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Abstract— Over the last years, object recognition has become
a more and more active field of research in robotics. An
important problem in object recognition is the need for sufficient
labeled training data to learn good classifiers. In this paper
we show how to significantly reduce the need for manually
labeled training data by leveraging data sets available on the
World Wide Web. Specifically, we show how to use objects from
Google’s 3D Warehouse to train classifiers for 3D laser scans
collected by a robot navigating through urban environments.
In order to deal with the different characteristics of the web
data and the real robot data, we additionally use a small set
of labeled 3D laser scans and perform domain adaptation. Our
experiments demonstrate that additional data taken from the 3D
Warehouse along with our domain adaptation greatly improves
the classification accuracy on real laser scans.

I. INTRODUCTION

In order to navigate safely and efficiently through popu-
lated urban environments, autonomous robots must be able to
distinguish between objects such as cars, people, buildings,
trees, and traffic lights. The ability to identify and reason
about objects in their environment is extremely useful for
autonomous cars driving on urban streets as well as robots
navigating through pedestrian areas or operating in indoor
environments. Over the last years, several robotics research
groups have developed techniques for classification tasks based
on visual and laser range information [22, 1, 7, 21, 15, 17].
A key problem in this context is the availability of sufficient
labeled training data to learn classifiers. Typically, this is done
by manually labeling data collected by the robot, eventually
followed by a procedure to increase the diversity of that data
set [17]. However, data labeling is error prone and extremely
tedious. We thus conjecture that relying solely on manually
labeled data does not scale to the complex environments robots
will be deployed in.

The goal of this research is to develop learning techniques
that significantly reduce the need for labeled training data for
classification tasks in robotics by leveraging data available
on the World Wide Web. The computer vision community
has recently demonstrated how web-based data sets can be
used for various computer vision tasks such as object and
scene recognition [16, 14, 20] and scene completion [10].
These techniques take a radically different approach to the
computer vision problem; they tackle the complexity of the
visual world by using millions of weakly labeled images along
with non-parametric techniques instead of parametric, model-
based approaches. In robotics, Saxena and colleagues [18]
recently used synthetically generated images of objects to learn
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Fig. 1. (Upper row) Part of a 3D laser scan taken in an urban environment
(ground plane points shown in cyan). The scan contains multiple cars, a
person, and trees and buildings in the background. (lower row) Example
models from Google’s 3D Warehouse.

grasp points for manipulation. Their system learned good grasp
points solely based on synthetic training data.

Based on these successes, it seems promising to investigate
how external data sets can be leveraged to help sensor-based
classification tasks in robotics. Unfortunately, this is not as
straightforward as it seems. A key problem is the fact that
the data available on the World Wide Web is often very
different from that collected by a mobile robot. For instance,
a robot navigating through an urban environment will often
observe cars and people from very close range and angles
different from those typically available in data sets such as
LabelMe [16]. Furthermore, weather and lighting conditions
might differ significantly from web-based images.

The difference between web-based data and real data col-
lected by a robot is even more obvious in the context of
classifying 3D laser scan data. Here, we want to use objects
from Google’s 3D Warehouse to help classification of 3D laser
scans collected by a mobile robot navigating through urban
terrain (see Fig. 1). The 3D Warehouse dataset [9] contains
thousands of 3D models of user-contributed objects such as
furniture, cars, buildings, people, vegetation, and street signs.
On the one hand, we would like to leverage such an extremely



rich source of freely available and labeled training data. On the
other hand, virtually all objects in this dataset are generated
manually and thus do not accurately reflect the data observed
by a 3D laser scanner.

The problem of leveraging large data sets that have different
characteristics than the target application is prominent in
natural language processing (NLP). Here, text sources from
very different topic domains are often combined to help
classification. Several relevant techniques have been developed
for transfer learning [4] and, more recently, domain adapta-
tion [11, 6, 5]. These techniques use large sets of labeled text
from one domain along with a smaller set of labeled text from
the target domain to learn a classifier that works well on the
target domain.

In this paper we show how domain adaptation can be applied
to the problem of 3D laser scan classification. Specifically,
the task is to recognize objects in data collected with a 3D
Velodyne laser range scanner mounted on a car navigating
through an urban environment. The key idea of our approach
is to learn a classifier based on objects from Google’s 3D
Warehouse along with a small set of labeled laser scans. Our
classification technique builds on an exemplar-based approach
developed for visual object recognition [14]. Instead of la-
beling individual laser points, our system labels a soup of
segments [13] extracted from a laser scan. Each segment is
classified based on the labels of exemplars that are “close”
to it. Closeness is measured via a learned distance function
for spin-image signatures [12, 2] and other shape features. We
show how the learning technique can be extended to enable
domain adaptation. In the experiments we demonstrate that
additional data taken from the 3D Warehouse along with our
domain adaptation greatly improves the classification accuracy
on real laser scans.

This paper is organized as follows. In the next section,
we provide background on exemplar-based learning and on
the laser scan segmentation used in our system. Then, in
Section III, we show how the exemplar-based technique can
be extended to the domain adaptation setting. Section IV intro-
duces a method for probabilistic classification. Experimental
results are presented in Section V, followed by a discussion.

II. LEARNING EXEMPLAR-BASED DISTANCE FUNCTIONS
FOR 3D LASER SCANS

In this section we review the exemplar-based recognition
technique introduced by Malisiewicz and Efros [14]. While
the approach was developed for vision-based recognition tasks,
we will see that there is a rather natural connection to object
recognition in laser scans. In a nutshell, the approach takes
a set of labeled segments and learns a distance function for
each segment, where the distance function is a linear com-
bination of feature differences. The weights of this function
are learned such that the decision boundary maximizes the
margin between the associated subset of segments belonging
to the same class and segments belonging in other classes. We
describe the details of the approach in the context of our 3D
laser classification task.

A. Laser Scan Segmentation and Feature Extraction

Fig. 2.
Segmentation via mean-shift. The soup of segments additionally contains a
merged version of these segments.

(left) Laser points of a car extracted from a 3D scan. (right)

Given a 3D laser scan point cloud of a scene, we first
segment out points belonging to the ground from points be-
longing to potential objects of interest. This is done by fitting
a ground plane to the scene. To do this, we first bin the points
into grid cells of size 25 x 25 x 25¢m?, and run RANSAC
plane fitting on each cell to find the surface orientations of
each grid cell. We take only the points belonging to grid cells
whose orientations are less than 30 degrees with the horizontal
and run RANSAC plane fitting again on all of these points to
obtain the final ground plane estimation. The assumption here
is that the ground has a slope of less than 30 degrees, which
is usually the case and certainly for our urban data set. Laser
points close to the ground plane are labeled as ground and not
considered in the remainder of our approach. Fig. 1 displays
a scan with the automatically extracted ground plane points
shown in cyan.

Since the extent of each object is unknown, we perform
segmentation to obtain individual object hypotheses. We ex-
perimented with the Mean-Shift [3] and Normalized Cuts [19]
algorithms at various parameter settings and found that the
former provided better segmentation. In the context of vision-
based recognition, Malisiewicz and Efros recently showed that
it is beneficial to generate multiple possible segmentations of a
scene, rather than relying on a single, possibly faulty segmen-
tation [13]. Similar to their technique, we generate a “soup of
segments” using mean-shift clustering and considering merges
between clusters of up to 3 neighboring segments. An example
segmentation of a car automatically extracted from a complete
scan is shown in Fig. 2. The soup also contains a segment
resulting from merging the two segments.

We next extract a set of features capturing the shape of
a segment. For each laser point, we compute spin image
features [12], which are 16 x 16 matrices describing the local
shape around that point. Following the technique introduced
by Assfalg and colleagues [2] in the context of object retrieval,
we compute for each laser point a spin image signature, which
compresses information from its spin image down to an 18-
dimensional vector. Representing a segment using the spin
image signatures of all its points would be impractical, so the
final representation of a segment is composed of a smaller set
of spin image signatures. In [2], this final set of signatures is
computed by clustering all spin image signatures describing
an object. The resulting representation is rotation-invariant,



Fig. 3.

(left) Tree model from the 3D Warehouse and (right) point cloud
extracted via ray tracing.

which is beneficial for object retrieval. However, in our case
the objects of concern usually appear in a constrained range
of orientations. Cars and trees are unlikely to appear upside
down, for example. The orientation of a segment is actually
an important distinguishing feature and so unlike in [2], we
partition the laser points into a 3 x 3 x 3 grid and perform
k-means clustering on the spin image signatures within each
grid cell, with a fixed £ = 3. Thus, we obtain for each segment
3 -3 -3 = 27 shape descriptors of length 3 - 18 = 54 each.
We also include as features the width, depth and height of the
segment’s bounding box, as well as the segment’s minimum
height above the ground. This gives us a total of 31 descriptors.

In order to make segments extracted from a 3D laser
scan comparable to objects in the 3D-Warehouse, we perform
segmentation on a point cloud generated via ray tracing on the
object (see Fig. 3).

B. Learning the Distance Function

Assume we have a set of n labeled laser segments, £ =
{e1,e2,...,en}. We refer to these segments as exemplars, e,
since they serve as examples for the appearance of segments
belonging to a certain class. Let f. denote the features de-
scribing an exemplar e, and let f, denote the features of an
arbitrary segment z, which could also be an exemplar. d. is
the vector containing component-wise, Lo distances between
individual features describing e and z: d..[i] = ||f.[i] — £.[¢]|]-
In our case, features f, and f, are the 31 descriptors describing
segment e and segment z, respectively. d., is a 31 + 1
dimensional distance vector where each component, ¢, is the
L, distance between feature ¢ of segments e and z, with an
additional bias term as described in [14]. Distance functions
between two segments are linear functions of their distance
vector. Each exemplar has its own distance function, D.,
specified by the weight vector w,:

De(z) = W¢ 'dez (l)

To learn the weights of this distance function, it is useful to
define a binary vector o, the length of which is given by
the number of exemplars with the same label as e. During
learning, . is non-zero for those exemplars that are in e’s
class and that should be similar to e, and zero for those that
are considered irrelevant for exemplar e. The key idea behind
these vectors is that even within a class, different segments can
have very different feature appearance. This could depend, for
example, on the angle from which an object is observed.

The values of . and w, are determined for each exemplar
separately by the following optimization:

{w},al} = argmin Z oo L(—we - de;) + Z L(w, - de;)
We Qe e, igCe
subject to w, > 0; a.; € {0,1}; Zaei =K 2)
7

Here, C. is the set of examplars that belong to the same
class as e, a; is the i-th component of a., and L is an
arbitrary positive loss function. The constraints ensure that
K values of o, are non-zero. Intuitively, this ensures that
the optimization aims at maximizing the margin of a decision
boundary that has K segments from e’s class on one side,
while keeping exemplars from other classes on the other side.
The optimization procedure alternates between two steps. The
o, vector in the k-th iteration is chosen such that it minimizes
the first sum in (2):

o = argmin Z oo L(—wh - d.) 3)

e ec,

This is done by simply setting a* to 1 for the K smallest
values of L(—w, - d.;), and setting it to zero otherwise. The

next step fixes a. to o’ and optimizes (2) to yield the new
wht1:
PN

whtl = argmin Z o L(—w,-dg;)+ Z L(w-de;) (4)
We  j.eC, iZCe

When choosing the loss function L to be the square hinge-
loss function, this optimization yields standard Support Vector
Machine learning. The iterative procedure converges when
af = okt

Malisiewicz and Efros showed that the learned distance
functions provide excellent recognition results for image seg-

ments [14].

III. DOMAIN ADAPTATION

So far, the approach assumes that the exemplars in the
training set £ are drawn from the same distribution as the
segments on which the approach will be applied. While this
worked well for Malisiewicz and Efros, it does not perform
well when training and test domain are significantly different.
In our scenario, for example, the classification is applied to
segments extracted from 3D laser scans, while most of the
training data is extracted from the 3D-Warehouse data set. As
we will show in the experimental results, combining training
data from both domains can improve classification over just
using data from either domain, but this performance gain
cannot be achieved by simply combining data from the two
domains into a single training set.

In general, we distinguish between two domains. The first
one, the target domain, is the domain on which the classifier
will be applied after training. The second domain, the source
domain, differs from the target domain but provides additional
data that can help to learn a good classifier for the target
domain. In our context, the training data now consists of
exemplars chosen from these two domains: £ = £ U £°.



Here, £! contains exemplars from the target domain, that is,
labeled segments extracted from the real laser data. £° contains
segments extracted from the 3D-Warehouse. As typical in
domain adaptation, we assume that we have substantially
more labeled data from the source domain than from the
target domain: |£°] > |E€']. We now describe two methods
of domain adaptation in the context of the exemplar-based
learning technique.

A. Domain Adaptation via Feature Augmentation

Daume introduced feature augmentation as a general ap-
proach to domain adaptation [5]. It is extremely easy to
implement and has been shown to outperform various other
domain adaptation techniques and to perform as well as the
thus far most successful approach to domain adaptation [6].
The approach performs adaptation by generating a stacked
feature vector from the original features used by the underlying
learning technique. Specifically, let f. be the feature vector
describing exemplar e. Daume’s approach generates a stacked
vector £ as follows:

fe
fr=| £ 5)
fe
Here, £ = f. if e belongs to the source domain, and fJ = 0 if
it belongs to the target domain. Similarly, £/ = f, if e belongs
to the target domain, and f! = 0 otherwise. Using the stacked
feature vector, it becomes clear that exemplars from the same
domain are automatically closer to each other in feature space
than exemplars from different domains. Daume argued that
this approach works well since data points from the target
domain have more influence than source domain points when
making predictions about test data.

B. Domain Adaption for Exemplar-based Learning

We now present a method for domain adaptation specifically
designed for the exemplar-based learning approach. The key
difference between our domain adaptation technique and the
single domain approach described in Section II lies in the
specification of the binary vector c.. Instead of treating all ex-
emplars in the class of e the same way, we distinguish between
exemplars in the source and the target domain. Specifically, we
use the binary vectors a and ! for the exemplars in these
two domains. The domain adaptation objective becomes

* S*

tx\ .
er Qe s O }_ argmin

We,af, ol
Z al. L(—w, -de;) + Z al,L(—w, -dg;) +

ieCs ieCt
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where C$ and C! are the source and target domain exem-
plars with the same label as e. The constraints are virtually
identical to those for the single domain objective (2), with
the constraints on the vectors becoming » . o, = K° and
Yo, al, = K The values for K* and K give the number

of source and target exemplars that must be considered during
the optimization.

The subtle difference between (6) and (2) has a substantial
effect on the learned distance function. To see this, imagine
the case where we train the distance function of an exemplar
from the source domain. Naturally, this exemplar will be
closer to source domain exemplars from the same class than
to target domain exemplars from that class. In the extreme
case, the vectors determined via (3) will contain Is only for
source domain exemplars, while they are zero for all target
domain exemplars. The single domain training algorithm will
thus not take target domain exemplars into account and learn
distance functions for source domain exemplars that are good
in classifying source domain data. There is no incentive to
make them classify target domain exemplars well. By keeping
two different a-vectors, we can force the algorithm to optimize
for classification on the target domain as well. The values for
K* and K* allow us to trade off the impact of target and source
domain data. They are determined via grid search using cross-
validation, where the values that maximize the area under the
precision-recall curve are chosen.

The learning algorithm is extremely similar to the single
domain algorithm. In the k-th iteration, optimization of the a-
vectors is done by setting af ¥ and ol ¥ to 1 for the exemplars
yielding the K* and K! smallest loss values, respectively.
Then, the weights wktl are determined via convex SVM

(&
optimization using the most recent a-vectors within (6).

IV. PROBABILISTIC CLASSIFICATION

To determine the class of a new segment, z, Malisiewicz and
Efros determine all exemplars e for which d., < 1 and then
choose the majority among the classes of these exemplars.
However, this approach does not model the reliability of
individual exemplars and does not lend itself naturally to a
probabilistic interpretation. Furthermore, it does not take into
account that the target domain is different from the source
domain.

To overcome these limitations, we choose the following
naive Bayes model over exemplars. For each exemplar e and
each segment class ¢ we compute the probability p.. that the
distance d., between the exemplar and a segment from that
class is less than 1:

DPec = p(dez <1 I C(Z) = C) (7
Here, C(z) is the class of segment z. Since the ultimate goal
is to label segments from the target domain only, we estimate
this probability solely based on the labeled segments from the
target domain. Specifically, p.. is determined by counting all
segments z in £ that belong to class ¢ and that are close to
e, that is, for which d., < 1. Normalization with the total
number of target domain segments in class ¢ gives the desired
probability.

Assuming independence among the distances to all exem-
plars given the class of a segment z, the probability distribution



over 2’s class can now be computed as

p(C(z)=c|€) o p(C(z)=¢) [ pee [ (1 —pee)

e€f,d..<1 e€f,de.>1
®)

where p(C(z) = c) is estimated via class frequencies in the
target domain data. We found experimentally that using eq. 8
as described, where it includes influence from both associated
(de» <1) and unassociated (d., > 1) exemplars, led to worse
results than including just the associated exemplars. This is
because there are many more unassociated exemplars than
associated ones, and so they have undue influence over the
probability. We instead compute the positive support using
just the associated exemplars.

We can apply the results of segment classification to indi-
vidual laser points. As described in Section II-A, we extract
a soup of segments from a 3D laser scan. Thus, each laser
point might be associated to multiple segments. Using the
probability distributions over the classes of these segments
(with positive support only), the distribution over the class of
a single laser point [ is given by

pCU)=c|&) xpC =[] I[re ©

z€Z; e€€,d..<1

where Z; is the set of segments associated with point [. In our
setup, a test segment is assigned to the class with the highest
probability.

V. EXPERIMENTAL RESULTS

We evaluate different approaches to 3D laser scan classifica-
tion based on real laser scans and objects collected from the
Google 3D Warehouse. The task is to classify laser points
into the following seven classes: cars, people, trees, street
signs, fences, buildings, and background. Our experiments
demonstrate that both domain adaptation methods lead to
improvements over approaches without domain adaptation and
alternatives including LogitBoost. In particular, our exemplar-
based domain adaptation approach obtains the best perfor-
mance.

A. Data Set

We evaluated our approach using models from Google 3D
Warehouse as our source domain set, £%, and ten labeled
scans of real street scenes as our target domain set, &°.
The ten real scans, collected by a vehicle navigating through
Boston, were chosen such that they did not overlap spatially.
Labeling of these scans was done by inspecting camera
data collected along with the laser data. We automatically
downloaded the first 100 models of each of cars, people, trees,
street signs, fences and buildings from Google 3D Warehouse
and manually pruned out low quality models, leaving around
50 models for each class. We also included a number of
models to serve as the background class, consisting of various
other objects that commonly appear in street scenes, such as
garbage cans, traffic barrels and fire hydrants. We generated 10
simulated laser scans from different viewpoints around each
of the downloaded models, giving us a total of around 3200

exemplars in the source domain set. The ten labeled scans
totaled to around 400 exemplars in the six actual object classes.
We generate a “soup of segments” from these exemplars,
using the data points in real scans not belonging to the six
actual classes as candidates for additional background class
exemplars. After this process, we obtain a total of 4,900 source
domain segments and 2,400 target domain segments.

B. Comparison with Alternative Approaches

We compare the classification performance of our exemplar-
based domain adaptation approach to several approaches,
including training the single domain exemplar-based technique
only on Warehouse exemplars, training it only on the real
scans, and training it on a mix of Warehouse objects and
labeled scans. The last combination can be viewed as a naive
form of domain adaptation. We also tested Daume’s feature
augmentation approach to domain adaptation. Our software is
based on the implementation provided by Malisiewicz.

The optimal K values (length of the o vectors) for each
approach were determined separately using grid search and
cross validation. Where training involves using real scans, we
repeated each experiment 10 times using random train/test
splits of the 10 total available scans. Each labeled scan
contains around 240 segments on average.

The results are summarized in Fig. 4. Here the probabilis-
tic classification described in Section IV was used and the
precision-recall curves are generated by varying the proba-
bilistic classification threshold between [0.5, 1]. The precision
and recall values are calculated on a per-laser-point basis. Each
curve corresponds to a different experimental setup. The left
plot shows the approaches trained on five real laser scans,
while the right plot shows the approaches trained on three real
laser scans. All approaches are tested on real laser scans only.
3DW stands for exemplars from the 3D-Warehouse, and Real
stands for exemplars extracted from real laser scans. Note that
since the first setup (3DW) does not use real laser scans, the
curves for this approach on the two plots are identical. Where
exemplars from both the 3D-Warehouse and real scans are
used, we also specify the domain adaptation technique used.
By Simple we denote the naive adaptation of only mixing real
and Warehouse data. Stacked refers to Daume’s stacked feature
approach, applied to the single domain exemplar technique.
Finally, Alpha is our technique.

It comes as no surprise that training on Warehouse exem-
plars only performs worst. This result confirms the fact that
the two domains actually have rather different characteristics.
For instance, the windshields of cars are invisible to the
real laser scanner, thereby causing a large hole in the object
segment. In Warehouse cars, however, the windshields are
considered solid, causing a locally very different point cloud.
Also, Warehouse models, created largely by casual hobbyists,
tend to be composed of simple geometric primitives, while
the shape of objects from real laser scans can be both more
complex and more noisy.

Somewhat surprisingly, the naive approach of training on
a mix of both Warehouse and real scans leads to worse
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Fig. 4. Precision-recall curves comparing. (left) Performance of the various approaches, trained five real scans where applicable. (right) Performance of the

various approaches, trained on three real scans where applicable.

performance than just training on real scans alone. This shows
that domain adaptation is indeed necessary when incorporating
training data from multiple domains. Both domain adaptation
approaches outperform the approaches without domain adap-
tation. Our exemplar-based approach outperforms Daume’s
feature augmentation approach when target domain training
data is very scarce (when trained with only 3 real scans).

To gauge the overall difficulty of the classification task,
we also trained a LogitBoost [8] classifier on the mix of
Warehouse and real scans. LogitBoost achieved a maximum
F-score of 0.48 when trained on five scans, and a maximum
F-score of 0.49 when trained on three scans (see Fig. 4). The
F-score is the harmonic mean between precision and recall:
F = 2. Precision - Recall/(Precision + Recall). As a
comparison, our approach achieves an F-score of 0.70 when
trained on five scans and 0.67 when trained on three scans. The
inferior results achieved by LogitBoost demonstrate that this
is not a trivial classification problem and that the exemplar-
based approach is an extremely promising technique for 3D
laser scan classification. Our approach has an overall accuracy
of 0.57 for cars, 0.31 for people 0.55 for trees, 0.35 for street
signs, 0.32 for fences and 0.73 for buildings.

C. Feature Selection and Thresholding Comparisons

To verify that all of the selected features contribute to the
success of our approach, we also compared the performance of
our approach using three different sets of features. We looked
at using just bounding box dimensions and the minimum
height off the ground (dimensions only), adding in the original,
rotation-invariant Spin Image Signatures as described in [2]
(Original Spin Signatures + dimensions), and adding in our
3 x 3 x 3 grid of Spin Image Signatures (Grid Spin Signatures
+ dimensions). When trained on 3 scans using dimensions fea-
tures only, our approach achieves a maximum F-score of 0.63.
Using Original Spin Signatures + dimensions, we achieved
an F-score of 0.64. Finally, using Grid Spin Signatures and
dimensions achieved an F-score of 0.67. Due to noise and
occlusions in the scans, as well as imperfect segmentation,

the classes are not easily separable just based on dimensions.
Also, our Grid Spin Image Signature features perform better
than the original, rotation-invariant, Spin Image Signatures,
justifying our modification to remove their rotation-invariance.

We also compared our probabilistic classification approach
to the recognition confidence scoring method described by
Malisiewicz in [14] and found that the precision-recall curves
generated by probabilistic classification attain recalls between
30—50 percentage points above recognition confidence scoring
for corresponding precision values.

D. Examples

Fig. 5 provides examples of exemplars matched to the three
laser segments shown in the panels in the left column. The
top row gives ordered matches for the car segment on the
left, the middle and bottom row show matches for a person
and tree segment, respectively. As can be seen, the segments
extracted from the real scans are successfully matched against
segments from both domains, real and Warehouse. The person
is mis-matched with one object from the background class
“other” (second row, third column). Part of a laser scan and
its ground truth labeling is shown in Fig. 6, along with the
labeling achieved by our approach.

VI. CONCLUSION

The computer vision community has recently shown that
using large sets of weakly labeled image data can help
tremendously to deal with the complexity of the visual world.
When trying to leverage large data sets to help classification
tasks in robotics, one main obstacle is that data collected
by a mobile robot typically has very different characteristics
from data available on the World Wide Web, for example. For
instance, our experiments show that simply adding Google 3D
Warehouse objects when training 3D laser scan classifiers can
decrease the accuracy of the resulting classifier.

In this paper we presented a domain adaptation approach
that overcomes this problem. Our technique is based on an
exemplar learning approach developed in the context of image-
based classification [14]. We showed how this approach can be



Fig. 5.

Exemplar matches. The leftmost column shows example segments extracted from 3D laser scans: car, person, tree (top to bottom). Second to last

columns show exemplars with distance below threshold, closer exemplars are further to the left.

applied to 3D laser scan data and be extended to the domain
adaptation setting. For each laser scan, we generate a “soup of
segments” in order to generate multiple possible segmentations
of the scan. The experimental results show that our domain
adaptation improves the classification accuracy of the original
exemplar-based approach. Furthermore, our approach clearly
outperformed a boosting technique trained on the same data.

There are several areas that warrant further research. First,
we classified laser data solely based on shape. While adding
other sensor modalities is conceptually straightforward, we
believe that the accuracy of our approach can be greatly
improved by adding visual information. Here, we might also
be able to leverage additional data bases on the Web. We
only distinguish between six main object classes and treat all
other segments as belonging to a background class. Obviously,
a realistic application requires us to add more classes, for
example distinguishing different kinds of street signs. So
far, we only used small sets of objects extracted from the
3D Warehouse. A key question will be how to incorporate
many thousands of objects for both outdoor and indoor object
classification. Finally, our current implementation is far from
being real time. In particular, the scan segmentation and
spin image feature generation take up large amounts of time.
An efficient implementation and the choice of more efficient
features will be a key part of future research. Despite all these
shortcomings, however, we believe that this work is a promis-
ing first step toward robust many-class object recognition for
mobile robots.
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