as bowls or coffee mugs.

4855

1 1 1
2 2 2 3 3 3 3

4 4

5 5 6 6 6

7
7

15

8 8 8 8 8 8 9
9

9 9 9

10 10 10 10 11 11 11 12 12 12

15

2
2 2

10
9 9 10

13 13 13

14 14 14 14 14 3 10 3 3 3 3 15

Fig. 7: Object clusters produced for dataset B with number of desired clusters set to 20. Incorrect cluster members are outlined in red,
and object IDs are given in small text. Clusters of size > 1 are left of the line; singletons are to the right. (All three singletons are
segments of the same object, a water bottle that the depth camera has trouble seeing due to translucency and refraction. The approach is
able to distinguish between objects of very similar shape and appearance: coffee mugs 3,8, and 10, and bowls 9, 12, and 14. While the
EMK features are crucial to distinguish between individual mugs and bowls, 3D shape information via ICP is important to distinguish
across these two classes. Some of the objects (2,3) are oversegmented into multiple clusters.

REFERENCES

[1] D. Aiger, N. Mitra, and D. Cohen-Or. 4-points congruent sets for
robust pairwise surface registration. In ACM SIGGRAPH, 2008.

[2] P. Besl and N. McKay. A method for registration of 3-d shapes. IEEE
PAMI, 1992.

[3] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object
mapping in dynamic environments with mobile robots. In IEEE IROS,
2002.

[4] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition.
In Advances in Neural Information Processing Systems (NIPS), 2010.

[5] L. Bo and C. Sminchisescu. Efficient match kernels between sets of
features for visual recognition. In Advances in Neural Information
Processing Systems (NIPS), 2009.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. IEEE PAMI, 2001.

[7] Y. Chen and G. Medioni. Object modeling by registration of multiple
range images. Image and Vision Computing, 1992.

[8] A. Collet Romea, D. Berenson, S. Srinivasa, and D. Ferguson. Object
recognition and full pose registration from a single image for robotic
manipulation. In IEEE ICRA, 2009.

[9] I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means, spectral clustering
and normalized cuts. In ACM SIGKDD, 2004.

[10] M. Fischler and R. Bolles. Random sample consensus: a paradigm
for model fitting with application to image analysis and automated
cartography. Communications of the ACM, 1981.

[11] K. Grauman and T. Darrell. Unsupervised learning of categories from
sets of partially matching image features. In IEEE CVPR, 2006.

[12] D. Haehnel, R. Triebel, W. Burgard, and S. Thrun. Map building with
mobile robots in dynamic environments. In IEEE ICRA, 2003.

[13] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping:
Using depth cameras for dense 3-d modeling of indoor environments.
In International Symposium on Experimental Robotics (ISER), 2010.

[14] E. Herbst, P. Henry, X. Ren, and D. Fox. Toward object discovery
and modeling via 3-d scene comparison. In IEEE ICRA, 2011.

[15] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image
co-segmentation. In IEEE CVPR, 2010.

[16] G. Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of
object categories using link analysis techniques. In IEEE CVPR, 2008.

[17] K. Konolige and J. Bowman. Towards life-long visual maps. In IEEE
IROS, 2009.

[18] K. Lai and D. Fox. Object recognition in 3D point clouds using
web data and domain adaptation. International Journal of Robotics
Research (IJRR), 29(8), 2010.

[19] D. Liu and T. Chen. A topic-motion model for unsupervised video
object discovery. In IEEE CVPR, 2007.

[20] T. Malisiewicz and A. Efros. Improving spatial support for objects
via multiple segmentations. In Proc. of the British Machine Vision
Conference, 2007.

[21] E. Olson, M. Walter, S. Teller, and J. Leonard. Single-cluster spectral
graph partitioning for robotics applications. In Robotics: Science and
Systems (RSS), 2005.

[22] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard. Unsupervised
learning of 3d object models from partial views. In IEEE ICRA, 2009.

[23] B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman. Using
multiple segmentations to discover objects and their extent in image
collections. In IEEE CVPR, 2006.

[24] B. Sapp, A. Saxena, and A. Ng. A fast data collection and aug-
mentation procedure for object recognition. In Proc. of the National
Conference on Artificial Intelligence (AAAI), 2008.

[25] J. Shin, R. Triebel, and R. Siegwart. Unsupervised discovery of
repetitive objects. In IEEE ICRA, 2010.

[26] T. Southey and J. Little. Object discovery through motion, appearance
and shape. In AAAI Workshop on Cognitive Robotics, 2006.

[27] R. Triebel, J. Shin, and R. Siegwart. Segmentation and unsupervised
part-based discovery of repetitive objects. In Robotics: Science and
Systems (RSS), 2010.

[28] Stella X. Yu and Jianbo Shi. Multiclass spectral clustering. In
International Conference on Computer Vision (ICCV), 2003.

[29] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In
Advances in Neural Information Processing Systems (NIPS), 2004.

4856

