A Scalable Tree-based Approach for Joint Object and Pose Recognition

Kevin Lai Liefeng Bo
Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

Abstract

Recognizing possibly thousands of objects is a crucial
capability for an autonomous agent to understand and
interact with everyday environments. Practical object
recognition comes in multiple forms: Is this a coffee
mug? (category recognition). Is this Alice’s coffee mug?
(instance recognition). Is the mug with the handle fac-
ing left or right? (pose recognition). We present a scal-
able framework, Object-Pose Tree, which efficiently or-
ganizes data into a semantically structured tree. The
tree structure enables both scalable training and test-
ing, allowing us to solve recognition over thousands of
object poses in near real-time. Moreover, by simulta-
neously optimizing all three tasks, our approach out-
performs standard nearest neighbor and 1-vs-all clas-
sifications, with large improvements on pose recogni-
tion. We evaluate the proposed technique on a dataset
of 300 household objects collected using a Kinect-style
3D camera. Experiments demonstrate that our system
achieves robust and efficient object category, instance,
and pose recognition on challenging everyday objects.

1 Introduction

Recognizing objects in its surroundings is a crucial capabil-
ity for an autonomous robot to understand and interact with
the world and be of use in everyday life scenarios. Addi-
tionally, more and more interactive systems require object
recognition capabilities to interact with a user in an intelli-
gent way (Kane et al. 2009). Object recognition has been
a central and heavily studied research topic in computer vi-
sion, with a lot of progress made in recent years. Modern ob-
ject recognition systems can distinguish between hundreds
of categories and detect a variety of objects in complex real-
world images (Felzenszwalb et al. 2009).

In practice, object recognition has multiple levels of se-
mantics and multiple usage scenarios. When an autonomous
robot encounters an object, we would like it to answer any
or all of the following questions: Is this a coffee mug or a
plate? (category recognition); Is this Alice’s coffee mug or
Bob’s coffee mug? (instance recognition); Am I looking at
the mug with the handle facing left or right? (pose recog-
nition or approximate pose estimation). Although it is clear

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Xiaofeng Ren
Intel Labs
Seattle, WA 98195, USA

Dieter Fox
Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

O = ©

Catego
gon Apple Stapler Bowl

/N /N
/Cereal \ ”

Instance '

Chex / Branfakes
-

ol
Striped Blue
Bowl Bowl

JANA
voe 4\

Pose

Figure 1: Category, instance, and pose recognition of a box of
Bran Flakes cereal using the Object-Pose Tree. The system labels
the test image by evaluating a set of classifiers arranged in a se-
mantically structured tree, starting with the category-level at the
top and traversing down the tree to the instance, view, and finally
the pose level at the bottom. The system finds the most similar (but
not identical) pose in the training set.

that category, instance, and pose recognition are closely con-
nected and multiple facets of a single object perception prob-
lem, they have traditionally been studied in different con-
texts and solved using different techniques. The computer
vision community has focused on category-level recog-
nition and developed sophisticated features (Lowe 2004;
Bo, Ren, and Fox 2010) and matching techniques (Lazeb-
nik, Schmid, and Ponce 2006; Felzenszwalb et al. 2009).
There have been efforts to study the problem of discrete (or
rough) pose estimation (Savarese and Fei-Fei 2007), and it
has been recently shown that category recognition and dis-
crete pose recognition can be solved together (Gu and Ren
2010). The robotics community has typically focused on
instance recognition and pose estimation, with techniques
using sparse feature matching for textured object label-
ing (Martinez, Collet, and Srinivasa 2010), or ICP align-
ment for generic 3D pose estimation (Besl and McKay 1992;
Klank, Zia, and Beetz 2009).

One other prevailing issue and urgent need of practical ob-

ject recognition research is that of scalability. For practical
systems, partly because of the need for real-time processing,
recognition is traditionally demonstrated on only a handful
of objects. Recent studies have started to push the limit to
dozens of object instances (Martinez, Collet, and Srinivasa
2010), but it is still in sharp contrast with the possibly thou-
sands of objects one would encounter in everyday life. In
computer vision, there have been ambitious efforts to move
up to 100,000 object classes (Deng et al. 2009), and the
machine learning community has developed scalable tree-
based approaches to solve such large-scale problems (Ben-
gio, Weston, and Grangier 2010). A two-stage approach has
also been proposed to handle large-scale recognition by fil-
tering the database into small sets (He et al. 2010). There
have been few such studies on scalable object recognition
from a practical perspective. For example, in practice there
is a strong need for online incremental learning, as an au-
tonomous agent constantly explores and learns about novel
objects.

In this work we develop a tree-based approach that simul-
taneously solves the three object recognition problems: cat-
egory, instance, and pose. These three levels of object recog-
nition form a tree as naturally defined by the semantic struc-
tures: a category covers multiple instances, an instance cov-
ers multiple (discrete) “views”, and each view is a collection
of (continuous) object poses (Fig. 1). We show that all three
recognition tasks can be performed robustly and efficiently
by traversing the tree. The tree, or hierarchical, view of the
three tasks enables us to jointly learn recognition models at
all three levels.

Our joint recognition approach directly tackles the prob-
lem of scalability. We show that (1) our tree-based approach
leads to efficient recognition without losing accuracy; (2) the
tree structure allows efficient and joint training of recogni-
tion models at all levels, much faster than standard 1-vs-
All training; and (3) online learning, based on stochastic
gradient descent, allows us to efficiently update an existing
tree model and incorporate novel objects. By solving three
recognition tasks together, we are able to perform near real-
time recognition over thousands of object poses much more
efficiently and accurately than nearest neighbor retrieval or
1-vs-All classifiers.

This paper is organized as follows. We first introduce our
tree representation for joint object and pose recognition, fol-
lowed by experimental results. We apply Object-Pose Trees
to an interactive system and finally conclude.

2 Object-Pose Tree

In the joint category, instance, and pose recognition task, we
are given a set of training samples {z;,v", v/, vY, yF 1Y,
where inputs x; are cropped and segmented images of ob-
jects, the outputs y,y!, 3, and y! are respectively the
categories, instances, views, and poses of the objects, and IV
is the number of training samples. The goal is to predict the
category name, instance name and pose of unseen images.
An intermediate view level between the instance and pose
levels is added where each view contains a set of nearby
poses (see Section 3.1 for more details). To estimate the cat-
egory, instance, and pose of a given object jointly, we build

an Object-Pose Tree (OP-Tree). The OP-Tree is a semanti-
cally structured tree of classifiers that consists of four levels:
category, instance, view, and pose as illustrated in Fig. 1,
where one classifier (semantic label) is associated with each
tree node.

2.1 Joint Category, Instance & Pose Recognition

To learn an OP-Tree, we will minimize the empirical loss on
a set of labeled training data. Before defining this loss, we
need to specify the classification performed by the OP-Tree.
At test-time, the OP-Tree recognizes an object by evaluating
the tree of classifiers one level at a time. The category-level
classifiers are first evaluated and the object is assigned the
category label of the highest scoring classifier

FO(x) = argmax f{ (z) ,)

where fC () is the output of the classifier for category i.

The system then evaluates the set of instance classifiers
belonging to the assigned category label and selects the in-
stance label of the highest scoring classifier at the instance
level. The system continues down through the view and pose
levels to finally assign a pose label to the image. Instance,
view, and pose classification are summarized by the follow-
ing rule:

Fi(z) = argmax f(x), @)
i:(Fr(z),i)EE

(s,r) €{(1,C), (V.), (P,V)}

Here, the set of edges £ = (p1,c1),..., (P, c/E|) con-
tains ordered pairs of parent and child node indices, and
f£(x) are the classifiers associated with the nodes ¢ at level
s. For example, the pose of an input x is predicted as

FP(z) = argmax fF(x), 3)
i:(FV(z),i)eE

where F'V(x) is the predicted view, and the maximization
is performed over all pose classifiers f{ () associated with
that specific view.

We are now ready to specify the empirical loss associated
with a set of labeled inputs z;. Note that since the view level
is only added for efficiency reasons, the loss is specified only
at the category, instance, and pose level:

1 N
Reonp = 37 30 8(F (@) # 45)

=1

N
+ 2. sg{lgfg}é(F (i) # i)
N
=S max{ max 8(F*(wi) £ i), max A(F(z:), 1)}
N se{C.I} DY B ks

“

Here, §(-) is the indicator function, and A(-) is a continuous
loss function normalized into [0, 1]. The first term measures
the error for assigning an incorrect category label. The sec-
ond and third terms, which account for the errors of instance
and pose recognition, respectively, take the maximum over

multiple levels of the tree because a mistake at any of the
higher levels will also lead to an incorrect prediction. For
example, if the tree makes a mistake at the category level for
a particular object, it will also fail on both the instance and
pose recognition task.

Unlike category and instance recognition, which involve
a discrete set of labels, for pose recognition it is natural to
consider a continuous loss function. In our application, we
represent views and poses as angles in [0, 27| and use the
following continuous loss to measure the difference between
two views or pose labels:

Ayiryy) = min{|y; yg\,jﬂ i — il (s
This function converts angle differences into a value in [0, 1]
to make the loss comparable with the 0-1 loss metric used at
the category and instance levels.

Although the empirical loss described above is ideal, us-
ing it would yield a combinatorial optimization problem. We
approximate this non-differentiable empirical loss with the
hinge loss (used in support vector machines) to get a convex
optimization problem. For efficiency we use linear classi-
fiers f#(x) = (w$)"x + bf in this paper. At the category
level, this hinge loss exactly corresponds to the loss func-
tion for a joint multi-class support vector machine (Cram-
mer and Singer 2001):

C 1 Y C
Rsvm = N Z gi (6)
=1

s.t. fycic(zq;) — O () > 1-¢F Wy e LC
¢ >0,i=1,...,N

where L is the category label set.

We approximate the empirical loss over multiple levels of
the tree using the approach proposed in (Bengio, Weston,
and Grangier 2010), which takes the largest loss from the
current level and the levels above (the ancestral levels). The
hinge loss over the instance and pose levels are given by

N
Rgym = fvi;max{é? &} ™
s.t. fycc(xY) — fyc(zz) >1- SiC,Vy eL®
Fy(wd) = fylai) 21 =& ¥y« (v ,y) € E

Ce>0i=1,...,N
and

R = 3 o madef el &) ®
s.t. f%(xi) — f (i) > 1-¢&F Wy e L

f;f(xz) —fyxi) =1 =& vy (v y) € E

v (i) = £ (@) = A y) = &y (v y) € B

fhp () = @) > A y) — €8y (0 y) € E
LC7£zIa€LV7£7PZO,'L:1,7N

where y : (y<,y) € E is the set of child nodes of the node
y¢ and similarly for y/, 3, and v/

We learn the weights of classifiers by optimizing the over-
all convex loss function, the summation of three above con-
vex loss functions (Eq. 6), (Eq. 7), and (Eq. 8) and a convex
term:

A
W* = argmin{ Roym = SW W + BG4+ Bl + R
w
©)

where the first term is the /5-norm regularizer, A is the trade-
off parameter, and W is the concatenation of all weight vec-
tors in the tree.

2.2 Object-Pose Tree Learning

We optimize (Eq. 9) using stochastic gradient descent
(SGD), which is suitable to problems where the full gradi-
ents decompose as a sum of individual gradients of the train-
ing samples. Unlike batch methods that estimate gradients
using the full set of training samples, SGD approximates
gradients using only a subset of training samples of fixed
size and thus makes the cost of each iteration constant. This
makes SGD a practical choice for large datasets. We use the
SGD algorithm proposed by (Shalev-Shwartz, Singer, and
Srebro 2007) which iteratively updates model parameters in
two steps. The first step is

1 OR!
Wi =W+ ——2% 10
ed = TN W, (10)
where R, is the hinge loss over a randomly chosen subset

of training samples at step ¢, and the learning rate is set to
be % In the second step, we set W, to be the projection of

Wi,1 onto the set {B =W : [W]| < %}
1
Wit1 = min{l, —————}W, /1 (1D
\AHWH%” :

(Shalev-Shwartz, Singer, and Srebro 2007) present theoreti-
cal guarantees and empirical results to demonstrate that this
stochastic gradient descent algorithm converges in reason-
able time. As our experiments will demonstrate, our experi-
ence also confirms the usefulness of this optimization tech-
nique.

The ability to update the classification model in an incre-
mental fashion is important for certain applications. Con-
sider the scenario where there is an ever-growing database
of objects shared by a number of robots for doing object
recognition, where objects may be added to the database at
any time. In such a scenario we want the model to be up-
dated quickly so that robots can begin recognizing the newly
added objects.

An important advantage of the proposed OP-Tree learn-
ing technique is that the tree can be quickly updated in an
incremental fashion. Using stochastic gradient descent to
optimize the tree parameters allows incremental updating of
the tree as the system encounters new objects. This is ac-
complished simply by continuously running SGD as objects
are added to the tree. The parameters of each new classi-
fier is initialized using parameters from a randomly chosen

800
600t ?E
m 8
=]
3 400 |
(0] 0 1000 2000 3000 4000 5000
= - Iteration
5 o
o - W seD
0 1 ; . | |
lteration x 10°

Figure 2: Optimization convergence comparison of stochastic gra-
dient descent from scratch (SGD) and stochastic gradient descent
starting with parameters learned for 290 objects and adding 10
more (Warm SGD).

920

©
a

o)

g so\/
3

Q

<

275

@

70 —SGD
—— Warm SGD!

250 260 270 280 290 300
Number of Objects

Figure 3: Instance recognition test accuracy of stochastic gradient
descent from scratch (SGD) and stochastic gradient descent with
pre-initialized parameters (Warm SGD), starting from 250 objects
and adding 10 each round for 5 rounds.

sibling, while existing classifiers are initialized with their
current parameters.

To verify this claim, we conducted an experiment to com-
pare the efficiency of running SGD from scratch versus ini-
tializing parameters with previously learned weights. We
first trained a tree from scratch using 290 objects from the
RGB-D Object Dataset (see Section 3.1). We then consider
two methods for updating the tree after adding ten objects to
the classifier: 1) run SGD from scratch on the complete set
of 300 objects (SGD), 2) run SGD with the parameters ini-
tialized as described in the previous paragraph (Warm SGD).

Fig. 2 shows how the objective function value changes as
the two optimization algorithms proceed. Although the ob-
jective value for SGD appears to have stabilized after 30,000
iterations, we found that test accuracy continued to improve
until 50,000 iterations, using 200 random samples per itera-
tion. In contrast, Warm SGD only took 5000 iterations, also
200 samples per iteration, to converge and achieve the same
test accuracy, yielding a 10x speed-up.

We also conducted an experiment where we start with
an OP-Tree for 250 objects and then incrementally add 10
objects at a time for 5 rounds. Fig. 3 shows that Warm
SGD achieves comparable instance recognition test accura-
cies with SGD from scratch, even though only 5000 iter-
ations were run on each round of Warm SGD while SGD
from scratch had to be run for 50,000 iterations each round

Figure 4: Objects from the RGBD Object Dataset. (Left) 16 dif-
ferent objects from the dataset. (Right) 8 views of a pitcher (top)
and 8 views of a bok choy (bottom).

to reach comparable accuracy.

Finally, we verified that the Warm SGD optimization al-
gorithm can learn an entire OP-Tree from scratch. We
started an OP-Tree with no objects and added the entire
dataset of 300 objects, 10 at a time, for 30 rounds. Due to
time constraints this experiment was conducted using only
the category and instance levels of the tree. We found that
an OP-Tree learned this way, with 5000 iterations per round,
achieved category and instance recognition accuracy within
1% of running SGD on the full dataset for 50,000 iterations.

3 Experiments
3.1 RGB-D Object Dataset

We compared OP-Trees to other approaches using the
RGB-D Object Dataset, which contains images of 300 ob-
jects taken from multiple views with a Kinect-style 3D
camera (Lai et al. 2011). The dataset is available at
http://www.cs.washington.edu/rgbd-dataset. The 300 ob-
jects are organized into 51 categories. 640 x 480 RGB and
depth image pairs of each object are taken with the camera
mounted at three different heights corresponding to angles
of 30°, 45° and 60° with the horizon. Each image pair is
annotated with ground truth category and instance labels,
as well as pose angles in [0, 27]. We divide the range of
pose angles into 8 slices each covering 45° to form nodes
in the view layer of the OP-Tree. Pose angles are aligned
across all video sequences of instances from the same cate-
gory. Following the Leave-Sequence-Out evaluation proce-
dure in (Lai et al. 2011), we uniformly sample 48 images per
video and use the 30° and 60° sequences as training data and
the 45° sequence for evaluation. This yields around 28,000
RGB + Depth image pairs for training and 14,000 for test-
ing. Fig. 4 shows some example objects from the dataset.

3.2 Experimental Setup

To represent each RGB+Depth image pair, we first extract
gradient and shape kernel descriptors (Bo, Ren, and Fox
2010) over a dense 8 x 8 grid from the RGB and depth im-
ages separately. We use Efficient Match Kernels (EMK) de-
scribed in (Bo and Sminchisescu 2009) to generate image-
level features separately for each set of local kernel descrip-
tors. This combination of kernel descriptors and EMK was
demonstrated in (Bo, Ren, and Fox 2010) to outperform
alternative state-of-the-art techniques on publicly available

Technique | Category | Instance | Avg Pose | Med Pose | Avg Pose | Med Pose | Avg Pose | Med Pose Test
© © @ @ Time (s)
NN 86.8 60.3 39.1 20.0 45.1 41.6 65.2 81.4 54.76
FLANN 84.6 55.9 38.2 10.9 42.5 33.4 64.3 78.4 0.21
1vsA 93.5 75.7 n/a n/a n/a n/a n/a n/a n/a
1vsA+NN 48.4 51.3 53.2 61.3 63.9 7.7 1.99
1vsA+RR 44.0 47.7 48.3 52.9 58.0 61.2 1.65
Indep Tree 92.0 7.4 50.4 59.3 54.8 65.6 65.0 75.2 0.33
OPTree 94.3 784 53.5 65.2 56.8 71.4 68.3 83.2 0.33
OPTree+NN 50.3 55.4 53.3 61.7 64.2 78.4 0.53
OPTree+RR 45.5 49.6 48.2 52.9 58.0 61.2 0.30

Figure 5: Category, instance, and pose recognition accuracy and running time comparison of several techniques. NN is exact nearest neighbor
classification, FLANN is an approximate nearest neighbor classification, /vsA is one-vs-all linear SVM, /vsA+NN is one-vs-all linear SVM
for category and instance recognition, followed by nearest neighbor for pose estimation, /vsA+RR is one-vs-all linear SVM for category and
instance recognition, followed by ridge regression for pose estimation, Indep Tree is a tree of classifiers where each level is trained as an
independent linear SVM. OPTree is the Object-Pose Tree technique described in this paper, OPTree+NN is an Object Tree for category and
instance recognition, followed by nearest neighbor for pose estimation, OPTree+RR is an Object Tree for category and instance recognition,
followed by ridge regression for pose estimation. /vsA for pose recognition cannot be trained in a reasonable amount of time and is omitted.

computer vision datasets like Caltech-101 and CIFAR-10.
Our previous work (Bo et al. 2011) demonstrated that these
features outperform the set of shape and visual features used
in (Lai et al. 2011).

In our experiments we consider three broad approaches:
1) Nearest Neighbor classification, 2) One-versus-all linear
classifier, and 3) the proposed Object-Pose Tree.

A nearest neighbor classifier can solve these 3 tasks
jointly by labeling each test image using the category, in-
stance, and pose labels of the k nearest training images in
feature space. We tried different values of £ and found that
k = 1 gives the best results on the RGB-D Object Dataset.

Another approach is to train one-versus-all linear support
vector machines separately for each recognition task. How-
ever, on our dataset a one-vs-all SVM for pose recognition
involves training 28,000 binary classifiers, which did not fin-
ish in a reasonable amount of time. Hence, one must com-
bine the use of one-vs-all classifiers with an alternative ap-
proach for pose estimation. One way is to use the nearest
neighbor training image within the instance predicted using
a one-vs-all classifier. Another way is to fit a ridge regres-
sion model for each instance and use the regression model
for the predicted instance to predict the pose angle.

The OP-Tree technique described in this paper presents a
unified framework for jointly addressing category, instance,
and pose recognition. The regularization trade-off parame-
ter was chosen using cross validation on the training set.To
demonstrate the merits of this approach on all three recog-
nition tasks, we also consider alternative methods of doing
pose recognition given the category and instance output of
the OP-Tree. As in one-versus-all, we consider using a near-
est neighbor classifier or using ridge regression within the
predicted instance for doing pose recognition.

3.3 Evaluation Criteria

All of the described approaches are evaluated on three recog-
nition tasks: category, instance, and pose. We report stan-
dard category and instance recognition accuracies. As men-

tioned in Section 2, pose estimation is naturally a continuous
problem, so in our evaluation we use one minus the contin-
uous loss function (Eq. 5) as the pose accuracy.

3.4 Experimental Results

Fig. 5 presents a comparison of the various techniques de-
scribed above. The results are grouped into three overall ap-
proaches: nearest neighbor (NN), one-versus-all (1vsA) and
Object-Pose Tree (OPTree). Since the different approaches
perform differently on instance recognition, the pose accura-
cies given correct instance predictions are only comparable
within an approach but not across approaches. Test times are
given for performing all three recognition tasks on a single
test image. Feature extraction takes around one second re-
gardless of the technique and is not included in the reported
running times.

We report pose accuracies under three different scenarios.
We chose to report both median and mean pose accuracies
because the distribution across objects is skewed (see Fig. 7).
For Avg & Med Pose, pose accuracies are computed on the
entire test set, but images that were assigned an incorrect
category or instance label have a pose accuracy of 0. Avg &
Med Pose (C) are computed only on test images that were as-
signed the correct category by the system. Avg & Med Pose
(I), are computed only on test images that were assigned the
correct instance by the system.

Compared to alternative approaches, exact nearest neigh-
bor classification (NN) is extremely slow and gives poor re-
sults. Methods for speeding up nearest neighbors include
using a kd-tree and doing approximate nearest neighbors
(FLANN) (Muja and Lowe 2009). Due to the high di-
mensionality of our features, using a kd-tree for computing
exact nearest neighbors is actually slower than exhaustive
search. FLANN with automatically tuned parameters for
95% NN search accuracy gives running time comparable to
one-versus-all and OP-Tree approaches, but leads to even
lower recognition performance.

One-versus-all approaches (1vsA) improve over the ac-

Red Blue Brown Yellow White
Mug Mug Mug Mug Mug

™ R B
f!él/

Ultrabnte Colgate Close-Up Crest Crest

® gePpo e

Mint
Ultrabrite p 7
(295°)
L f
304° 308° 300° 311° 297°

Figure 6: Recognition results from the Object-Pose Tree for two
objects: Red Mug (top left), and Ultrabrite Toothpaste (bottom
left). (Top) From left to right, the top five objects with the high-
est classifier response at the instance level and at the pose level
for Red Mug. (Bottom) Instance and pose classifier responses for
Ultrabrite toothpaste.

kleenexll
sponge I
hand_towe! I
“gariic I
'soda_can| R] o 3 - ¥
mushroom|
‘peach I
keyboard

bﬁder_
plies

toothpaste

calculator I

05 0.6 0.7 0.8 0.9
Pose Accuracy

Object Categories
E
I

Figure 7: Median pose recognition accuracies from an Object-
Pose Tree, given correct instance prediction, for a uniformly sam-
pled subset of object categories. Object categories are sorted in
increasing accuracies. Different views of a tissue box, a soda can,
and a calculator illustrate the varying difficulty of pose estimation
for objects in the RGB-D Object Dataset.

curacy and running time of nearest neighbors significantly.
However, one-versus-all cannot be used for pose recogni-
tion because training a classifier for each image is not scal-
able. At test-time the system must also evaluate all classi-
fiers, which scales linearly with the number of objects and
poses. This means pose recognition must be addressed us-
ing a separate technique like nearest neighbors (1vsA+NN)
or ridge regression (1vsA+RR).

Our Object-Pose Tree (OPTree) exceeds the accuracy and
running time performance of nearest neighbor classification,
one-versus-all classifiers, as well as an identically structured
tree of classifiers where each set of nodes sharing a com-
mon parent is level of the tree is independently trained as a
multi-class linear SVM (Indep Tree). The fact that OPTrees
jointly address all three tasks enables the formulation of an
objective function that takes advantage of the structure of the
problem by using a continuous loss function at the view and
pose levels.

Fig. 6 shows recognition results on two images using
the OPTree. The image shown for the top 5 matching in-
stances of each test image is the best matching pose from
that instance according to the OPTree, by traversing the tree

Figure 8: An interactive LEGO playing scenario in which an
Object-Pose Tree is used to recognize several LEGO objects
and estimate their pose. Recognizing the front of the house
enables projection of a street. Detecting which direction the
dragon is facing enables projection of a fire breathing anima-
tion (left), while detecting the fire truck enables projection
of a fire extinguishing animation (right).

down to the pose layer regardless of whether the instance
is the right one. These images, as well as the pose accura-
cies given correct category and correct instance reported in
Fig. 7, show that the OPTree can give good pose estimates
even when the instance classification is wrong.

The experiments also demonstrate that nearest neighbor
and ridge regression within the predicted instance (OP-
Tree+NN, OPTree+RR) are both inferior to the OP-Tree in
accuracy and running time. Nearest neighbor pose estima-
tion can attain good accuracy, but its running time scales
linearly with the number of training images of each object,
while the OP-Tree scales logarithmically. Linear ridge re-
gression offers constant-time performance, but gives much
worse results. While the use of kernel ridge regression may
improve accuracy, like nearest neighbors its computational
cost also scales linearly with the number of poses.

Fig. 7 shows the median pose recognition accuracies from
an OP-Tree, given correct instance predictions, for a uni-
formly sampled subset of object categories. The diversity
of shape and appearance of objects in the RGB-D Object
Dataset means that the difficulty of pose recognition can
vary significantly, ranging from textureless and symmetric
objects like balls and bowls where it is extremely difficult
to distinguish the different poses, to calculators and flash-
lights where it is easy to tell based on appearance and shape.
The OP-Tree achieves > 83% accuracy on 37 of 51 cate-
gories and 185 of the 300 objects. This level of accuracy
corresponds to a pose estimation error of < 30°, obtained
by inverting the continuous loss function (Eq. 5). A small
subset of categories with symmetry and/or little texture like
kleenex, sponge and hand towel has large pose accuracies of
90° or 180°.

3.5 Object-Aware Situated Interactive System

In collaboration with colleagues at the University of Wash-
ington and Intel Labs Seattle, we experimented with using
our OP-Tree as the core object recognition algorithm in OA-
SIS, an Object-Aware Situated Interactive System. (Ziola et
al. 2011) introduced an interactive LEGO toy playing sce-
nario (LEGO OASIS) where objects placed on a table can be
augmented with projected animations and interact with other

physical and virtual objects. Objects are associated with dif-
ferent animations and interact with each other in different
ways depending on both their identities and poses. The OP-
Tree plays an important role in LEGO OASIS by providing
real-time object recognition and pose estimation (100ms per
image), which enables responsive object-centric animations
and interactions.

In LEGO OASIS, an RGB-D camera and a projector are
both mounted above a table and pointed downwards. Since
the table is at a fixed position relative to the camera, an ob-
ject placed on the table can be easily detected and segmented
via depth thresholding. The cropped and segmented image
is presented to the proposed OP-Tree for determining the
object’s identity and pose (one of 12 discrete clock direc-
tions). Using this result, the system projects the appropriate
animations for the identified object. For example, by recog-
nizing a LEGO dragon and the direction at which its head
is pointed, the system can project a fire breathing anima-
tion. Multiple objects can be recognized in the same play
area, allowing interactions such as a dragon setting fire to
a house, and a fire truck subsequently putting out the fire
(Fig. 8). Four different objects were included in LEGO
OASIS: a dragon, a house, a fire truck, and a train. The
OP-tree, trained using around 200 images per object taken
from various poses, is able to determine the identity and
pose of these four objects at > 95% accuracy. The system
was deployed during the 2011 Consumer Electronics Show
(CES), where it was seen by more than 10,000 attendees (see
http://www.cs.washington.edu/rgbd-dataset/demos.html).

4 Conclusion

We introduced Object-Pose Trees, a scalable approach for
joint object category, instance, and pose recognition. We
provide extensive experimental results on a recently pub-
lished dataset (Lai et al. 2011), which covers 300 object in-
stances captured in both color and depth using RGB-D cam-
eras (Kinect 2010). Our tree-based system is able to search
the entire object database within 0.33 seconds to identify an
object’s category, instance, and pose. The Object-Pose Tree
trains and utilizes 28, 000 classifiers at the leaf level, which
are too many to train via standard 1-vs-All classification.
Online stochastic gradient descent for parameter optimiza-
tion allows us to achieve a 10x speed-up when adding new
objects to the database. We achieve < 30° pose estimation
error on a wide range of household objects, often exhibiting
symmetry and lacking distinctive shape or texture.

This paper opens several directions for future work.
Object-Pose Trees can easily be extended to incorporate
levels above categories, for example by using WordNet
hypernym-hyponym relations as in ImageNet (Deng et al.
2009). Another direction is to use the pose estimation of the
Object-Pose Tree to initialize a more accurate shape match-
ing procedure such as ICP, which can refine the pose es-
timate and return a full 6-D pose of an object. Finally,
the combination with interactive projector systems such as
OASIS allows the investigation of more challenging object
recognition scenarios such as interactive cooking systems.

Acknowledgements

We thank Ryder Ziola, Jinna Lei, Pauline Powledge, James
Fogarty, and Beverly Harrison for developing the LEGO
OASIS system. This work was funded in part by an Intel
grant, by ONR MURI grant number N00014-07-1-0749, and
by the NSF under contract number I1IS-0812671.

References

Bengio, S.; Weston, J.; and Grangier, D. 2010. Label Embedding
Trees for Large Multi-Class Tasks. In Proc. of NIPS.

Besl, P. J., and McKay, N. D. 1992. A method for registration of
3-d shapes. IEEE PAMI 14(2).

Bo, L., and Sminchisescu, C. 2009. Efficient Match Kernel be-
tween Sets of Features for Visual Recognition. In Proc. of NIPS.
Bo, L.; Ren, X.; and Fox, D. 2010. Kernel Descriptors for Visual
Recognition. In Proc. of NIPS.

Bo, L.; Lai, K.; Ren, X.; and Fox, D. 2011. Object Recognition
with Hierarchical Kernel Descriptors. In Proc. of CVPR.
Crammer, K., and Singer, Y. 2001. On the algorithmic implementa-
tion of multiclass kernel-based vector machines. JMLR 2:265-292.
Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Fei-fei, L. 2009.
ImageNet: A Large-Scale Hierarchical Image Database. In Proc. of
CVPR.

Felzenszwalb, P.; Girshick, R.; McAllester, D.; and Ramanan, D.
2009. Object detection with discriminatively trained part based
models. IEEE PAMI 32(9):1627-1645.

Gu, C., and Ren, X. 2010. Discriminative Mixture-of-Templates
for Viewpoint Classification. In Proc. of ECCV, 408-421.

He, R.; Hu, B.; Zheng, W.; and Guo, Y. 2010. Two-Stage Sparse
Representation for Robust Recognition on Large-Scale Database.
In AAAI-10.

Kane, S.; Avrahami, D.; Wobbrock, J.; Harrison, B.; Rea, A.; Phili-
pose, M.; and LaMarca, A. 2009. Bonfire: A nomadic system for
hybrid laptop-tabletop interaction. In Proc. of UIST.

Kinect. 2010. Microsoft kinect. http://www.xbox.com/
en-us/kinect.

Klank, U.; Zia, M.; and Beetz, M. 2009. 3d model selection from
an internet database for robotic vision. In Proc. of ICRA, 2406—
2411.

Lai, K.; Bo, L.; Ren, X.; and Fox, D. 2011. A large-scale hierar-
chical multi-view RGB-D object dataset. In Proc. of ICRA.
Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene
categories. In Proc. of CVPR, volume 2, 2169-2178.

Lowe, D. 2004. Distinctive image features from scale-invariant
keypoints. IJCV 60(2):91-110.

Martinez, M.; Collet, A.; and Srinivasa, S. 2010. MOPED: A
scalable and low latency object recognition and pose estimation
system. In Proc. of ICRA, 2043-2049.

Muja, M., and Lowe, D. G. 2009. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In VISSAPP, 331-
340. INSTICC Press.

Savarese, S., and Fei-Fei, L. 2007. 3d generic object categoriza-
tion, localization and pose estimation. In Proc. of ICCV.
Shalev-Shwartz, S.; Singer, Y.; and Srebro, N. 2007. Pegasos:
Primal estimated sub-gradient solver for SVM. In Proc. of ICML,
807-814.

Ziola, R.; Grampurohit, S.; Landes, N.; Fogarty, J.; and Harri-
son, B. 2011. Examining Interaction with General-Purpose Ob-
ject Recognition in OASIS. In University of Washington Technical
Report UW-CSE-11-05-01.

