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Abstract

Complex real-world signals, such as images, contain dis-
criminative structures that differ in many aspects includ-
ing scale, invariance, and data channel. While progress
in deep learning shows the importance of learning features
through multiple layers, it is equally important to learn fea-
tures through multiple paths. We propose Multipath Hier-
archical Matching Pursuit (M-HMP), a novel feature learn-
ing architecture that combines a collection of hierarchical
sparse features for image classification to capture multiple
aspects of discriminative structures. Our building blocks
are MI-KSVD, a codebook learning algorithm that balances
the reconstruction error and the mutual incoherence of the
codebook, and batch orthogonal matching pursuit (OMP);
we apply them recursively at varying layers and scales. The
result is a highly discriminative image representation that
leads to large improvements to the state-of-the-art on many
standard benchmarks, e.g., Caltech-101, Caltech-256, MIT-
Scenes, Oxford-1IIT Pet and Caltech-UCSD Bird-200.

1. Introduction

Images are high dimensional signals that change dramat-
ically under varying scales, viewpoints, lighting conditions,
and scene layouts. How to extract features that are robust to
these changes is an important question in computer vision,
and traditionally people rely on designed features such as
SIFT. While SIFT can be understood and generalized as a
way to go from pixels to patch descriptors [2], designing
good features is a challenging task that requires deep do-
main knowledge, and it is often difficult to adapt to new
settings.

Feature learning is attractive as it exploits the availability
of data and avoids the need of feature engineering. Learning
features has become increasingly popular and effective for
visual recognition. A variety of learning and coding tech-
niques have been proposed and evaluated, such as deep be-
lief nets [12], deep autoencoders [17], deep convolutional
neural networks [ | 5], and hierarchical sparse coding [32, 3].
Many are deep learning approaches that learn to push pix-
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Figure 1: Architecture of multipath sparse coding. Image patches
of different sizes (here, 16x16 and 36x36) are encoded via multi-
ple layers of sparse coding. Each path corresponds to a specific
patch size and number of layers (numbers inside boxes indicate
patch size at the corresponding layer and path). Spatial pooling,
indicated by SP, is performed between layers to generate the in-
put features for the next layer. The final layer of each path en-
codes complete image patches and generates a feature vector for
the whole image via another spatial pooling operation. Path fea-
tures are then concatenated and used by a linear SVM for object
recognition.

els through multiple layers of feature transforms. The re-
cent work on Hierarchical Matching Pursuit [3] is inter-
esting as it is efficient (using Batch Orthogonal Matching
Pursuit), recursive (the same computational structure going
from pixels to patches, and from patches to images), and
outperforms many designed features and algorithms on a
variety of recognition benchmarks.

One crucial problem that is often overlooked in image
feature learning is the multi-facet nature of visual struc-
tures: discriminative structures, which we want to extract,
may appear at varying scales with varying amounts of spa-
tial and appearance invariance. While a generic learning
model could capture such heterogeneity, it is much eas-
ier to build it into the learning architecture. In this work,
we propose Multipath Hierarchical Matching Pursuit (M-
HMP), which builds on the single-path Hierarchical Match-
ing Pursuit approach to learn and combine recursive sparse
coding through many pathways on multiple bags of patches
of varying size, and, most importantly, by encoding each



patch through multiple paths with a varying number of lay-
ers. See Fig. | for an illustration of our system. The mul-
tipath architecture is important as it significantly and effi-
ciently expands the richness of image representation and
leads to large improvements to the state of the art of image
classification, as evaluated on a variety of object and scene
recognition benchmarks. Our M-HMP approach is generic
and can adapt to new tasks, new sensor data, or new feature
learning and coding algorithms.

2. Related Work

In the past few years, a growing amount of research on

visual recognition has focused on learning rich features us-
ing unsupervised and supervised hierarchical architectures.
Deep Networks: Deep belief nets [12] learn a hierarchy of
features, layer by layer, using the unsupervised restricted
Boltzmann machine. The learned weights are then further
adjusted to the current task using supervised information.
To make deep belief nets applicable to full-size images, con-
volutional deep belief nets [18] use a small receptive field
and share the weights between the hidden and visible lay-
ers among all locations in an image. Deconvolutional net-
works [33] convolutionally decompose images in an unsu-
pervised way under a sparsity constraint. By building a hi-
erarchy of such decompositions, robust representations can
be built from raw images for image recognition. Deep au-
toencoders [17] build high-level, class-specific feature de-
tectors from a large collection of unlabeled images, for in-
stance human and cat face detectors. Deep convolutional
neural networks [15] won the ImageNet Large Scale Visual
Recognition Challenge 2012 and demonstrated their poten-
tial for training on large, labeled datasets.
Sparse Coding: For many years, sparse coding [21] has
been a popular tool for modeling images. Sparse coding on
top of raw patches or SIFT features has achieved state-of-
the-art performance on face recognition, texture segmenta-
tion [19], and generic object recognition [28, 5, 9]. Very
recently, multi-layer sparse coding networks including hier-
archical sparse coding [32] and hierarchical matching pur-
suit [3, 4] have been proposed for building multiple level
features from raw sensor data. Such networks learn code-
books at each layer in an unsupervised way such that image
patches or pooled features can be represented by a sparse,
linear combination of codebook entries. With learned code-
books, feature hierarchies are built from scratch, layer by
layer, using sparse codes and spatial pooling [3].

3. Multipath Sparse Coding

This section provides an overview of our Multipath Hi-
erarchical Matching Pursuit (M-HMP) approach. We pro-
pose a novel codebook learning algorithm, MI-KSVD, to
maintain mutual incoherence of the codebook, and discuss
how multi-layer sparse coding hierarchies for images can be

built from scratch and how multipath sparse coding helps
capture discriminative structures of varying characteristics.

3.1. Codebook Learning with Mutual Incoherence

The key idea of sparse coding is to represent
data as sparse linear combinations of codewords se-
lected from a codebook/dictionary [21]. The stan-
dard sparse coding approaches learn the codebook D =
[di, - dp,- ,dy] € RT*M and the associated sparse
codes X = [x1,-++ Xy, - ,xn] € RN from a matrix ¥ =
Vi, s Yns-- - ,yn] € RN of observed data by minimizing
the reconstruction error

in||Y — DX||} 1
min | 7 (1
sit. Vm, ||dn|l2=1 and Vn, ||x,|o <K

where H, M, and N are the dimensionality of the codewords,
the size of the codebook, and the number of training sam-
ples, respectively, || - || denotes the Frobenius norm, the
zero-norm || - ||o counts non-zero entries in the sparse codes
Xn, and K is the sparsity level controlling the number of the
non-zero entries.

When sparse coding is applied to object recognition, the
data matrix Y consists of raw patches randomly sampled
from images. Since the patches frequently observed in im-
ages have a higher probability of being included in Y than
the ones less frequently observed in images, the learned
codebooks may overfit to the frequently observed patches.
In order to balance the roles of different types of image
patches, it is desirable to maintain large mutual incoherence
during the codebook learning phase. On the other hand, the-
oretical results on sparse coding [7] have also indicated that
it is much easier to recover the underlying sparse codes of
data when the mutual incoherence of the codebook is large.

This motivates us to balance the reconstruction error and
the mutual incoherence of the codebook

M M
min||Y -DX|;+AY. Y |44l )
DX i=1 j=T A
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Here, the mutual coherence A Y'M, ]}/1:1‘ it |d." d;| has been
included in the objective function to encourage large mutual
incoherence where A > 0 is a tradeoff parameter.

We propose MI-KSVD to solve the above optimization
by adapting the well-known KSVD algorithm [1]. KSVD
has led to state-of-the-art results in various image process-
ing and recognition tasks [1, 19, 4]. Like KSVD, MI-KSVD
decomposes the above optimization problem (2) into two
subproblems, Encoding and Codebook Update, and solves
them in an alternating manner. During each iteration, the
current codebook D is used to encode the data Y by comput-
ing the sparse code matrix X. Then, the codewords of the
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Figure 2: Mean square error as a function of iterations. Train-
ing and test data consists of 1,000,000 36x36 image patches and
100,000 36x36 image patches sampled from images, respectively.

codebook are updated one at a time, resulting in a new code-
book. This new codebook is then used in the next iteration
to recompute the sparse code matrix followed by another
round of codebook update. Note that MI-KSVD is quite dif-
ferent from dictionary learning algorithms proposed in [26],
which use L, norm to measure mutual incoherence and L,
norm to enforce sparsity.

Encoding: Given a codebook D, the encoding problem is
to find the sparse code x of y, leading to the following opti-
mization

min|[y—Dx|*  s.r. flxllo <K 3)

Computing the optimal solution involves searching over all
the (1}?) possible combinations and thus is NP-hard. Here,
orthogonal matching pursuit (OMP) [25] is used to com-
pute the sparse code x due to its efficiency and effective-
ness. OMP selects the codeword best correlated with the
current residual at each iteration, which is the reconstruc-
tion error remaining after the codewords chosen thus far are
subtracted. At the first iteration, this residual is exactly the
observation y. Once a new codeword is selected, the ob-
servation is orthogonally projected onto the span of all the
previously selected codewords and the residual is recom-
puted. The procedure is repeated until the desired sparsity
level K is reached.

Codebook Update: Given the sparse code matrix X, the
codewords d,, are optimized sequentially. In the m-th step,
the m-th codeword and its sparse codes can be computed by
minimizing the residual matrix and the mutual coherence
corresponding to that codeword

M M
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Removing the constant terms, the above optimization prob-
lem can be simplified to

M
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where X, are the rows of X, and R,y =Y — ¥4, dix; is the
residual matrix for the m-th codeword. This matrix contains
the differences between the observations and their approxi-
mations using all other codewords and their sparse codes.
To avoid introducing new non-zero entries in the sparse
code matrix X, the update process only considers observa-
tions that use the m-th codeword. We solve (5) by standard
gradient descent with initialization d* = H If}ggmz, which is
optimal when ignoring the mutual incoherence penalty.

It can be observed that the proposed alternative ap-
proach decreases the objective function (2) at each iter-
ation. In practice, we find that MI-KSVD converges to
good codebooks for a wide range of initializations. Fig. 2
compares the reconstruction error of the proposed MI-
KSVD and KSVD on both training data and test data
(see Section 4.1). MI-KSVD leads to small reconstruc-
tion error on both training and test data, compared with
KSVD. This is remarkable since the additional penalty
usually increases the reconstruction error. The code-
book learned by MI-KSVD has average mutual coherence
(AMO) g1y EiL1 XL jzildi dj| = 0.118, substantially
smaller than 0.153 yielded by KSVD.

3.2. Hierarchial Matching Pursuit

In our hierarchical matching pursuit, MI-KSVD is used

to learn codebooks at three layers, where the data matrix
Y in the first layer consists of raw patches sampled from
images, and Y in the second and third layers are sparse
codes pooled from the lower layers. With the learned code-
books D, hierarchical matching pursuit builds a feature hier-
archy, layer by layer, using batch orthogonal matching pur-
suit for computing sparse codes, spatial pooling for aggre-
gating sparse codes, and contrast normalization for normal-
izing feature vectors, as shown in Fig. 3.
First Layer: The goal of the first layer in HMP is to ex-
tract sparse codes for small patches (e.g., 5x5) and generate
pooled codes for mid-level patches (e.g., 16x16). Orthogo-
nal matching pursuit is used to compute the sparse codes x
of small patches (e.g., 5x5 pixels). Spatial max pooling is
then applied to aggregate the sparse codes. In our terminol-
ogy, an image patch P is divided spatially into smaller cells.
The features of each spatial cell C are the max pooled sparse
codes, which are simply the component-wise maxima over
all sparse codes within a cell:

F(C)= macx[max(xj1,0),~~- ,max(xjy,0),---, (6)
JjE

max(—x;1,0),--- ,max(—x;y,0)]

Here, j ranges over all entries in the cell, and x , is the m-th
component of the sparse code vector x; of entry j. We split
the positive and negative components of the sparse codes
into separate features to allow higher layers weight positive
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Figure 3: A three-layer architecture of Hierarchical Matching
Pursuit.

and negative responses differently. The feature Fp describ-
ing an image patch P is the concatenation of aggregated
sparse codes in each spatial cell

Fp=[F(CD),-- F(CP),-- ,F(CD)] @)

where C' C P is a spatial cell generated by spatial partitions,
and S is the total number of spatial cells. We additionally
normalize the feature vectors Fp by L norm +/||Fp||? + &,
where € is a small positive number. Since the magnitude of
sparse codes varies over a wide range due to local variations
in illumination and occlusion, this operation makes the ap-
pearance features robust to such variations, as commonly
done in SIFT features. We find that € = 0.1 works well for
all the recognition problems we consider.
Second Layer: The goal of the second layer in HMP is to
gather and code mid-level sparse codes and generate pooled
codes for large patches (e.g. 36x36). To do so, HMP applies
batch OMP and spatial max pooling to features Fp gener-
ated in the first layer. The codebook for this level is learned
by sampling features Fp over images. The process to ex-
tract the feature describing a large image patch is identical
to that for the first layer: sparse codes of each image patch
are computed using batch orthogonal matching pursuit, fol-
lowed by spatial max pooling on the large patch. The fea-
ture vector is then normalized by its L2 norm.
Third Layer: The goal of the third layer in HMP is to
generate pooled sparse codes for the whole image/object.
Similar to the second layer, the codebook for this level is
learned by sampling these pooled sparse codes in the sec-
ond layer. With the learned codebook, just as in the sec-
ond layer, sparse codes of each image patch (for instance,
36x36) are computed using batch OMP, followed by spa-
tial max pooling on the whole images. The features of the
whole image/object are the concatenation of the aggregated
sparse codes of the spatial cells. The feature vector is then
normalized by dividing with its L, norm.

A one-layer HMP has the same architecture as the final
layer of a three-layer HMP, except that MI-KSVD and batch
OMP are performed on 36x36 raw image patches instead

of pooled sparse codes. A two-layer HMP has the same
architecture as the second and third layers of a three-layer
HMP, except that MI-KSVD and batch OMP in the second
layer are performed on raw image patches.

3.3. Architecture of Multipath Sparse Coding

In visual recognition, images are frequently modeled as
unordered collections of local patches, i.e. a bag of patches.
Such models are flexible, and the image itself can be con-
sidered as a special case (bag with one large patch). Tradi-
tional bag-of-patches models introduce invariance by com-
pletely ignoring spatial positions of and relationships be-
tween patches, generally useful for visual recognition. The
spatial pyramid bag-of-patches model [16] overcomes this
problem by organizing patches into spatial cells at multi-
ple levels and then concatenating features from spatial cells
into one feature vector. Such models effectively balance the
importance of invariance and discriminative power, leading
to much better performance than simple bags. Spatial pyra-
mid bags are a compelling strategy for unsupervised fea-
ture learning because of a number of advantages: (1) bag-
of-patches virtually generates a large number of training
samples for learning algorithms and decreases the chance
of overfitting; (2) the local invariance and stability of the
learned features are increased by pooling features in spatial
cells; (3) by varying patch sizes, feature learning can cap-
ture structures at multiple levels of scale and invariance.

A single-path HMP already has the first two advantages.
To exploit the advantage of multiple patch sizes as well as
the strength of multi-layer architectures, our Multipath Hi-
erarchical Matching Pursuit (M-HMP) configures matching
pursuit encoders in multiple pathways, varying patch sizes
and the number of layers (see Fig. 1). Note that in the fi-
nal layer, sparse coding is always applied to the full image
patches (16x16 on the top and 36x36 on the bottom). M-
HMP encodes patches of different sizes, such as 16x16 and
36x36, which contain structures of different scales. More
importantly, we argue that multiple paths, by varying the
number of layers in HMP, is important for a single patch
size. For instance, we could learn features for 36x36 im-
age patches using a one-layer HMP or a two-layer HMP
or a three-layer HMP. These HMP networks with differ-
ent layers capture different aspects of 36x36 image patches.
Intuitively, features of 36x36 image patches learned by a
one-layer HMP capture basic structures of patches and are
sensitive to spatial displacement. Features of 36x36 image
patches learned by a two-layer HMP introduce robustness to
local deformations due to the usage of spatial max pooling
in the first layer. Features of 36x36 image patches learned
by a three-layer HMP are highly abstract and robust due to
their ability to recursively eliminate unimportant structures
and increase invariance to local deformations by spatial max
pooling in the previous layers.



Figure 4: Top five categories on which the HMP pairs lead to the
largest differences On Caltech-256 with 60 training images per
category. Top: One-layer and two-layer HMP networks on im-
age patches of size 16x16. Bottom: Two-layer HMP networks on
image patches of size 16x16 and on images patches of size 36x36.

Next, we outline the detailed architecture of the five
HMP networks used in the experiments. On image patches
of size 16x16 (A), we learn a one-layer HMP on RGB im-
ages (A1) and a two-layer HMP on grayscale images (A2).
For the one-layer HMP, we learn codebooks of size 1000
with sparsity level 5 on a collection of 16x16 raw patches
sampled from RGB images. For the two-layer HMP, we first
learn first-layer codebooks of size 75 with sparsity level 5
on a collection of 5x5 raw patches sampled from grayscale
images. We then generate the pooled sparse codes on 4x4
spatial cells of 16x16 image patches with a pooling size
of 4x4 pixels. Finally, we learn second-layer codebooks
of size 1000 with sparsity level 10 on the resulting pooled
sparse codes on 16x16 image patches.

On image patches of size 36x36 (B), we learn one-layer
HMP on RGB images, and two-layer and three-layer HMP
on grayscale images. For the one-layer HMP (B1), we
learn codebooks of size 1000 with sparsity level 5 on a col-
lection of 36x36 raw patches sampled from RGB images.
For the two-layer HMP (B2), we first learn codebooks of
size 300 with sparsity level 5 on a collection of 10x10 raw
patches sampled from grayscale images. We then gener-
ate the pooled sparse codes on 4x4 spatial cells of 36x36
image patches with a pooling size of 9x9 pixels. Finally,
we learn codebooks of size 1000 with sparsity level 10 on
the resulting pooled sparse codes on 36x36 image patches.
For the three-layer HMP (B3), the first two layers are the
same as A2. For the third layer, we first generate the pooled
sparse codes on 3x3 spatial cells of the pooled sparse codes
in the second layer with a pooling size of 3x3. Finally, we
learn codebooks of size 1000 with sparsity level 10 on the
resulting pooled sparse codes based 36x36 image patches
(36=4x3x3).

In the final layer of Al, A2, B1, B2 and B3, we gen-
erate image-level features by computing sparse codes of

36x36 image patches and performing max pooling followed
by contrast normalization on spatial pyramids 1x1, 2x2 and
4x4 on the whole images. Note that the above architecture
of multi-layer HMP networks leads to fast computation of
pooled sparse codes.

To investigate how different HMP architectures help
each other, we report the top five categories on which the
HMP pairs Al and A2, and the HMP pairs A2 and B2 yield
the largest accuracy gaps. As can been seen in Fig. 4, the
HMP networks with different architectures lead to signifi-
cantly different accuracies on some categories. Generally
speaking, the architecture A1 works well for the categories
which have consistent appearances (colors, textures and so
on) while the architecture A2 does well for categories which
have consistent shapes. Architecture B2 outperforms archi-
tecture A2 for categories on which large scale shapes are
more discriminative than small scale shapes, and vice versa.
Note that the accuracy of M-HMP is robust with respect to
patch size choice and other reasonable patch sizes such as
20x20 and 40x40 give similar results.

4. Experiments

We evaluate the proposed M-HMP models on five stan-
dard vision datasets on object, scene, and fine-grained
recognition, extensively comparing to state-of-the-art algo-
rithms using designed and learned features. All images are
resized to 300 pixels on the longest side. We remove the
zero frequency component from raw patches by subtracting
their mean in the first layer of the HMP networks. The set
of hyperparameters for all five HMP networks are optimized
on a small subset of the ImageNet database. We keep this
set of hyperparameters in all the experiments, even though
per-dataset tweaking through cross validation may further
improve accuracy. With the learned M-HMP features, we
train linear SVMs for recognition.

4.1. MI-KSVD

We compare KSVD and MI-KSVD for a one-layer HMP
network with image patches of size 36x36 on the Caltech-
101 dataset. We choose a one-layer HMP due to the conve-
nience of showing the learned codebooks. We learn code-
books of size 1000 with sparsity level 5 on 1,000,000 sam-
pled 36x36 raw patches. The tradeoff parameter A is chosen
by performing five-fold cross validation on the training set.

We visualize the codebooks learned by KSVD and MI-
KSVD in Fig. 5. First of all, the learned dictionaries have
very rich appearances and include uniform colors of red,
green and blue, transition codewords between different col-
ors, gray and color edges, double gray and color edges,
center-surround (dot) codewords, and so on. This suggests
that a large variety of discriminative structures is captured.
Moreover, the codebook learned by MI-KSVD is more bal-
anced and diverse than that learned by KSVD: there are
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Figure 5: Learned codebooks by KSVD (left) and MI-KSVD

(right) on Caltech-101. 225 codewords randomly selected from
1000 codewords are shown.

Test Accuracy | AMC
KSVD 71.9 0.153 6126.1s
MI-KSVD 73.1 0.118 6713.8s

Table 1: MI-KSVD and KSVD on Caltech-101. Both of them are
stopped after 100 iterations that are sufficient for convergence.

Training Time

less color codewords and more codewords with some com-
plex structures in MI-KSVD. We compare KSVD and MI-
KSVD in Table 1 in terms of test accuracy, training time and
average mutual coherence (AMC). As can been seen, MI-
KSVD leads to higher test accuracy and lower average mu-
tual coherence than KSVD, with comparable training time.

4.2. Object Recognition

We investigate the behavior of M-HMP for object cat-
egory recognition on Caltech-101. The dataset contains
9,144 images from 101 object categories and one back-
ground category. We use Caltech-101 because a large num-
ber of algorithms have been evaluated on this dataset, de-
spite its known limitations. In the following sections, we
will demonstrate multipath sparse coding on more standard
vision datasets. Following the standard experimental set-
ting, we train models on 30 images and test on no more
than 50 images per category [16].

We show the results of M-HMP in Fig. 6 (Al, A2, B1,
B2 and B3 are defined in Section 3.3). As can bee seen,
the one-layer HMP networks (A1 and B1) work surprisingly
well and already outperform many existing computer vision
approaches, showing the benefits of learning from pixels.
The two-layer HMP networks (A2 and B2) achieve the best
results among five single pathways. The three-layer HMP
network (B3) is superior to the one-layer networks (A1 and
B1), but inferior to the two layer HMP networks (A2 and
B2). The combination of HMP networks of different depths
(A1+A2 and B1+B2+B3) leads to significant improvements
over the best single HMP network (A2 and B2). Multipath
coding combining all five HMP networks achieves the best
result of 82.5%, suggesting that different paths complement
one another and capture different image structures.

We compare M-HMP with recently published state-of-
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Figure 6: Test accuracy of single-path and multipath HMP.
A1,A2,B1,B2 and B3 denotes the HMP networks of different ar-
chitectures (See Section 3.3). AI+A2 indicates the combination
of Al and A2. “All” means the combination of all five paths:
A1,A2,B1,B2 and B3.

SIFT+T [9] 67.7 HSC [32] 74.0
Local NBNN [20] | 71.9 | Asklocals [5] 77.1
LC-KSVD [13] 73.6 LP-G [11] 77.7
LLC [28] 73.4 FK [8] 77.8
HMP [3] 76.8 M-HMP 82.5+0.5

Table 2: Test accuracy on Caltech-101.

Training Images 15 30 45 60

Local NBNN [20] 335 40.1 / /
LLC [28] 34.4 41.2 453 47.7
CRBM [27] 35.1 421 45.7 47.9

LP-B[11] / 45.8 / /
M-HMP 42.7 50.7 54.8 58.0

Table 3: Test accuracy on Caltech-256.

the-art recognition algorithms in Table 2. LLC [28], LC-
KSVD [13], and Asklocals [5] are one-layer sparse cod-
ing approaches. SIFT+T [9] is soft threshold coding and
CRBM [27] is a convolutional variant of Restricted Boltz-
mann Machines (RBM). FK [&] is a Fisher kernel based
coding approach. All of them are based on SIFT. HSC [32]
is a two layer sparse coding network using L1-norm reg-
ularization. Local NBNN [20] is an extension of Naive
Bayesian Nearest Neighbor (NBNN). LP-3 [11] is a boost-
ing approach to combine multiple types of designed fea-
tures. M-HMP achieves test accuracy superior to all of
them; by a large margin.

To further evaluate the scalability of the proposed ap-
proach with respect to the number of categories and the
number of images in each category, we perform experi-
ments on Caltech-256. The dataset consists of 30,607 im-
ages from 256 object categories and background, where
each category contains at least 80 images. Caltech-256 is
much more challenging than Caltech-101 due to the larger
number of classes and more diverse lighting conditions,
poses, backgrounds, object sizes, etc. Following the stan-
dard setup [29], we gradually increase the training set size
from 15 to 60 images per category with a step of 15 and test
trained models on the rest of the images.

We report the average accuracy over 5 random trials in
Table 3. We keep the same architecture as that for Caltech-



DPM [10] | 30.4 | DPM+Gist+SPM [22] | 43.1
SPM [22] | 34.4 HMP [4] 47.6

RBoW [23] | 37.9 M-HMP 51.2
Table 4: Test accuracy on MIT-Scenes

101 (Section 4.2), with the only exception that the num-
ber of codewords in the final layer of HMP is increased
to 2000 to accommodate for more categories and more im-
ages. As can be seen, our M-HMP approach makes excit-
ing progress on this benchmark and is significantly better
than all previously published results. More importantly, the
performance gap grows larger with an increasing number of
training images. For instance, the gap between M-HMP and
CRBM is about 7.6% for 15 training images per category,
but it increases to about 10.1% for 60 training images. This
suggests that (1) rich features are important for large-scale
recognition with a large number of categories and a large
number of images; (2) M-HMP is well suited for extract-
ing rich features from images, particularly important as we
move toward high-resolution images.

4.3. Scene Recognition

We evaluate our M-HMP approach on the popular MIT
Scene-67 dataset. This dataset contains 15,620 images from
67 indoor scene categories. We use the same M-HMP archi-
tecture and hyperparameters as for Caltech-101. Following
standard experimental setting [22], we train models on 80
images and test on 20 images per category.

We report the accuracy of M-HMP on the training/test
split provided on the authors’ website in Table 4. Again,
M-HMP achieves much higher accuracy than state-of-
the-art recognition algorithms: spatial pyramid matching
(SPM) [22], deformable parts models (DPM) [10], Recon-
figurable Models (RBoW) [23], Hierarchical Matching Pur-
suit [4], and even the combination of SPM, DPM, and color
GIST [22]. The best single-path M-HMP is an architecture
of two layers on 16x16 image patches that obtains 44.4%
accuracy. Multipath HMP dramatically increases the accu-
racy to 51.2%, suggesting that rich but complementary fea-
tures are essential for achieving good performance on scene
recognition.

4.4. Fine-grained Object Recognition

In the last decade, most work has been focused on basic-
level recognition tasks: distinguishing different categories
of objects, such as table, computer and human. Recently,
there is increasing interest and attention on fine-grained
(subordinate-level) recognition that classifies similar ob-
ject categories, such as different species of birds, cats and
dogs [0]. We evaluate our M-HMP approach on the Oxford-
IIIT Pet [24] and the Caltech-UCSD Bird-200 [6] datasets.
We use the same architecture as for Caltech-101, with the
exception that the number of codewords is increased to 3000
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Figure 7: Test Accuracy on the Oxford-IIIT Pet Dataset.

MKL [6] | 19.0 | Pose Pooling [34] | 28.2
LLC[31] | 18.0 UTL [30] 28.2
RF[31] | 224 M-HMP 30.3

Table 5: Test Accuracy on Caltech-UCSD Bird-200.

in the final layer of HMP.

The Oxford-IIIT Pet dataset is a collection of 7,349 im-
ages of cats and dogs of 37 different breeds, of which 25
are dogs and 12 are cats. The dataset contains about 200
images for each breed, which have been split randomly into
50 for training, 50 for validation, and 100 for testing. Fol-
lowing the standard experimental setting [6], we train M-
HMP on the training+validation set and compute recogni-
tion accuracy on the test set. We report test accuracy of
M-HMP in Fig. 7. Our results are obtained on image layout
only and should be compared with those on the same set-
ting. We are not able to evaluate M-HMP on image+head
and image+head+body layouts due to incomplete annota-
tions in the publicly available dataset. As can been seen,
M-HMP outperforms the Shape+Appearance approach [24]
on image layout by a large margin, 53.4% vs. 43.3%. M-
HMP achieves about 10 percent higher accuracy than all
single HMP networks. The best single network is a two-
layer HMP (B2) over grayscale images that achieves 43.5%
accuracy.

The Caltech-UCSD Bird-200 dataset contains 6,033 im-
ages from 200 bird species in North America. In each
image, the bounding box of a bird is given. Following
the standard setting [0], 15 images from each species are
used for training and the rest for testing. In Table 5, we
compare our M-HMP with recently published algorithms
such as multiple kernel learning [6], LLC [31], random for-
est [31], multi-cue [14], pose pooling [34] and unsupervised
template learning [30]. Multipath HMP outperforms the
state of the art by a large margin and sets a new record for
fine-grained object recognition. Note that the previous ap-
proaches all use multiple types of features such as SIFT,
color SIFT, color histograms, efc. to boost the classifica-
tion accuracy; pose pooling [34] exploits additional labeled
parts to train and test models.

5. Conclusions

We have proposed Multipath Hierarchical Matching Pur-
suit for learning expressive features from images. Our ap-
proach combines sparse coding through several pathways,



using multiple patches of varying size, and encoding each
patch through multiple paths with a varying number of lay-
ers. We have performed extensive comparisons on three
types of visual recognition tasks: object recognition, scene
recognition, and fine-grained object recognition. Our exper-
iments have confirmed that the proposed approach outper-
forms the state-of-the-art on various popular vision bench-
marks. These results are extremely encouraging, indicat-
ing that visual recognition systems can be significantly im-
proved by learning features from raw images.
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