
Compact RGBD Surface Models Based on Sparse Coding

Michael Ruhnke
University of Freiburg

ruhnke@cs.uni-freiburg.de

Liefeng Bo
ISTC-PC Intel Labs

liefeng.bo@intel.com

Dieter Fox
University of Washington
fox@cs.washington.edu

Wolfram Burgard
University of Freiburg

burgard@cs.uni-freiburg.de

Abstract

In this paper, we describe a novel approach to construct com-
pact colored 3D environment models representing local sur-
face attributes via sparse coding. Our method decomposes a
set of colored point clouds into local surface patches and en-
codes them based on an overcomplete dictionary. Instead of
storing the entire point cloud, we store a dictionary, surface
patch positions, and a sparse code description of the depth
and RGB attributes for every patch. The dictionary is learned
in an unsupervised way from surface patches sampled from
indoor maps. We show that better dictionaries can be learned
by extending the K-SVD method with a binary weighting
scheme that ignores undefined surface cells. Through exper-
imental evaluation on real world laser and RGBD datasets
we demonstrate that our method produces compact and accu-
rate models. Furthermore, we clearly outperform an existing
state of the art method in terms of compactness, accuracy,
and computation time. Additionally, we demonstrate that our
sparse code descriptions can be utilized for other important
tasks such as object detection.

Introduction
Representing environments using textured 3D models is es-
sential for a broad variety of robotic applications includ-
ing navigation, object recognition, manipulation, and remote
presence. Usually, a task-specific representation is chosen to
solve such tasks, like landmark-based representations for lo-
calization, grid maps for planning, and feature-based repre-
sentations for object detection tasks. Instead of having mul-
tiple and potentially redundant representations for the differ-
ent tasks it seems desirable to build more complex models
that contain all information required for the corresponding
application. With the availability of cheap RGBD sensors
like the recently introduced Microsoft Kinect, it is now pos-
sible for robots to acquire models that jointly represent the
3D geometry and the texture of the environment.

In this paper we present an approach to construct compact
and colored 3D models of an environment by representing
local surface attributes via sparse coding. Sparse coding is
a machine learning technique that describes data based on
an overcomplete dictionary and a sparse set of linear fac-
tors (Olshausen, Field, and others 1997). This introduces a

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Model built with our method at a resolution of
2 cm. The surface is represented with surface patches of size
20 cm × 20 cm. Each patch is encoded with a sparse code
of an overcomplete dictionary. Generated from a 3.35GB
dataset, the resulting file size is 10.2MB.

flexible way to scale and combine dictionary entries to ap-
proximate the input data. In the context of this paper we ap-
ply sparse coding to reduce the amount of data necessary to
store the surface description. This reduction exploits similar-
ities in shape and texture, which occur in almost all human-
made environments and will be encoded in our dictionary.
Based on such a dictionary we are able to describe shape
and texture with a sparse code containing only a few linear
factors and corresponding dictionary indices.

One interesting property of sparse coding is that chunks of
similar data are usually described with similar sparse codes.
This makes it applicable for feature learning in the context of
object detection (Bo, Ren, and Fox 2012) because a search
or comparison in the compact sparse code space is more ef-
ficient and robust than on raw data. Building compact and
accurate 3D models with sparse coding makes it possible to
directly search for similar structures, textures, or full objects
in the sparse code descriptions, given an expressive dictio-
nary. Accordingly, the approach presented in this paper is
able to produce richer models for mobile robot tasks.

Related Work
There exists a wide variety of different representations for
3D environments. Depending on the desired application they
focus either on accuracy, compactness, or rendering per-
formance. Recent developments in Simultaneous Localiza-
tion and Mapping (SLAM) and the availability of RGBD-

cameras made it possible to obtain large colored metric mod-
els. Whereas a major advantage of colored point-clouds lies
in their accuracy, their drawback is the amount of data that
has to be stored, since every single observed pixel is repre-
sented in both 3D and RGB-space. Therefore, most RGBD-
based SLAM systems either use only a subset of features
internally (Henry et al. 2010) or represent only small, local
spaces (Newcombe et al. 2011).

Fairfield, Kantor, and Wettergreen (2007) proposed a
compact voxel representation based on Octrees in the con-
text of mobile robotics. Wurm et al. (2010) developed an
open source implementation called Octomap which can
store additional RGB information together with 3D occu-
pancy. Kammerl et al. (2012) used Octrees to compress col-
ored point cloud streams by transmitting only the differences
in successive frames. For large voxel sizes, Octrees are very
compact but introduce major discretization errors. If a small
voxel size is chosen the resulting models are more accurate
but not compact anymore.

In our previous work Ruhnke et al. (2010) we proposed
to model the geometric structure of an environment based
on surface primitives. In this approach, a surface primitive is
a small point cloud that can be inserted in a model at mul-
tiple locations. The corresponding model uses a dictionary
of primitives and stores a set of 6 degrees of freedom lo-
cations together with the corresponding dictionary indices,
describing where to place which of the small point clouds to
reconstruct the input data. In principle, this can be regarded
as a variant of bag-of-words models.

A technique similar to bag-of-words methods is sparse
coding. Instead of choosing one dictionary entry of a bag-
of-words to describe an input signal, sparse coding allows
to describe a signal as a linear combination of multiple dic-
tionary entries. Sparse coding has already been successfully
applied in the context of signal approximation (Rubinstein,
Zibulevsky, and Elad 2010), image denoising (Hyvarinen,
Hoyer, and Oja 2001; Elad and Aharon 2006) and more re-
cently to learn feature descriptions for object recognition
tasks on both vision only and RGB-D data (Bo, Ren, and
Fox 2012; Yang et al. 2009); resulting in superior recogni-
tion results compared to standard bag-of-words models.

In this work, we follow a similar idea to describe mod-
els as a set of local descriptions. However, in contrast to our
previous work Ruhnke et al. (2010), we use discrete local
surface descriptions and apply sparse coding to approximate
the surfaces. Instead of a greedy dictionary learning using
the Bayesian information criterion to guide the search, we
apply an efficient variant of K-SVD (Rubinstein, Zibulevsky,
and Elad 2008) and learn smaller dictionaries while achiev-
ing substantially lower reconstruction errors. In addition, our
method is also able to represent full RGB-D information in-
stead of just the 3D surface model.

Sparse Coded 3D Surface Models
The main goal of our method is to build 3D surface mod-
els based on sparse coding. In the following we will refer to
local surfaces as surface patches, or simply patches. Such
patches need a well defined location in order to compute
them from the input data. Furthermore, we need to learn

Figure 2: Example RGB-D patch (left), the depth description
(center) and the color description (right). The light green ar-
eas on the center and right image correspond to undefined
areas, which are marked as zeroes in the patch bitmask.

a dictionary from the surface patches as reference for our
codes. Once we have a dictionary, we approximate the sur-
face patches with sparse codes referring to that dictionary.
Given the locations, the dictionary, and the sparse codes, we
can approximate every patch and place it at the right location
to recover the entire surface model of the environment.

In our context, the input data is a pre-registered set of col-
ored point clouds P . To apply sparse coding, we first de-
compose P into chunks of a particular size and discretize
every chunk. Typical ways for doing this are by considering
pixel or metric space. Since we intend to jointly represent
the information from multiple point clouds acquired at dif-
ferent locations, choosing pixel space would result in differ-
ently scaled surface descriptions, making it hard to combine
the surface information observed from multiple scans. On
the other hand, a discretization in metric space has the dis-
advantage of introducing additional errors since we usually
observe nearby surfaces at very high resolutions and store
the information at a lower resolution.

We represent the surface with small RGB-D patches of a
given size and a fixed metric resolution on the surface. The
depth and RGB values are oriented in the direction of the
surface normal. In this way, we discretize only in the two
dimensions of the surface and have full accuracy in the third
dimension. Let us consider a surface patch of size 10 cm
×10 cm with a resolution of 1 cm. In our surface represen-
tation this would result in a 10 × 10 matrix for the depth
channel and a 10× 10× 3 matrix for the color channel. Fig-
ure 2 shows an example surface patch and the corresponding
depth and color channels.

To describe a set of colored point clouds, P , we define
a model M(Ddepth ,Drgb , I) that contains reference dic-
tionaries for both channels, Ddepth and Drgb , and a scene
description I = {i1, . . . , il}. The entries ddepth

i of the
depth dictionary Ddepth = {ddepth

1 , . . . ,ddepth
n } have the

same size as the depth channels of the surface patches.
Likewise, the entries drgb

i of the RGB dictionary Drgb =

{drgb
1 , . . . ,drgb

m } have the same size as the surface patch
color channel. Since shape has less variations than texture,
Ddepth has usually substantially less entries than Drgb .

Every ij =
〈
Tj , c

depth
j , crgbj ,bj

〉
stores a transforma-

tion, consisting of 3D pose and orientation, for the surface
patch, Tj , one sparse code for the depth cdepthj and one for
the RGB channel crgbj , and a bitmask bj that is 1 for de-
fined cells and 0 for undefined cells (see also Figure 2). Note

Figure 3: Colored point cloud and corresponding surface
patch locations. The blue axis corresponds to the normal.

that undefined cells can be caused by invalid range measure-
ments of the sensor, occlusions, or if measurements are too
far away (background). In this way we can decouple the im-
pact of occlusions from the surface description and get sharp
surface borders. The storage requirements are rather moder-
ate. Given a patch size of 10 × 10 we have to store 100 bits
or 12Byte, which corresponds to three floats per extracted
surface patch.

In the following we will discuss how we partition the in-
put data, learn a dictionary from the extracted patches and
calculate a sparse description for every patch.

Point Cloud Decomposition
To decompose a point cloud P into a set of surface patches,
S, we have to decide where to place the surface patches si.
Each surface patch describes a subset of points of P that fit
into a cube of a particular size. Possible locations for the
surface patches are defined by the points in P . For com-
pressing the data we are interested in the minimum number
of subsets that contain all elements of P and the locations of
those subsets. This is a set cover problem known to be NP-
complete (Feige 1998). Instead of searching for an optimal
solution we focus on a computationally efficient, approxi-
mate solution. Note that P may contain millions of points
and that the computation of surface patches for every point
is already expensive in terms of computation time and mem-
ory requirements. Therefore, we uniformly distribute the lo-
cations for our surface patches on P and keep the amount of
overlapping regions relatively low. We perform this using a
spatial sub-sampling strategy and a voxel grid as described
in Algorithm 1. The neighborhood of the centroids is defined
by the voxel grid, and steps 8 and 10 merge or add centroids
in case neighbors are too close or too far apart, respectively.

Once patch locations are determined, we calculate a sur-
face patch si for every such location. Additionally, we need
to compute the orientation and rotation of the surface around
every patch location. Therefore, we extract a local point
cloud for every patch location with a diameter similar to
our surface patch size and compute the mean and the co-
variance of this local point cloud. We compute the rotation
via a singular value decomposition (SVD) on the covariance.
The eigenvector of the smallest eigenvalue corresponds to
the normal and is used as the z-axis direction of the surface
patch. The remaining two eigenvectors correspond to the x-
and y-axes, in order of their ascending eigenvalues. Further-
more, we check the ratio between the two larger eigenval-
ues. If the ratio is close to one, the orientations of the cor-

Algorithm 1 Pseudo code for patch location computation.
1: S = ∅
2: for all points p ∈ P do
3: Insert p into voxel v ∈ V ;
4: compute centroids c ∈ C for all non-empty voxels;
5: for all centroids c ∈ C do
6: for all neighboring centroids n ∈ C do
7: if ||c− n||22 < minDistance then
8: c := c+n

2 and remove n from C;
9: if ||c− n||22 > maxDistance then

10: add c+n
2 to set of locations;

11: add c to set of patch locations S;
12: return S;

responding eigenvectors are not well defined and tend to be
strongly influenced by sensor noise. To avoid this situation,
we select alternative local x- and y-axes by choosing the
two global coordinate axes that have the larger angle to the
computed normal and make them orthogonal to the normal.
This results in more regular surface patch orientations on
flat surfaces. If less than three points fall into one patch lo-
cation we set the rotation to the identity matrix. Combining
the patch location and the computed orientation, we can de-
fine a transformation Ti as a local coordinate frame of our
surface patch. A typical result of this procedure can be seen
in Figure 3. Once we computed Ti, we apply T−1

i to the
point cloud neighborhood and compute the color and depth
value for each cell in the patch by averaging over the points
falling into that cell (empty cells are marked as undefined).

Dictionary Learning with wK-SVD
The extracted surface patches S contain a lot of redundant
information on both channels. Thus, we intend to compute a
sparse approximation to find a compact representation of the
data. Let S be the data matrix that contains every si as i-th
column vector. The idea of K-SVD is to learn an overcom-
plete dictionary D and a sparse description X to approxi-
mate S. We can formulate this as a minimization problem
using the following equation:

min ‖S − (W � (DX))‖2F s.t. ∀i ‖xi‖0 ≤ k. (1)

Here, ‖A‖F denotes the Frobenius norm, � denotes the
element-wise matrix multiplication, and k is the maximum
number of nonzero entries for each column xi that approxi-
mates a corresponding surface patch si ≈ Dxi. To deal with
undefined values we extend the standard K-SVD formula-
tion with a binary weighting matrix W that contains a 1 for
data cells that were actually observed and 0 otherwise. This
information is represented in the bitmasks of the patches.
In this way we ignore the reconstruction results for unde-
fined values and focus the reconstruction accuracy on the
observed values. Undefined cells store a value of zero in S
and by multiplyingW in an element-wise fashion we ensure
that the reconstructed values of undefined cells are ignored
during the optimization. In the following we will briefly out-
line weighted K-SVD (wK-SVD) and describe the proposed
extension. Pseudo code of wK-SVD is provided in Algo-
rithm 2. A more detailed description of an efficient K-SVD

Dataset method dict. (D/RGB) patch size res.(m) input result RMSE (D/RGB) time
Scene IV-A Ruhnke 2010 70 / - 0.1 m - 1.2 MB 431 kB 0.058 m / - 7 min
Scene IV-A our method 70 / - 0.16 m 0.02 1.2 MB 357 kB 0.016 m / - 2.5 s
RGBD Corridor Octomap - / - - 0.02 3.35 GB 44.5 MB 0.016 m / 25.1 56 s
RGBD Corridor our method 100 / 500 0.2 m 0.02 3.35 GB 10.2 MB 0.017 m / 19.9 8 min
Object Detect. our method 120 / 114k∗ 0.1 m 0.005 4.7 MB 559 MB - 5 s

Table 1: Experimental evaluation for each dataset and method. The dictionary size and RMSE errors are split into depth and
RGB. The timings are measured on a standard desktop CPU with 3 GHz. (∗) The RGB channel was not compressed.

Algorithm 2 Pseudo code for wK-SVD algorithm.
1: Initial D0 filled with randomly selected columns of S
2: for all Iterations do
3: for all xi ∈ X do . compute sparse code matrix X
4: xi = argmin ‖si − (wi � (Dxi))‖22
5: for all dj ∈ D do . optimize dictionary D
6: L := Indices of X columns i with dj,i 6= 0

7: SVD(S(L) −W (L) � (DX(L) − djX(L)
row(j)))

8: dj = SVD.getU().normalize()
9: X

(L)
row(j) = SVD.getS() · SVD.getV()

implementation without weighting can be found in the work
of Rubinstein, Zibulevsky, and Elad (2008).

Starting from an initial dictionary D0, wK-SVD itera-
tively achieves an improved representation of S. In each it-
eration, wK-SVD alternates between computing the sparse
code matrix X based on the current dictionary and optimiz-
ing each dictionary entry based on the current sparse code
matrix. We compute the sparse code matrix X with orthog-
onal matching pursuit (OMP) (Pati, Rezaiifar, and Krish-
naprasad 1993). OMP is a greedy algorithm that decouples
the computation of X into N sub-problems, one for every
data item si. This makes it easy to parallelize OMP, which
results in a major speedup in our implementation. Given a
dictionary D, OMP iteratively solves the following mini-
mization problem:

x̂i = argmin ‖si − (wi � (Dxi))‖22 s.t. ‖xi‖0 ≤ k (2)

Again, we added a weighting vector wi, which is the i-th
column of the weighting matrix W used to neglect unde-
fined values. In every iteration we search for the code word
that best matches the current residual and append it to the
current xi. Once a new code word is selected, the patch si
is orthogonally projected to the span of the selected code
words, and the residual is recomputed for the next iteration
until either the maximum number of entries k is reached or
the residual error is below a minimum error.

Once the sparse code matrixX is computed, wK-SVD up-
dates the dictionary on a per-entry base. For each dictionary
entry dj , it only selects the patches that have a non-zero en-
try in their sparse code. A codeword dj is updated via SVD
on the residual matrix containing all differences between the
selected patches and their approximations using all code-
words and their sparse codes without dj . In general, K-SVD
and wK-SVD can get stuck in a local minimum depending
on the initial dictionary. However, for practical scenarios,
K-SVD usually converges to a good dictionary for a wide
range of initializations (Aharon, Elad, and Bruckstein 2006;

Bo, Ren, and Fox 2012).
Once all values of a model M(Ddepth ,Drgb , I) are de-

termined, we can also reconstruct a point cloud from it, if
needed. This can be done by going through all elements of
I and decode the j-th element with

ŝj
depth = Ddepth · cdepthj . (3)

With cdepthj = [λ1j , . . . , λ
N
j] this can be rewritten as

ŝj = λ1j · d
depth
1 + . . .+ λNj · d

depth
N . (4)

Remember that the sparse code cj is a sparse vector with
only k nonzero entries. The same scheme is applied for de-
coding the color channel. The joint information is projected
into a colored 3D point cloud for all values defined in bj . In
the final step, we apply Tj to put the patch point cloud at the
right location in the resulting point cloud.

Experiments
In this section we evaluate our method on various datasets.
The interesting evaluation quantities for this work are
mainly the accuracy and compactness of the resulting model
and the time needed to compute the result. To evaluate ac-
curacy we use the root mean squared error (RMSE) of the
dictionary learning method wK-SVD, which is calculated
on the discrete surface patches and their approximations ac-
cording to Eq. (1). While this error provides insights into
how close we get to the optimal solution given our dis-
cretization, we are additionally interested in the point level
error for comparison with other methods and discretizations.
Therefore, we search for every point in the resulting point
cloud for the nearest neighbor in the reference point cloud
and vice versa. We compute the RMSE for all pairs. To
demonstrate how compact the results are, we provide the file
sizes of the input dataset and the resulting files in their cor-
responding representation in Table 1. Furthermore, we pro-
vide timings required for learning the dictionary since this
is usually the computationally most expensive step. All re-
sults were computed on a standard desktop machine with an
i7 CPU at 3 GHz and with four cores. In all experiments we
chose a sparsity factor of k = 5.

Accuracy and Runtime vs. Dictionary Size
In our first experiment we evaluated the accuracy and run-
time requirements of our method on a range only dataset. We
computed a point cloud decomposition containing 2,585 sur-
face patches of size 16 cm and a resolution of 2 cm. To this
model we applied standard K-SVD and wK-SVD to learn a
dictionary. We varied the dictionary size between 1 and 901

a) b) c)
Figure 4: The input point cloud of this experiment is shown in (a). The cloud contains only range information and the displayed
colors are height-dependent. The reconstruction quality of the method by Ruhnke et al. (2010) with a dictionary size of 70
is shown in (b). A model built by our method with a dictionary of the same size is shown in (c). As can be seen, the model
computed by our method maintains part of the original scan structure as a result of the stored bit masks and at the same time
provides a substantially better reconstruction accuracy. The resulting RMSE per point is approximately 1.6 cm and the resulting
file size is 357 kb compared to an RMSE of 5.8 cm and 421 kB achieved by Ruhnke et al. (2010).

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900
0
20
40
60
80
100
120
140
160
180

m
il
im

et
er

se
co
n
d
s

dictionary size

wK-SVD RMSE in mm
wK-SVD time

K-SVD RMSE in mm
K-SVD time

Figure 5: Accuracy and time requirements for our method
on a range only reference dataset. We applied wK-SVD and
K-SVD with varying dictionary sizes between 1 and 901 and
a step size of 5. As can be seen, the RMSE of wK-SVD is
smaller than the RMSE of K-SVD for all dictionary sizes.

with a step size of 5. Figure 5 gives a detailed overview of
the resulting RMSE per patch cell and the run time depend-
ing on the dictionary size. A dictionary of size 70 already
results in an RMSE of approximately 1 cm with a computa-
tion time around 2.5 seconds using four threads. The differ-
ence between wK-SVD and K-SVD is also very interesting.
The RMSE in the wK-SVD is smaller than for K-SVD for
all dictionary sizes, with a comparable run time.

Figure 4(a) shows the input point cloud, (b) a model com-
puted with the method described in (Ruhnke et al. 2010) and
(c) a model built by our method. Both methods used a dic-
tionary of size 70. As can be seen, the model computed by
our method partially maintains the original scan structure
as a result of the stored bitmasks and additionally provides
a substantially better reconstruction accuracy. The resulting
RMSE per point is approximately 1.6 cm and the resulting
file size is 357 kb, compared to an RMSE of 5.8 cm and
a file size of 421 kb. Thus our method clearly outperforms
the competing approach in terms of the resulting file size,
the RMSE, and the time needed to learn the dictionary. The
main reason for the better results is that we use discrete sur-

5

6

7

8

9

10

0 10 20 30 40 50
0

2

4

6

8

10

m
il
im

et
er

R
G
B

va
lu
es

(0
-
2
5
5
)

iteration

depth RMSE in mm
RGB RMSE

Figure 6: RMSE of the depth and RGB dictionary learning
with wK-SVD. In both cases wK-SVD converges very fast
to an RMSE of 6mm for depth and a RMSE of 4.5 for RGB.

face patches instead of a sample point cloud for our dictio-
nary entries. In this way, a depth value is stored with one
float instead of three in the point cloud representation. Fur-
thermore, we use the gained space to store additional bit-
masks and sparse codes with every surface description. To-
gether this results in a better reconstruction quality.

Compact Models
In the next experimental setting we applied our method on
a SLAM solution1 containing 707 registered RGBD scans.
This dataset was acquired in the corridor of a typical office
building. An overview of the dataset can be seen in Fig-
ure 7(a). We applied our method to the accumulated point
cloud and built a model with 41,358 surface patches of size
20 cm and a resolution of 2 cm. It took eight minutes to com-
pute the depth dictionary of size 100 and the RGB dictionary
of size 500. Figure 6 plots the evolution of the RMSE during
the dictionary learning for both dictionaries over the differ-
ent iterations.

For comparison we created a colored occupancy Octomap
of the dataset with a voxel size of 2 cm, which resulted in the
colored model shown in Figure 7(c). An enlarged view of the
same region in our model is shown in 7(d). Our model looks

1Courtesy of Peter Henry

a) b) c) d)
Figure 7: Resulting model for the RGB Corridor dataset (a), a representative part of the model as a raw point cloud (b),
octomap (c) and our method (d). The Octomap occupancy grid has a file size of 44.49 MB with a voxel size of 2 cm, an RMSE
of 0.016 m on the depth channel and an RMSE of 25.1 on the RGB channel. Our model has a file size of 10.2 MB and stores a
depth dictionary with 100 entries and a RGB dictionary with 500 entries. The RMSE is 0.017 m for the depth channel and 19.9
for the RGB channel. In comparison, Octomap has a slightly lower error in the depth data and a slightly larger error in the RGB
data. The major difference between the two results is the resulting file size, which is four times larger for Octomap.

a) b) c) d)
Figure 8: The RGBD scan used for this experiment is shown in (a). (b) shows the results for upper can parts search, (c) for
lower parts of a can standing on a flat surface and (d) shows the results for the edge of a table. The green cubes mark highly
similar surface patches for the corresponding search queries. In all three cases we successfully found all surface patches that
contain similar surface descriptions. Note that there is only one false positive in the lower part of the table leg shown in (d).

much smoother since we discretize only in two dimensions
and the sparse coding also reduces the noise in the RGB
data as can be seen on the wall on the left hand side. Fur-
thermore, our model is substantially smaller with 10.2 MB
versus 44.5 MB.

Object Detection
Since sparse coding has previously been applied success-
fully to object recognition, the question arises whether we
can also use our models to search for objects by compar-
ing sparse codes. To evaluate this, we acquired an RGB-D
scan containing multiple small soda cans on a table (see
Figure 8(a)). To demonstrate similarities in the sparse code
space we extracted surface patches for every point in the
model instead of applying the proposed point cloud decom-
position. In this way we avoid the problem of extracting the
sparse codes on suboptimal positions since our point cloud
decomposition scheme does not explicitly search for stable
key points or patch locations.

For a real object detection scenario one would compute
a model of the environment with our method along with a
reference model for the object we are searching for, with
surface patches in every point, based on the same dictionary.
In such a setting, we can find an object in an environment by
searching for surface patches that are very similar to a rep-
resentative subset of the sparse description of the reference
model.

Figures 8(b), (c) and (d) show the results of three differ-
ent search queries. The corresponding reference surface is
marked with a red cube, whereas the green cubes correspond
to the most similar surface patch regions. We forced an 80%
similarity on the indices and used the Euclidean metric on

the linear factor as similarity score. Furthermore, we show
only results with a value below a threshold of 0.05. As can
be seen for all three settings, our approach reliably found
similar surface patches. It produced only one false-positive
in the lower part of the table leg. This indicates that our ap-
proach can be applied for object recognition tasks despite the
simplistic nature of the detection algorithm. It furthermore
highlights the richer description of our models compared to
standard representations.

Conclusions
In this paper, we presented a novel approach to construct
compact colored 3D environment models representing local
surface attributes via sparse coding. The key idea of our ap-
proach is to decompose a set of colored point clouds into
local surface patches and describe them based on an over-
complete dictionary. The dictionaries are learned in an un-
supervised fashion from surface patches sampled from in-
door maps. We demonstrate that our method produces highly
compact and highly accurate models on different real world
laser and RGBD datasets. Furthermore, we show that our
method outperforms an existing state-of-the-art method in
terms of compactness, accuracy and computation time. We
also demonstrate that our sparse code descriptions can be
utilized for other highly relevant tasks in the context of
robotics such as object detection.

Acknowledgments
This work was funded in part by the Intel Science and Tech-
nology Center for Pervasive Computing, by ONR MURI
grant N00014-07-1-0749 and by the EC under ERC-AG-
PE7-267686-LifeNav and FP7-ICT-248873-RADHAR.

References
Aharon, M.; Elad, M.; and Bruckstein, A. 2006. K-svd: An
algorithm for designing overcomplete dictionaries for sparse
representation. IEEE TRANSACTIONS ON SIGNAL PRO-
CESSING 54(11):4311.
Bo, L.; Ren, X.; and Fox, D. 2012. Unsupervised feature
learning for RGB-D based object recognition. International
Symposium on Experimental Robotics (ISER), June.
Elad, M., and Aharon, M. 2006. Image denoising via sparse
and redundant representations over learned dictionaries. Im-
age Processing, IEEE Transactions on 15(12):3736–3745.
Fairfield, N.; Kantor, G.; and Wettergreen, D. 2007. Real-
time slam with octree evidence grids for exploration in un-
derwater tunnels. Journal of Field Robotics 24(1-2):03–21.
Feige, U. 1998. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM) 45(4):634–652.
Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; and Fox, D.
2010. Rgb-d mapping: Using depth cameras for dense 3d
modeling of indoor environments. In the 12th International
Symposium on Experimental Robotics (ISER), volume 20,
22–25.
Hyvarinen, A.; Hoyer, P.; and Oja, E. 2001. Image denois-
ing by sparse code shrinkage. Intelligent Signal Processing
554–568.
Kammerl, J.; Blodow, N.; Rusu, R. B.; Gedikli, S.; Beetz,
M.; and Steinbach, E. 2012. Real-time compression of
point cloud streams. In IEEE International Conference on
Robotics and Automation (ICRA).
Newcombe, R.; Davison, A.; Izadi, S.; Kohli, P.; Hilliges,
O.; Shotton, J.; Molyneaux, D.; Hodges, S.; Kim, D.; and
Fitzgibbon, A. 2011. Kinectfusion: Real-time dense surface
mapping and tracking. In Mixed and Augmented Reality (IS-
MAR), 2011 10th IEEE International Symposium on.
Olshausen, B.; Field, D.; et al. 1997. Sparse coding with an
overcomplete basis set: A strategy employed by vi? Vision
research 37(23):3311–3326.
Pati, Y.; Rezaiifar, R.; and Krishnaprasad, P. 1993. Or-
thogonal matching pursuit: Recursive function approxima-
tion with applications to wavelet decomposition. In Signals,
Systems and Computers, 1993. 1993 Conference Record of
The Twenty-Seventh Asilomar Conference on, 40–44. IEEE.
Rubinstein, R.; Zibulevsky, M.; and Elad, M. 2008. Efficient
implementation of the k-svd algorithm using batch orthogo-
nal matching pursuit. CS Technion.
Rubinstein, R.; Zibulevsky, M.; and Elad, M. 2010. Dou-
ble sparsity: Learning sparse dictionaries for sparse signal
approximation. Signal Processing, IEEE Transactions on
58(3):1553–1564.
Ruhnke, M.; Steder, B.; Grisetti, G.; and Burgard, W. 2010.
Unsupervised learning of compact 3d models based on the
detection of recurrent structures. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).
Wurm, K.; Hornung, A.; Bennewitz, M.; Stachniss, C.; and
Burgard, W. 2010. Octomap: A probabilistic, flexible, and

compact 3d map representation for robotic systems. In Proc.
of the ICRA 2010 workshop on best practice in 3D percep-
tion and modeling for mobile manipulation, volume 2.
Yang, J.; Yu, K.; Gong, Y.; and Huang, T. 2009. Linear spa-
tial pyramid matching using sparse coding for image classi-
fication. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, 1794–1801. IEEE.

