
The Interactive Museum Tour-Guide Robot

Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel,
Gerhard Lakemeyery, Dirk Schulz, Walter Steiner, and Sebastian Thrunz

Computer Science Department III yComputer Science Department zSchool of Computer Science
University of Bonn Aachen University of Technology Carnegie Mellon University

Bonn, Germany Aachen, Germany Pittsburgh, PA

In Proc. of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, 1998

Abstract

This paper describes the software architecture of an au-
tonomous tour-guide/tutor robot. This robot was recently
deployed in the “Deutsches Museum Bonn,” were it guided
hundreds of visitors through the museum during a six-day
deployment period. The robot’s control software integrates
low-level probabilistic reasoning with high-level problem
solving embedded in first order logic. A collection of soft-
ware innovations, described in this paper, enabled the robot
to navigate at high speeds through dense crowds, while re-
liably avoiding collisions with obstacles—some of which
could not even be perceived. Also described in this paper
is a user interface tailored towards non-expert users, which
was essential for the robot’s success in the museum. Based
on these experiences, this paper argues that time is ripe for
the development of AI-based commercial service robots that
assist people in everyday life.

Introduction

Building autonomous robots that assist people in every-
day life has been a long-standing goal of research in ar-
tificial intelligence and robotics. This paper describes an
autonomous mobile robot, called RHINO, which has re-
cently been deployed at the “Deutsches Museum” in Bonn,
Germany. The robot’s primary task was to provide interac-
tive tours to visitors of the museum. In addition, the robot
enabled people all around the world to establish a “virtual
presence” in the museum, using a Web interface through
which they could watch the robot operate and send it to
specific target locations.

The application domain posed a variety of challenges,
which we did not face in our previous research, carried out
mostly in office-like buildings. The two primary challenges
were (1) navigating safely and reliably through crowds, and
(2) interacting with people in an intuitive and appealing
way.

1. Safe and reliable navigation. It was of ultimate impor-
tance that the robot navigated at approximate walking

Copyright 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

speed, while not colliding with any of the various ob-
stacles (exhibits, people). Three aspects made this prob-
lem difficult. First, RHINO often had to navigate through
dense crowds of people (c.f. Figures 1 and 2). People of-
ten blocked virtually all sensors of the robot for extended
durations of time. Second, various exhibits were “invis-
ible” to the robot, that is, the robot could not perceive
them with its sensors. This problem existed despite the
fact that our robot possessed four state-of-the-art sensor
systems (laser, sonar, infrared, and tactile). Invisible ob-
stacles included glass cages put up to protect exhibits,
metal bars at various heights, and metal plates on which
exhibits were placed (c.f., the glass cage labeled “o1”
and the control panel labeled “o2” in Figure 3). Navigat-
ing safely was particularly important since many of the
exhibits in the museum were rather expensive and easily
damaged by the 300 pound machine. Third, the configu-
ration of the environment changed frequently. For exam-
ple, the museum possessed a large number of stools, and
people tended to leave them behind at random places,
sometimes blocking entire passages. Museum visitors
often tried to “trick” the robot into an area beyond its
intended operational range, where unmodeled and invis-
ible hazards existed, such as staircases. For the robot to
be successful, it had to have the ability to quickly detect
such situations and to find new paths to exhibits if possi-
ble.

2. Intuitive and appealing user interaction. Tutoring
robots, by definition, interact with people. Visitors of
the museum were between 2 and 80 years old. The av-
erage visitor had no prior exposure to robotics or AI and
spent less than 15 minutes with the robot, in which he/she
was unable to gain any technical understanding whatso-
ever. Thus, a key challenge was to design a robot that was
“intuitive” and user friendly. This challenge included the
design of easy-to-use interfaces (both for real visitors and
for the Web), as well as finding mechanisms to commu-
nicate intent to people. RHINO’s user interfaces were an
important component in its practical success.

The specific application domain was chosen for two pri-



RHINO o1

o2

Laser range
finder

Tactiles

Infrared

Sonars

Stereo camera

Fig. 1: RHINO gives a tour Fig. 2: Interaction with people Fig. 3: The Robot and its sensors.

mary reasons. First, we believe that these two challenges,
safe navigation and easy-to-use interfaces, are prototypical
for a large range of upcoming service robot applications.
Second, installinga robot in a museum gave us a unique and
exciting opportunity to bridge the gap between academic
research and the public.

This paper describes the key components of RHINO’s
software architecture. The software performs, in real-time,
tasks such as collision avoidance, mapping, localization,
path planning, mission planning, and user interface control.
The overall software architecture consists of approximately
25 independent modules (processes), which were executed
in parallel on three on-board PCs and three off-board SUN
workstations, connected via a tetherless Ethernet bridge
(Thrun et al. 1998a). The software modules communicate
using TCX (Fedor 1993), a decentralized communication
protocol for point-to-point socket communication.

RHINO’s control software applies several design princi-
ples, the most important of which are:

1. Probabilistic representations, reasoning, and learn-
ing. Since perception is inherently inaccurate and incom-
plete, and since environments such as museums change
frequently in rather unpredictable ways, RHINO per-
vasively employs probabilistic mechanisms to represent
state and reason about change of state.

2. Resource adaptability. Several resource-intensive soft-
ware components, such as the motion planner or the lo-
calization module, can adapt themselves to the available
computational resources. The more processing time is
available, the better and more accurate are the results.

3. Distributed, asynchronous processing with decentral-
ized decision making. RHINO’s software is highly dis-
tributed. There is no centralized clock to synchronize the
different models, and the robot can function even if ma-
jor parts of its software fail or are temporarily unavailable
(e.g., due to radio link failure).

The remainder of this paper will describe those software
modules that were most essential to RHINO’s success. In

particular, it will present the major navigation components
and the interactive components of the robots.

Navigation
RHINO’s navigation modules performed two basic func-
tions: perception and control. The primary perceptual mod-
ules were concerned with localization (estimating a robot’s
location) and mapping (estimating the locations of the sur-
rounding obstacles). The primary control components per-
formed real-time collision avoidance, path planning, and
mission planning.

Localization

Localization is the problem of estimating a robot’s coordi-
nates (also called: pose or location) in x-y-� space, where
x and y are the coordinates of the robot in a 2D Cartesian
coordinate system, and � is its orientation. The problem of
localization is generally regarded to be difficult (Cox 1991;
Borenstein, Everett, & Feng 1996). It is specifically hard
in densely populated domains where people may block the
robot’s sensors for extended periods of time.

RHINO employs a version of Markov localization, a
method that has been employed successfully by several
teams (Nourbakhsh, Powers, & Birchfield 1995; Simmons
& Koenig 1995; Kaelbling, Cassandra, & Kurien 1996).
RHINO utilizes a metric version of this approach (Burgard
et al. 1996), in which poses are estimated in x-y-� space.

Markov localization maintains a probabilistic belief as
to where the robot currently is. Let P �l� denote this be-
lief, where l is a pose in x-y-� space. Initially, when the
pose of the robot is unknown, P �l� is initialized by a uni-
form distribution. To update P �l�, Markov location em-
ploys two probabilistic models, a perceptual model and a
motion model. The perceptual model, denoted P �s j l�,
denotes the probability that the robot observes s when its
pose is l. The motion model, denoted P �l� j l� a�, denotes
the probability that the robot’s pose is l � if it previously ex-
ecuted action a at location l.

Both models are used to update the robot’s belief P �l�



Fig. 4: Global localization. Obstacles are
shown in black; probabilities P �l� in gray.

Fig. 5: Typical laser scan in the presence
of people. The gray-shaded sensor beams
correspond to people and are filtered out.

Fig. 6: RHINO’s path planner: The
grey-scale indicates the proximity of
the goal.

when the robot senses, and when it moves, respectively.
Suppose the robot just sensed s. Markov localization then
updates P �l� according to Bayes rule:

P �l j s� � � P �s j l� P �l� (1)

where � is a normalizer that ensures that the resulting prob-
abilities sum up to one. When the robot moves, Markov
localization updates P �l� using the Theorem of total prob-
ability:

P �l�� �

Z
P �l� j a� l� P �l� dl (2)

Here a denotes an action command. These two update
equations form the basis of Markov localization. Strictly
speaking, they are only applicable if the environment meets
a conditional independence assumption (Markov assump-
tion), which specifies that the robot’s pose is the only state
therein. Put differently, Markov localization applies only to
static environments.

Unfortunately, the standard Markov localization ap-
proach is prone to fail in densely populated environments,
since those violate the underlying Markov assumption. In
the museum, people frequently blocked the robot’s sensors,
as illustrated in Figure 1. Figuratively speaking, if people
line up as a “wall” in front of the robot—which they often
did—, the basic Markov localization paradigm makes the
robot eventually believe that it is indeed in front of a wall.

To remedy this problem, RHINO employs an “entropy
filter” (Fox et al. 1998b). This filter, which is applied to all
proximity measurements individually, sorts measurements
into two buckets: one that is assumed to contain all cor-
rupted sensor readings, and one that is assumed to contain
only authentic (non-corrupted) ones. To determine which
sensor reading is corrupted and which one is not, the en-
tropy filter measures the relative entropy of the belief state
before and after incorporating a proximity measurement:

�H�l� s� �� (3)

�

Z
l

P �l� logP �l� dl �

Z
l

P �l j s� logP �l j s� dl

Sensor readings that increase the robot’s certainty
(�H�l� s� � �) are assumed to be authentic. All other sen-
sor readings are assumed to be corrupted and are therefore
not incorporated into the robot’s belief. In the museum,
certainty filters reliably identified sensor readings that were
corrupted by the presence of people, as long as the robot
knew its approximate pose. Unfortunately, the entropy fil-
ter can prevent recovery once the robot looses its position
entirely. To prevent this problem, our approach also incor-
porates a small number of randomly chosen sensor readings
in addition to those selected by the entropy filter. See (Fox
et al. 1998b) for an alternative solution to this problem.

In practice, our approach proved to be robust in the mu-
seum. RHINO’s localization module was able (1) to glob-
ally localize the robot in the morning when the robot was
switched on (see Figure 4 for a typical belief state during
this procedure), and (2) to keep track of the robot’s position
reliably and accurately (see Figure 5). RHINO’s localiza-
tion error, measured over a set of 118 randomly selected
reference locations, was consistently below 15 cm. This
accuracy was essential for safe navigation. In the entire six-
day deployment period, we are only aware of a single occa-
sion in which the robot suffered a localization error larger
than its 30cm safety margin, and this incident was preceded
by partial loss of sensing. A comparison between our ap-
proach and plain Markov localization (i.e., our approach
without the entropy filter) showed that the standard Markov
algorithm would have lost track of the robot’s position fre-
quently, whenever large crowds surrounded the robot (Fox
et al. 1998b).

Mapping
Mapping addresses the problem of determining the loca-
tions of the obstacles in global world-coordinates. In the
museum domain, the problem of mapping was simplified
significantly, since an accurate metric map of the mu-



seum was provided to the robot beforehand. However, the
configuration of the museum changed frequently—people
moved stools around and sometimes people blocked entire
passages—, making necessary the revision of the map in
real-time.

RHINO employed a probabilistic occupancy grid al-
gorithm for modifying the initial map, a technique that
was originally developed in the mid-eighties and since
has been used successfully in many mobile robot applica-
tions (Moravec 1988; Elfes 1989). Occupancy grid tech-
niques approximate the environment by a 2D grid, where
each grid cell is annotated by a numerical “occupancy
value” that represents the probability that this cell contains
an obstacle.

In our approach (Thrun 1998), occupancy maps are gen-
erated using a Backpropagation-style network, which maps
sensor measurements to local occupancy maps. The net-
work is trained off-line, using labeled data obtained in en-
vironments where the exact locations of all obstacles are
known. After training, the network generates conditional
probability estimates for occupancy, denoted P �ox�y j s�,
for grid cells hx� yi that lie in the sensors’ perceptual
range. Figure 7a shows an example sonar scan, taken in
a hallway, along with the local map. The shading en-
codes the likelihood of occupancy: The darker a loca-
tion, the more likely it is to be occupied. As is easy to
be seen, the two walls are detected with high certainty,
as is the free space in between. Behind the walls, how-
ever, the network outputs ���, to indicate maximum uncer-
tainty. Local maps are integrated over time using Bayes
rule and likelihood ratios, as described in (Moravec 1988;
Thrun 1998):

P �ox�y j s
�� s�� � � � � sT � �

��

�
��

P �o�

��P �o�

Y
�

P �ox�y j s� �

��P �ox�yjs� �

��P �o�

P �o�

���

(4)

Here s� denotes the sensor reading at time � , and P �o� de-
notes the prior probability for occupancy.

Figure 7 shows an example map, in which a narrow pas-
sage (upper left) has been blocked, forcing the robot to take
a detour. When RHINO reaches a tour item, it reset its map
to the original, pre-supplied one. This strategy ensures that
passages, once blocked, will not be avoided indefinitely.
The ability to modify the map on-the-fly was essential for
RHINO’s success. In some occasions, lack thereof would
have caused the robot to be “stuck” for extended periods of
time. RHINO frequently surprised people by successfully
carrying out its mission even in the presence of major, per-
manent obstacles.

Collision Avoidance with “Invisible” Obstacles
RHINO’s collision avoidance protects the robot from col-
liding with obstacles—exhibits and humans alike. It does

(a) (b)

Fig. 7: (a) Sonar scan and local map, generated by the neural net-
work. (b) This map is partially pre-supplied, partially learned.
Here the motion planner chooses to take a detour to avoid a
blocked passage on the top of this figure.

this by controlling the actual motion direction and the speed
of the robot, based on sensor input and based on a “target
location” prescribed by the motion planner.

RHINO employed an extension of the dynamic win-
dow algorithm (DWA) (Fox, Burgard, & Thrun 1997;
Fox et al. 1998a). In a nutshell, DWA controls—four times
a second—the translational and rotational velocity of the
robot. It does this in accordance with several hard and soft
constraints. Hard constraints restrict the space of veloci-
ties. They are imposed to avoid velocities that, if chosen,
would inevitably lead to a collision, taking into account
the robot’s inertia and torque limits. Soft constraints, on
the other hand, express preferences in the space of control.
DWA employs essentially two soft constraints, one which
encourages the robot to make progress towards its target lo-
cation, and one which seeks to maximize the robot’s veloc-
ity (thereby favoring motion directions towards uncluttered
space). Together, these soft constraints lead to a behavior
that makes the robot navigate smoothly around obstacles
while making progress towards its target whenever possi-
ble. In particular, the second constraint ensures that the
robot moves at high speeds whenever the situation permits.

The complicating factor in the museum was the pres-
ence of the various “invisible” obstacles, as described in
the introduction to this article. The basic DWA, just like
any other sensor-based collision avoidance approach, does
not allow for preventing collisions with such obstacles. To
avoid collisions with those, the robot had to consult its
map. Of course, obstacles in the map are specified in world
coordinates, whereas DWA requires the location of those
obstacles in robo-centric coordinates. Thus, we extended
the DWA approach to use the maximum likelihood posi-
tion estimate l� � argmaxl P �l� produced by RHINO’s lo-
calization module. Given the robot’s location in the map,
the �DWA algorithm (Fox et al. 1998a) generates “vir-
tual” proximity measurements and integrates them with the
“real” proximity measurements, obtained from the robot’s



various sensors (tactile, infrared, sonar, laser). This exten-
sion of the dynamic window approach proved to be highly
effective in the museum. Figure 10 shows a trajectory of
the robot travelled during the opening hours of the museum.
The length of this trajectory is 1.6km. Apparently, the robot
safely avoids “invisible” objects which are marked by the
grey-shaded areas. The same mechanism was used to limit
the operational range of the robot. With it, the robot suc-
cessfully withstood all attacks by visitors to force it into
unmapped terrain. The collision avoidance routine was also
instrumental in quickly finding ways around unanticipated
obstacles, such as humans that stepped in the robot’s path,
or stools left behind by visitors.

In order to deal with situations in which RHINO’s local-
ization module assigns high probability to multiple poses,
we recently developed a more conservative strategy, which
was not ready at the time of the museum installation, but
which is now part of �DWA (Fox et al. 1998a). This
approach generates “virtual” sensor readings that are with
99% probability shorter than the actual distances to the
nearest invisible obstacles. Let s be a proximity measure-
ment that one would expect if all invisible obstacles were
actually detectable. Then

P �s� �

Z
P �s j l� P �l� dl� (5)

is the probability distribution over all s that is induced by
the map and the uncertainty in the location l. Suppose the
robot’s virtual sensor were set to one such value, say s�.
With probability

��s�� ��

Z
s�s�

P �s� ds (6)

this value s� will be smaller than the real value, that is, with
probability �s� , the proximity returned by the virtual sen-
sor will be underestimating the true distance to an invisible
obstacle, and the robot will be safe. In our implementation
of �DWA, s� is chosen so that ��s�� � �		, that is, the vir-
tual sensor measurements prevent collisions with invisible
obstacles with 99% probability. Empirical results presented
elsewhere demonstrate that this extension yields safer con-
trol in situations with high uncertainty.

Path Planning
RHINO’s path planner generates paths from one exhibit
to another. In the museum, such paths could not be pre-
determined in advance, since the environment was highly
dynamic and the map changed continuously. This made it
imperative that the robot adapted its path to the situation
on-the-fly.

RHINO’s path planner is based on value iteration, a
popular dynamic programming/reinforcement learning al-
gorithm (Bellman 1957; Howard 1960). Value iteration

computes values Vx�y for each grid cell hx� yi. Initially, the
grid cell containing the goal is set to �, and all others are set
to �. Value iteration then updates the values of all unoccu-
pied grid cells by the value of their best unoccupied neigh-
bor plus by the costs of moving there. After convergence,
each value Vx�y corresponds to the distance between hx� yi
and the goal location. Figure 6 shows a value function after
convergence. Here the goal is located at the bottom right
(white), the robot’s location is shown on the top left, and
the shading of the space indicates the values Vx�y. Notice
how the values “spread” through the free-space. After con-
vergence, steepest decent in the value function leads to the
shortest path to the goal.

As described in more detail in (Thrun 1998), RHINO’s
path planner employs two additional mechanisms, aimed to
increase its run-time efficiency:

1. It uses a bounding box technique to focus computation
on regions where it matters.

2. It uses an algorithm similar to value iteration, to iden-
tify areas that require re-planning when the map changes.
Such changes are often local, leading to a high degree of
re-use when planning in dynamic environments.

Paths generated by the path planner are not executed di-
rectly; instead, they are passed on to the collision avoidance
routine, using visibility considerations to generate interme-
diate “target locations.” When computing these target loca-
tions, paths are also post-processed to maximize the robot’s
side-clearance.

RHINO’s path planner is an any-time algorithm, i.e., it
returns an answer at any time, whenever needed (Dean &
Boddy 1988). As a pleasing consequence, the robot never
halts to wait for its planner to generate a plan; instead, it
moves continuously—unless, of course, it explains an ex-
hibit.

In the museum, running value iteration to completion and
finding the optimal path usually took less than one second.
The path planner proved to be highly effective in adapting
to new situations. Figure 7 shows an example, in which
a passage is blocked by stools, forcing the robot and the
people following it to take a detour. All these decisions
are made in real-time, and people usually do not notice the
change in venue.

Task Planning
The task planner coordinates the various robot activities re-
lated to motion and interaction. It transforms abstract, user-
level commands (such as: “give tour number three”) into
a sequence of actions, which correspond to motion com-
mands (e.g. “move to exhibit number five”) or controls for
the robot’s interface (e.g. “display image four” and “play
pre-recorded message number seventeen”). The task plan-
ner also monitors the execution of the plan and modifies it
if necessary.



o3

Fig. 8: RHINO’s on-board user in-
terface: A screen and four buttons.

Fig. 9: On-line image page for the Web. Fig. 10: Path of the robot during a single 4.5
hour run (1.6 km).

RHINO’s task planner uses GOLOG (Levesque et al.
1997), which is an extension of the situation calculus (Mc-
Carthy 1968). GOLOG is a language for specifying com-
plex actions using structures like if-then-else or recursive
procedures. Based on these specifications, GOLOG gener-
ates, in response to a user request, a sequence of elementary
(symbolic) actions which provably fulfil this request. To
achieve robust and coherent behavior, and to allow the cor-
rection of possible errors of the underlying components, we
have developed GOLEX. GOLEX complements GOLOG
by supplying a run-time component that turns linear plans
constructed by GOLOG into (1) hierarchical and (2) con-
ditional plans, and (3) that also monitors their execution.
None of these extensions are universal (they are in fact quite
limited), but they are all necessary in the context of mobile
robot control.

1. Hierarchical plans. GOLEX converts each GOLOG ac-
tion into a pre-specified sequence of elementary com-
mands for RHINO’s lower level software. For exam-
ple, the GOLOG action “move to exhibit number five”
is translated into a sequence of robot motion commands
(“move to a position next to exhibit number five,” “turn
towards exhibit number five”), pan/tilt control commands
(“track exhibit number five”), and graphical and acousti-
cal display commands (“announce exhibit number five”).
The advantage of the hierarchical decomposition is an
enormous reduction in the complexity of the task plan-
ning problem.

2. Conditional plans. Some of GOLOG’s actions are
translated into pre-specified conditional plans, i.e., plans
that are conditioned on the outcome of sensing actions.
In GOLEX, conditional plans must always succeed; how-
ever, the specific sequence of sub-actions may vary. For
example, the action “explain exhibit number five” is
translated into a conditional plan that incorporates user
feedback (e.g. the user chooses the level of detail in the
robot’s explanation).

3. Execution monitor. GOLEX monitors the execution of

its plans. Using time-out mechanisms, it is able to invoke
new actions and to plan pro-actively. For example, in the
museum, people often pushed no button when they were
asked to make a decision. In such situations, GOLEX’s
execution monitor made a default decision (e.g. it made
the robot move to the next tour item) after waiting for a
certain amount of time.

GOLEX provided the necessary “glue” between the high-
level and the rest of the robot software, thereby bridging the
gap between AI-style symbolic reasoning and numerical,
sub-symbolic navigation software.

User Interaction
An important aspect of the tour-guide robot is its interac-
tive component. User interfaces are generally of great im-
portance for robots that interact with people. In application
domains such as museums, the user interfaces must be in-
tuitive, so that untrained, non-technical users can operate
the system without instruction. It must also be appealing,
so that people feel attracted to the robot and participate in a
tour. While navigation has been studied extensively in the
mobile robotics literature, the similarly important issue of
human robot interaction has received considerably little at-
tention. RHINO possesses two primary user interfaces, one
on-board interface for interacting with people directly, and
one on the Web.

On-board Interface

The on-board interface is a mixed-media interface that in-
tegrates text, graphics, pre-recorded speech, and sound.
When visitors approach the robot, they can choose a tour
or, alternatively, listen to a brief, pre-recorded explanation
(the “help text”). They indicate their choice by pressing one
of four colored buttons shown in Figure 8. When RHINO
moves towards an exhibit, it displays an announcement on
its screen. It also indicates the direction of its intended des-
tination by continually pointing the camera in the direction
of the next exhibit. At each exhibit, the robot plays a brief



hours of operation 47
number of visitors �2,000
number of Web visitors 2,060
total distance 18.6 km
maximum speed �80 cm/sec
average speed during motion 36.6 cm/sec
number of collisions 6
number of requests 2,400
success rate 99.75%

Table 1: Survey of key results.

pre-recorded verbal explanation. Users can then request
further information about the specific exhibit or, alterna-
tively, make the robot proceed. When a tour is finished,
the robot returns to a pre-defined starting position in the en-
trance area where it awaits new visitors.

An important aspect of RHINO’s interactive component
is the robot’s physical reaction to people. RHINO uses body
and head motion and sound to express intent and dissat-
isfaction. As mentioned above, RHINO’s camera head is
used to communicate the intended motion direction. In ad-
dition, RHINO uses a modified version of the entropy fil-
ter (a probabilistic novelty filter (Fox et al. 1998b)) to de-
tect people or other unexpected obstacles. If such obstacles
block the robot’s path, it uses its horn to indicate its “dis-
satisfaction.” In the museum, people usually cleared the
robot’s path once they heard the horn. Some even blocked
the robot’s path intentionally in expectation of an acoustic
“reward.”

Web Interface

RHINO’s Web interface consists of a collection of Web
pages, some of which are interactive, others provide back-
ground information. In addition to previous Web inter-
faces (see e.g., (Simmons et al. 1997)), which basically
rely on client-pull/server-push mechanisms, RHINO’s in-
terface also offers Java applets for instant update of infor-
mation (both state and intent) as the robot moves. One of
the main pages of the Web interface is shown in Figure 9.
This page enables Web users to observe the robot’s opera-
tion on-line. The camera image on the left is obtained with
one of RHINO’s cameras. The right image is taken with
one of two fixed, wall-mounted cameras. The center dis-
play shows a map of the robot’s environment from a bird’s
eye perspective, along with the actual location of the robot.
The bottom portion of this page contains information about
RHINO’s current actions. When RHINO is explaining an
exhibit, this area displays information about the exhibit, in-
cluding hyperlinks to more detailed background informa-
tion. Information may be updated synchronously in user-
specified time intervals. Alternatively, certain information
(such as the robot’s position in its map) can be visualized
smoothly, using a Java applet that “simulates” the robot.

Statistics
RHINO was deployed for a period of six days, in which it
operated for approximately 47 hours without any significant
downtime (see Table 1). Over this period of time, the robot
travelled approximately 18.6km. More than 2,000 real visi-
tors and over 600 “virtual” Web-based visitors were guided
by RHINO. The robot fulfilled 2,400 tour requests by real
and virtual visitors of the museum. Only six requests were
not fulfilled, mostly due to scheduled battery changes at
the time of the request. Thus, RHINO’s overall success-
rate was 		�
��. Whenever possible, RHINO chose its
maximum speed (80 cm/sec when guiding real people, 50
cm/sec when controlled through the Web). The discrepancy
between the top and the average speed (36.6cm/sec), how-
ever, was due to the fact that in the presence of obstacles,
the collision avoidance module was forced to slow the robot
down.

During its 47 hours of operation, RHINO suffered a to-
tal of six collisions with obstacles, all of which occurred
at low speed and did not cause any damage. Only one of
these collisions was caused by a software failure. Here the
localization module failed to compute the robot’s pose with
the necessary accuracy. All other collisions were results of
various hardware failures (which were usually caused by
neglect on our side to exchange the batteries in time) and
by omissions in the manually generated map (which were
fixed after the problem was observed).

Overall, RHINO was received with enthusiasm in all age
groups. We estimate that more than 90% of the museum’s
visitors followed the robot for at least a fraction of a tour.
Kids often followed the robot for more than an hour. Ac-
cording to the director of the museum, RHINO raised the
overall attendance by at least 50%.

Discussion
This paper described the major components of a software
architecture of a successfully deployed mobile robot. The
robot’s task was to provide interactive tours to visitors of a
museum. In a six-day deployment period in the Deutsches
Museum Bonn, the robot gave tours to a large number
of visitors, safely finding its way through dense crowds.
RHINO’s software integrates a distributed navigation pack-
age and modules dedicated to human robot interaction.
While the approach is mostly based on existing AI meth-
ods of various flavors, it contains several innovations that
were specifically developed to cope with environments as
complex and as dynamic as the museum. These include a
method for localization in dense crowds, an approach for
collision avoidance with “invisible” obstacles, a method
(GOLEX) that glues together first order logic and numer-
ical robot control, and a new, task-specific user interface.
Among the various design principles that came to bear,
three stick out as the most important ones. We strongly be-



lieve that the use of probabilistic representations for on-line
state estimation and learning, the use of resource-adaptive
algorithms for state estimation and planning, and the decen-
tralized and distributed nature of the control scheme were
all essential to produce the level of robustness and reliabil-
ity demonstrated here.

What lessons did we learn? From hours of watching
the robot operate, we concluded that interaction with peo-
ple is an essential element in the success of future robots
of this and similar kinds. We believe that there is a real
need for research in the area of human robot interaction.
We are also interested in methods accelerating the instal-
lation procedure. For example, one of us spent a week
constructing a map of the museum by hand. Based on
work by (Lu & Milios 1997; Gutmann & Schlegel 1996;
Thrun, Fox, & Burgard 1998), we now have clear evidence
that this task can be automated (Thrun et al. 1998b), and the
time for acquiring such a map from scratch can be reduced
to a few hours.

We see a significant potential to leapfrog much of
the technology developed in this and similar projects
(e.g., (King & Weiman 1990)) into other service robot ap-
plications, such as applications in the areas of health care,
cleaning, inspection, surveillance, recreation etc. We con-
jecture that time is ripe for developing AI-based commer-
cial service robots that assist people in everyday life.

References
Bellman, R. E. 1957. Dynamic Programming. Princeton, NJ:
Princeton University Press.

Borenstein, J.; Everett, B.; and Feng, L. 1996. Navigating Mo-
bile Robots: Systems and Techniques. Wellesley, MA: A. K.
Peters, Ltd.

Burgard, W.; Fox, D.; Hennig, D.; and Schmidt, T. 1996. Es-
timating the absolute position of a mobile robot using position
probability grids. In Proc. of the Fourteenth National Confer-
ence on Artificial Intelligence, 896–901.

Cox, I. 1991. Blanche—an experiment in guidance and navi-
gation of an autonomous robot vehicle. IEEE Transactions on
Robotics and Automation 7(2):193–204.

Dean, T. L., and Boddy, M. 1988. An analysis of time-dependent
planning. In Proceeding of Seventh National Conference on Ar-
tificial Intelligence AAAI-92, 49–54. Menlo Park, CA: AAAI.

Elfes, A. 1989. Occupancy Grids: A Probabilistic Framework
for Robot Perception and Navigation. Ph.D. Dissertation, ECE,
CMU.

Fedor, C. 1993. TCX. An interprocess communication system for
building robotic architectures. Programmer’s guide to version
10.xx. CMU.

Fox, D.; Burgard, W.; Thrun, S.; and Cremers, A. 1998a. A
hybrid collision avoidance method for mobile robots. In Pro-
ceedings of the IEEE International Conference on Robotics and
Automation.

Fox, D.; Burgard, W.; Thrun, S.; and Cremers, A. 1998b. Po-
sition estimation for mobile robots in dynamic environments. In
Proceedings of AAAI-98. AAAI Press/The MIT Press.

Fox, D.; Burgard, W.; and Thrun, S. 1997. The dynamic window
approach to collision avoidance. IEEE Robotics and Automation
4(1).
Gutmann, J.-S., and Schlegel, C. 1996. Amos: Comparison
of scan matching approaches for self-localization in indoor en-
vironments. In Proceedings of the 1st Euromicro Workshop on
Advanced Mobile Robots. IEEE Computer Society Press.

Horswill, I. 1994. Specialization of perceptual processes. Tech-
nical Report AI TR-1511, MIT, AI Lab, Cambridge, MA.

Howard, R. A. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press and Wiley.
Kaelbling, L.; Cassandra, A.; and Kurien, J. 1996. Acting un-
der uncertainty: Discrete bayesian models for mobile-robot nav-
igation. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems.

King, S., and Weiman, C. 1990. Helpmate autonomous mobile
robot navigation system. In Proceedingsof the SPIE Conference
on Mobile Robots, 190–198. Volume 2352.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. 1997. GOLOG: A logic programming language for dynamic
domains. Journal of Logic Programming 31:59–84.
Lu, F., and Milios, E. 1997. Globally consistent range scan
alignment for environment mapping. Autonomous Robots 4:333–
349.

McCarthy, J. 1968. Situations, actions and causal laws. In Se-
mantic Information Processing. MIT Press. 410–417.

Moravec, H. P. 1988. Sensor fusion in certainty grids for mobile
robots. AI Magazine 61–74.

Nourbakhsh, I.; Powers, R.; and Birchfield, S. 1995. DERVISH
an office-navigating robot. AI Magazine 16(2):53–60.

Simmons, R., and Koenig, S. 1995. Probabilistic robot naviga-
tion in partially observable environments. In Proc. International
Joint Conference on Artificial Intelligence.

Simmons, R.; Goodwin, R.; Haigh, K.; Koenig, S.; and
O’Sullivan, J. 1997. A layered architecture for office delivery
robots. In Proceedings of the First International Conference on
Autonomous Agents.
Thrun, S.; Bücken, A.; Burgard, W.; Fox, D.; Fröhlinghaus, T.;
Hennig, D.; Hofmann, T.; Krell, M.; and Schimdt, T. 1998a.
Map learning and high-speed navigation in RHINO. In Ko-
rtenkamp, D.; Bonasso, R.; and Murphy, R., eds., AI-based
Mobile Robots: Case studies of successful robot systems. Cam-
bridge, MA: MIT Press.

Thrun, S.; Gutmann, S.; Fox, D.; Burgard, W.; and Kuipers, B.
1998b. Integrating topological and metric maps for mobile robot
navigation: A statistical approach. In Proceedings of AAAI-98.
AAAI Press/The MIT Press.

Thrun, S.; Fox, D.; and Burgard, W. 1998. A probabilistic ap-
proach to concurrent mapping and localization for mobile robots.
Machine Learning and Autonomous Robots (joint issue). to ap-
pear.
Thrun, S. 1998. Learning maps for indoor mobile robot naviga-
tion. Artificial Intelligence. to appear.


