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Abstract

The design of low-level image features is critical for computer vision algorithms.
Orientation histograms, such as those in SIFT [16] and HOG [3], are the most
successful and popular features for visual object and scene recognition. We high-
light the kernel view of orientation histograms, and show that they are equivalent
to a certain type of match kernels over image patches. This novel view allows
us to design a family of kernel descriptors which provide a unified and princi-
pled framework to turn pixel attributes (gradient, color, local binary pattern, etc.)
into compact patch-level features. In particular, we introduce three types of match
kernels to measure similarities between image patches, and construct compact
low-dimensional kernel descriptors from these match kernels using kernel princi-
pal component analysis (KPCA) [23]. Kernel descriptors are easy to design and
can turn any type of pixel attribute into patch-level features. They outperform
carefully tuned and sophisticated features including SIFT and deep belief net-
works. We report superior performance on standard image classification bench-
marks: Scene-15, Caltech-101, CIFAR10 and CIFAR10-ImageNet.

1 Introduction

Image representation (features) is arguably the most fundamental task in computer vision. The
problem is highly challenging because images exhibit high variations, are highly structured, and
lie in high dimensional spaces. In the past ten years, a large number of low-level features over
images have been proposed. In particular, orientation histograms such as SIFT [16] and HOG [3]
are the most popular low-level features, essential to many computer vision tasks such as object
recognition and 3D reconstruction. The success of SIFT and HOG naturally raises questions on how
they measure the similarity between image patches, how we should understand the design choices in
them, and whether we can find a principled way to design and learn comparable or superior low-level
image features.

In this work, we highlight the kernel view of orientation histograms and provide a unified way to
low-level image feature design and learning. Our low-level image feature extractors, kernel descrip-
tors, consist of three steps: (1) design match kernels using pixel attributes; (2) learn compact basis
vectors using kernel principle component analysis; (3) construct kernel descriptors by projecting the
infinite-dimensional feature vectors to the learned basis vectors. We show how our framework is
applied to gradient, color, and shape pixel attributes, leading to three effective kernel descriptors.
We validate our approach on four standard image category recognition benchmarks, and show that
our kernel descriptors surpass both manually designed and well tuned low-level features (SIFT) [16]
and sophisticated feature learning approaches (convolutional networks, deep belief networks, sparse
coding, etc.) [10, 26, 14, 24].
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The most relevant work to this paper is that of efficient match kernels (EMK) [1], which provides
a kernel view to the frequently used Bag-of-Words representation and forms image-level features
by learning compact low dimensional projections or using random Fourier transformations. While
the work on efficient match kernels is interesting, the hand-crafted SIFT features are still used as
the basic building block. Another related work is based on mathematics of the neural response,
which shows that the hierarchical architectures motivated by the neuroscience of the visual cortex is
associated to the derived kernel [24]. Instead, the goal of this paper is to provide a deep understand-
ing of how orientation histograms (SIFT and HOG) work, and we can generalize them and design
novel low-level image features based on the kernel insight. Our kernel descriptors are general and
provide a principled way to convert pixel attributes to patch-level features. To the best of our knowl-
edge, this is the first time that low-level image features are designed and learned from scratch using
kernel methods; they can serve as the foundation of many computer vision tasks including object
recognition.

This paper is organized as follows. Section 2 introduces the kernel view of histograms. Our novel
kernel descriptors are presented in Section 3, followed by an extensive experimental evaluation in
Section 4. We conclude in Section 5.

2 Kernel View of Orientation Histograms

Orientation histograms, such as SIFT [16] and HOG [3], are the most commonly used low-level
features for object detection and recognition. Here we describe the kernel view of such orientation
histograms features, and show how this kernel view can help overcome issues such as orientation
binning. Let θ(z) and m(z) be the orientation and magnitude of the image gradient at a pixel z. In
HOG and SIFT, the gradient orientation of each pixel is discretized into a d−dimensional indicator
vector δ(z) = [δ1(z), · · · , δd(z)] with

δi(z) =
{

1, bdθ(z)
2π c = i− 1

0, otherwise
(1)

where bxc takes the largest integer less than or equal to x (we will describe soft binning further
below). The feature vector of each pixel z is a weighted indicator vector F (z) = m(z)δ(z). Ag-
gregating feature vectors of pixels over an image patch P , we obtain the histogram of oriented
gradients:

Fh(P ) =
∑

z∈P

m̃(z)δ(z) (2)

where m̃(z) = m(z)/
√∑

z∈P m(z)2 + εg is the normalized gradient magnitude, with εg a small
constant. P is typically a 4 × 4 rectangle in SIFT and an 8 × 8 rectangle in HOG. Without loss of
generality, we consider L2-based normalization here. In object detection [3, 5] and matching based
object recognition [18], linear support vector machines or the L2 distance are commonly applied to
sets of image patch features. This is equivalent to measuring the similarity of image patches using a
linear kernel in the feature map Fh(P ) in kernel space:

Kh(P, Q) = Fh(P )>Fh(Q) =
∑

z∈P

∑

z′∈Q

m̃(z)m̃(z′)δ(z)>δ(z′) (3)

where P and Q are patches usually from two different images. In Eq. 3, both km̃(z, z′) =
m̃(z)m̃(z′) and kδ(z, z′) = δ(z)>δ(z′) are the inner product of two vectors and thus are positive
definite kernels. Therefore, Kh(P, Q) is a match kernel over sets (here the sets are image patches)
as in [8, 1, 11, 17, 7]. Thus Eq. 3 provides a kernel view of HOG features over image patches. For
simplicity, we only use one image patch here; it is straightforward to extend to sets of image patches.

The hard binning underlying Eq. 1 is only for ease of presentation. To get a kernel view of soft
binning [13], we only need to replace the delta function in Eq. 1 by the following, soft δ(·) function:

δi(z) = max(cos(θ(z)− ai)9, 0) (4)

where a(i) is the center of the i−th bin. In addition, one can easily include soft spatial binning by
normalizing gradient magnitudes using the corresponding spatial weights. The L2 distance between
P and Q can be expressed as D(P, Q) = 2− 2F (P )>F (Q) as we know F (P )>F (P ) = 1, and the
kernel view can be provided in the same manner.
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Figure 1: Pixel attributes. Left: Gradient orientation representation. To measure similarity between
two pixel orientation gradients θ and θ′, we use the L2 norm between the normalized gradient vectors
θ̃ = [sin(θ) cos(θ)] and θ̃′ = [sin(θ′) cos(θ′)]. The red dots represent the normalized gradient
vectors, and the blue line represents the distance between them. Right: Local binary patterns. The
values indicate brightness of pixels in a 3×3 patch. Red pixels have intensities larger than the center
pixel, blue pixels are darker. The 8-dimensional indicator vector is the resulting local binary pattern.

Note that the kernel km̃(z, z′) measuring the similarity of gradient magnitudes of two pixels is linear
in gradient magnitude. kδ(z, z′) measures the similarity of gradient orientations of two pixels: 1 if
two gradient orientations are in the same bin, and 0 otherwise (Eq.1, hard binning). As can be seen,
this kernel introduces quantization errors and could lead to suboptimal performance in subsequent
stages of processing. While soft binning results in a smoother kernel function, it still suffers from
discretization. This motivates us to search for alternative match kernels which can measure the
similarity of image patches more accurately.

3 Kernel Descriptors

3.1 Gradient, Color, and Shape Match Kernels

We introduce the following gradient match kernel, Kgrad, to capture image variations:

Kgrad(P, Q) =
∑

z∈P

∑

z′∈Q

m̃(z)m̃(z′)ko(θ̃(z), θ̃(z′))kp(z, z′) (5)

where kp(z, z′) = exp(−γp‖z−z′‖2) is a Gaussian position kernel with z denoting the 2D position
of a pixel in an image patch (normalized to [0, 1]), and ko(θ̃(z), θ̃(z′)) = exp(−γo‖θ̃(z)− θ̃(z′)‖2)
is a Gaussian kernel over orientations. To estimate the difference between orientations at pixels z
and z′, we use the following normalized gradient vectors in the kernel function ko:

θ̃(z) = [sin(θ(z)) cos(θ(z))] . (6)

The L2 distance between such vectors measures the difference of gradient orientations very well (see
Figure 1). Note that computing the L2 distance on the raw angle values θ instead of the normalized
gradient vectors θ̃ would cause wrong similarity in some cases. For example, consider the two angles
2π − 0.01 and 0.01, which have very similar orientation but very large L2 distance.

To summarize, our gradient match kernel Kgrad consists of three kernels: the normalized linear
kernel is the same as that in the orientation histograms, weighting the contribution of each pixel
using gradient magnitudes; the orientation kernel ko computes the similarity of gradient orientations;
and the position Gaussian kernel kp measures how close two pixels are spatially.

The kernel view of orientation histograms provides a simple, unified way to turn pixel attributes into
patch-level features. One immediate extension is to construct color match kernels over pixel values:

Kcol(P, Q) =
∑

z∈P

∑

z′∈Q

kc(c(z), c(z′))kp(z, z′) (7)

where c(z) is the pixel color at position z (intensity for gray images and RGB values for color
images). kc(c(z), c(z′)) = exp

(−γc‖c(z)− c(z′)‖2) measures how similar two pixel values are.
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While the gradient match kernel can capture image variations and the color match kernel can de-
scribe image appearance, we find that a match kernel over local binary patterns can capture local
shape more effectively: [19]:

Kshape(P, Q) =
∑

z∈P

∑

z′∈Q

s̃(z)s̃(z′)kb(b(z), b(z′))kp(z, z′) (8)

where s̃(z) = s(z)/
√∑

z∈P s(z)2 + εs, s(z) is the standard deviation of pixel values in the
3 × 3 neighborhood around z, εs a small constant, and b(z) is binary column vector binarizes
the pixel value differences in a local window around z (see Fig. 1(right)). The normalized lin-
ear kernel s̃(z)s̃(z′) weighs the contribution of each local binary pattern, and the Gaussian kernel
kb(b(z), b(z′)) = exp(−γb‖b(z)−b(z′)‖2) measures shape similarity through local binary patterns.

Match kernels defined over various pixel attributes provide a unified way to generate a rich, diverse
visual feature set, which has been shown to be very successful to boost recognition accuracy [6]. As
validated by our own experiments, gradient, color and shape match kernels are strong in their own
right and complement one another. Their combination turn out to be always (much) better than the
best individual feature.

3.2 Learning Compact Features

Match kernels provide a principled way to measure the similarity of image patches, but evaluating
kernels can be computationally expensive when image patches are large [1]. Both for computational
efficiency and for representational convenience, we present an approach to extract the compact low-
dimensional features from match kernels: (1) uniformly and densely sample sufficient basis vectors
from support region to guarantee accurate approximation to match kernels; (2) learn compact basis
vectors using kernel principal component analysis. An important advantage of our approach is that
no local minima are involved, unlike constrained kernel singular value decomposition [1].

We now describe how our compact low-dimensional features are extracted from the gradient kernel
Kgrad; features for the other kernels can be generated the same way. Rewriting the kernels in Eq. 5
as inner products ko(θ̃(z), θ̃(z′)) = φo(θ̃(z))>φo(θ̃(z′)), kp(z, z′) = φp(z)>φp(z′), we can derive
the following feature over image patches:

Fgrad(P ) =
∑

z∈P

m̃(z)φo(θ̃(z))⊗ φp(z) (9)

where ⊗ is the tensor product. For this feature, it follows that Fgrad(P )>Fgrad(Q) = Kgrad(P, Q).
Because we use Gaussian kernels, Fgrad(P ) is an infinite-dimensional vector.

A straightforward way to dimension reduction is to sample sufficient image patches from training
images and perform KPCA for match kernels. However, such approach makes the learned features
depend on the task at hand. Moreover, KPCA can become computationally infeasible when the
number of patches is very large.

Sufficient Finite-dimensional Approximation. We present an approach to approximate match ker-
nels directly without requiring any image. Following classic methods, we learn finite-dimensional
features by projecting Fgrad(P ) into a set of basis vectors. A key issue in this projection process
is how to choose a set of basis vectors which makes the finite-dimensional kernel approximate well
the original kernel. Since pixel attributes are low-dimensional vectors, we can achieve a very good
approximation by sampling sufficient basis vectors using a fine grid over the support region. For
example, consider the Gaussian kernel ko(θ̃(z), θ̃(z′)) over gradient orientation. Given a set of ba-
sis vectors {φo(xi)}do

i=1 where xi are sampled normalized gradient vectors, we can approximate a
infinite-dimensional vector φo(θ̃(z)) by its projection into the space spanned by the set of these do

basis vectors. Following the formulation in [1], such a procedure is equivalent to using a finite-
dimensional kernel:

k̃o(θ̃(z), θ̃(z′)) = ko(θ̃(z), X)>
[
Ko

−1
]
ij

ko(θ̃(z′), X) =
[
Gko(θ̃(z), X)

]> [
Gko(θ̃(z′), X)

]

(10)
where ko(θ̃(z), X) = [ko(θ̃(z), x1), · · · , ko(θ̃(z), xdo)]

> is a do × 1 vector, Ko is a do × do matrix
with Koij = ko(xi, xj), and Ko

−1 = G>G. The resulting feature map φ̃o(θ̃(z)) = Gko(θ̃(z), X)
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Figure 2: Finite dimensional approximation. Left: the orientation kernel ko(θ̃(z), θ̃(z′)) and its
finite-dimensional approximation. γo is set to be 5 (as used in the experiments) and θ̃(z′) is fixed to
[1 0]. All curves show kernel values as functions of θ̃(z). The red line is the ground truth kernel func-
tion ko, and the black, green and blue lines are the finite approximation kernels with different grid
sizes. Right: root mean square error (RMSE) between KPCA approximation and the corresponding
match kernel as a function of dimensionality. We compute the RMSE on randomly sampled 10000
datapoints. The three lines show the RMSE between the kernels Kgrad (red) and Kcol (blue) and
Kshape (green), and their respective approximation kernels.

is now only do−dimensional. In a similar manner, we can also approximate the kernels kp, kc and kb.
The finite-dimensional feature for the gradient match kernel is F̃grad(P ) =

∑
z∈P m̃(z)φ̃o(θ̃(z))⊗

φ̃p(z), and may be efficiently used as features over image patches. We validate our intuition in Fig.
2. As we expect, the approximation error rapidly drops with increasing grid sizes. When the grid
size is larger than 16, the finite kernel and the original kernel become virtually indistinguishable.
For the shape kernel over local binary patterns, because the variables are binary, we simply choose
the set of all 28 = 256 basis vectors and thus no approximation error is introduced.

Compact Features. Although F̃grad(P ) is finite-dimensional, the dimensionality can be high due
to the tensor product. For example, consider the shape kernel descriptor: the size of basis vectors
on kernel kb is 256; if we choose the basis vectors of the position kernel kp on a 5× 5 regular grid,
the dimensionality of the resulting shape kernel descriptor Fshape would be 256 × 25 = 6400, too
high for practical purposes. Dense uniform sampling leads to accurate approximation but does not
guarantee orthogonality of the basis vectors, thus introducing redundance. The size of basis vectors
can be further reduced by performing kernel principal component analysis over joint basis vectors:
{φo(x1)⊗ φp(y1), · · · , φo(xdo

)⊗ φp(ydp
)}, where φp(ys) are basis vectors for the position kernel

and dp is the number of basis vectors. The t−th kernel principal component can be written as

PCt =
do∑

i=1

dp∑

j=1

αt
ijφo(xi)⊗ φp(yj) (11)

where do and dp are the sizes of basis vectors for the orientation and position kernel, respectively,
and αt

ij is learned through kernel principal component analysis: Kcα
t = λtαt, where Kc is a

centered kernel matrix with [Kc]ijst = ko(xi, xj)kp(ys, yt) − 2
∑

i′,s′ ko(xi′ , xj)kp(ys′ , yt) +∑
i′,j′,s′,t′ ko(xi′ , xj′)kp(ys′ , yt′). As shown in fig. (2), match kernels can be approximated rather

accurately using the reduced basis vectors by KPCA. Under the framework of kernel principal com-
ponent analysis, our gradient kernel descriptor (Eq. 5) has the form

F
t

grad(P ) =
do∑

i=1

dp∑

j=1

αt
ij

{∑

z∈P

m̃(z)ko(θ̃(z), xi)kp(z, yj)

}
(12)

The computational bottleneck of extracting kernel descriptors are to evaluate the kernel function
kokp between pixels. Fortunately, we can compute two kernel values separately at the cost do + dp,
rather than dodp. Our most expensive kernel descriptor, the shape kernel, takes about 4 seconds in
MATLAB to compute on a typical image (300 × 300 resolution and 16 × 16 image patches over
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8×8 grids). It is about 1.5 seconds for the gradient kernel descriptor, compared to about 0.4 seconds
for SIFT under the same setting. A more efficient GPU-based implementation will certainly reduce
the computation time for kernel descriptors such that real time applications become feasible.

4 Experiments

We compare gradient (KDES-G), color (KDES-C), and shape (KDES-S) kernel descriptors to SIFT
and several other state of the art object recognition algorithms on four publicly available datasets:
Scene-15, Caltech101, CIFAR10, and CIFAR10-ImageNet (a subset of ImageNet). For gradient and
shape kernel descriptors and SIFT, all images are transformed into grayscale ([0, 1]) and resized to be
no larger than 300× 300 pixels with preserved ratio. Image intensity or RGB values are normalized
to [0 1]. We extracted all low level features with 16×16 image patches over dense regular grids with
spacing of 8 pixels. We used publicly available dense SIFT code at http://www.cs.unc.edu/ lazeb-
nik [13], which includes spatial binning, soft binning and truncation (nonlinear cutoff at 0.2), and
has been demonstrated to obtain high accuracy for object recognition. For our gradient kernel de-
scriptors we use the same gradient computation as used for SIFT descriptors. We also evaluate the
performance of the combination of the three kernel descriptors (KDES-A) by simply concatenating
the image-level features vectors.

Instead of spatial pyramid kernels, we compute image-level features using efficient match kernels
(EMK), which has been shown to produce more accurate quantization. We consider 1×1, 2×2 and
4 × 4 pyramid sub-regions (see [1]), and perform constrained kernel singular value decomposition
(CKSVD) to form image-level features, using 1,000 visual words (basis vectors in CKSVD) learned
by K-means from about 100,000 image patch features. We evaluate classification performance with
accuracy averaged over 10 random training/testing splits with the exception of the CIFAR10 dataset,
where we report the accuracy on the test set. We have experimented both with linear SVMs and
Laplacian kernel SVMs and found that Laplacian kernel SVMs over efficient match kernel features
are always better than linear SVMs (see (§4.2)). We use Laplacian kernel SVMs in our experiments
(except for the tiny image dataset CIFAR10).

4.1 Hyperparameter Selection

We select kernel parameters using a subset of ImageNet. We retrieve 8 everyday categories from
the ImageNet collection: apple, banana, box, coffee mug, computer keyboard, laptop, soda can and
water bottle. We choose basis vectors for ko, kc, and kp from 25, 5 × 5 × 5 and 5 × 5 uniform
grids, respectively, which give sufficient approximations to the original kernels (see also Fig. 2).
We optimize the dimensionality of KPCA and match kernel parameters jointly using exhaustive grid
search. Our experiments suggest that the optimal parameter settings are r = 200 (dimensionality
of kernel descriptors), γo = 5, γc = 4, γb = 2, γp = 3, εg = 0.8 and εs = 0.2 (fig. 3). In the
following experiments, we will keep these values fixed, even though the performance may improve
if considering task-dependent hyperparameter selection.

4.2 Benchmark Comparisons

Scene-15. Scene-15 is a popular scene recognition benchmark from [13] which contains 15 scene
categories with 200 to 400 images in each. SIFT features have been extensively used on Scene-
15. Following the common experimental setting, we train our models on 1,500 randomly selected
images (100 images per category) and test on the rest. We report the averaged accuracy of SIFT,
KDES-S, KDES-C, KDES-G, and KDES-A over 10 random training/test splits in Table 1. As we
see, both gradient and shape kernel descriptors outperform SIFT with a margin. Gradient kernel
descriptors and shape kernel descriptors have similar performance. It is not surprising that the
intensity kernel descriptor has a lower accuracy, as all the images are grayscale. The combination of
the three kernel descriptors further boosts the performance by about 2 percent. Another interesting
finding is that Laplacian kernel SVMs are significantly better than linear SVMs, 86.7%.

In our recognition system, the accuracy of SIFT is 82.2% compared to 81.4% in spatial pyramid
match (SPM). We also tried to replace SIFT features with our gradient and shape kernel descrip-
tors in SPM, and both obtained 83.5% accuracy, 2 percent higher than SIFT features. To our best
knowledge, our gradient kernel descriptor alone outperforms the best published result 84.2% [27].
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Figure 3: Hyperparameter selection. left: Accuracy as functions of feature dimensionality for orien-
tation kernel (KDES-G) and shape kernel (KDES-S), respectively. center: Accuracy as functions of
εg and εs. right: Accuracy as function of γo and γb.

Methods SIFT KDES-C KDES-G KDES-S KDES-A
Linear SVM 76.7±0.7 38.5±0.4 81.6±0.6 79.8±0.5 81.9±0.6

Laplacian kernel SVM 82.2±0.9 47.9±0.8 85.0±0.6 84.9±0.7 86.7±0.4

Table 1: Comparisons of recognition accuracy on Scene-15: kernel descriptors and their combination vs SIFT.

Caltech-101. Caltech-101 [15] consists of 9,144 images in 101 object categories and one back-
ground category. The number of images per category varies from 31 to 800. Because many re-
searchers have reported their results on Caltech-101, we can directly compare our algorithm to the
existing ones. Following the standard experimental setting, we train classifiers on 30 images and test
on no more than 50 images per category. We report our results in Table 2. We compare our kernel
descriptors with recently published results obtained both by low-level feature learning algorithms,
convolutional deep belief networks (CDBN), and sparse coding methods: invariant predictive sparse
decomposition (IPSD) and locality-constrained linear coding. We observe that SIFT features in con-
junction with efficient match kernels work well on this dataset and obtain 70.8% accuracy using a
single patch size, which beat SPM with the same SIFT features by a large margin. Both our gradient
kernel descriptor and shape kernel descriptor are superior to CDBN by a large margin.

We have performed feature extraction with three different patch sizes: 16× 16, 25× 25 and 31× 31
and reached the same conclusions with many other researchers: multiple patch sizes (scales) can
boost the performance by a few percent compared to the single patch size. Notice that both naive
Bayesian nearest neighbor (NBNN) and locality-constrained linear coding should be compared to
our kernel descriptors over multiple patch sizes because both of them used multiple scales to boost
the performance. Using only our gradient kernel descriptor obtains 75.2% accuracy, higher than the
results obtained by all other single feature based methods, to our best knowledge. Another finding
is that the combination of three kernel descriptors outperforms any single kernel descriptor. We
note that better performance has been reported with the use of more image features [6]. Our goal
in this paper is to evaluate the strengths of kernel descriptors. To improve accuracy further, kernel
descriptors can be combined with other types of image features.

CIFAR-10. CIFAR-10 is a labeled subset of the 80 million tiny images dataset [25, 12]. This
dataset consists of 60,000 32x32 color images in 10 categories, with 5,000 images per category as
training set and 1,000 images per category as test set. Deep belief networks have been extensively
investigated on this dataset [21, 22]. We extract kernel descriptors over 8×8 image patches per pixel.
Efficient match kernels over the three spatial grids 1×1, 2×2, and 3×3 are used to generate image-
level features. The resulting feature vectors have a length of (1+4+9)∗1000(visual words)= 14000
per kernel descriptor. Linear SVMs are trained due to the large number of training images.

SPM [13] 64.4±0.5 kCNN [28] 67.4 KDES-C 40.8±0.9 KDES-C(M) 42.4±0.5
NBNN [2] 73.0 IPSD [10] 56.0 KDES-G 73.3±0.6 KDES-G(M) 75.2±0.4
CDBN [14] 65.5 LLC [26] 73.4 ±0.5 KDES-S 68.2±0.7 KDES-S(M) 70.3±0.6

SIFT 70.8±0.8 SIFT(M) 73.2±0.5 KDES-A 74.5±0.8 KDES-A(M) 76.4±0.7

Table 2: Comparisons on Caltech-101. Kernel descriptors are compared to recently published re-
sults. (M) indicates that features are extracted with multiple image patch sizes.
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LR 36.0 GRBM, ZCAd images 59.6 mRBM 59.7 KDES-C 53.9
SVM 39.5 GRBM 63.8 cRBM 64.7 KDES-G 66.3

GIST[20] 54.7 fine-tuning GRBM 64.8 mcRBM 68.3 KDES-S 68.2
SIFT 65.6 GRBM two layers 56.6 mcRBM-DBN 71.0 KDES-A 76.0

Table 3: Comparisons on CIFAR-10. Both logistic regression and SVMs are trained over image
pixels.

Methods SIFT KDES-C KDES-G KDES-S KDES-A
Laplacian kernel SVMs 66.5 ±0.4 56.4±0.8 69.0 ±0.8 70.5±0.7 75.2±0.7

Table 4: Comparisons on CIFAR10-ImageNet, subset of ImageNet using the 10 CIFAR categories.

We compare our kernel descriptors to deep networks [14, 9] and several baselines in table 3. One
immediate observation is that sophisticated feature extractions are significantly better than raw pixel
features. Linear logistic regression and linear SVMs over raw pixels only have accuracies of 36%
and 39.5%, respectively, over 30 percent lower than deep belief networks and our kernel descriptors.
SIFT features still work well on tiny images and have an accuracy of 65.2%. Color kernel descriptor,
KDES-C, has 53.9% accuracy. This result is a bit surprising since each category has a large color
variation. A possible explanation is that spatial information can help a lot. To validate our intu-
itions, we also evaluated the color kernel descriptor without spatial information (kernel features are
extracted on 1× 1 spatial grid), and only obtained 38.5% accuracy, 18 percent lower than the color
kernel descriptor over pyramid spatial grids. KDES-G is slightly better than SIFT features. The
shape kernel feature, KDES-S, has accuracy of 68.2%, and is the best single feature on this dataset.
Combing the three kernel descriptors, we obtain the best performance of 76%, 5 percent higher than
the most sophisticated deep network mcRBM-DBN, which model pixel mean and covariance jointly
using factorized third-order Boltzmann machines.

CIFAR-10-ImageNet. Motivated by CIFAR-10, we collect a labeled subset of ImageNet [4] by
retrieving 10 categories used in ImageNet: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse,
Ship and Truck. The total number of images is 15,561 with more than 1,200 images per category.
This dataset is very challenging due to the following facts: multiple objects can appear in one image,
only a small part of objects are visible, backgrounds are cluttered, and so on. We train models on
1,000 images per class and test on 200 images per category. We report the averaged results over 10
random training/test splits in Table 4. We can’t finish running deep belief networks in a reasonable
time since they are slow for running images of this scale. Both gradient and shape kernel descriptors
achieve higher accuracy than SIFT features, which again confirms that our gradient kernel descriptor
and shape kernel descriptor outperform SIFT features on high resolution images with the same
category as CIFAR-10. We also ran the experiments on the downsized images, no larger than 50×50
with preserved ratio. We observe that the accuracy drops 4-6 percents compared to those on high
resolution images. This validates that high resolution is helpful for object recognition.

5 Conclusion

We have proposed a general framework, kernel descriptors, to extract low-level features from image
patches. Our approach is able to turn any pixel attribute into patch-level features in a unified and
principled way. Kernel descriptors are based on the insight that the inner product of orientation his-
tograms is a particular match kernel over image patches. We have performed extensive comparisons
and confirmed that kernel descriptors outperform both SIFT features and hierarchical feature learn-
ing, where the former is the default choice for object recognition and the latter is the most popular
low-level feature learning technique. To our best knowledge, we are the first to show how kernel
methods can be applied for extracting low-level image features and show superior performance. This
opens up many possibilities for learning low-level features with other kernel methods. Considering
the huge success of kernel methods in the last twenty years, we believe that this direction is worth
being pursued. In the future, we plan to investigate alternative kernels for low-level feature learning
and learn pixel attributes from large image data collections such as ImageNet.
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