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Abstract
In this paper we address the problem of classifying objects in urban environments based on laser and vision data. We
propose a framework based on Conditional Random Fields (CRFs), a flexible modeling tool allowing spatial and temporal
correlations between laser returns to be represented. Visual features extracted from color imagery as well as shape
features extracted from 2D laser scans are integrated in the estimation process. The paper contains the following novel
developments: (1) a probabilistic formulation for the problem of exploiting spatial and temporal dependencies to improve
classification; (2) three methods for classification in 2D semantic maps; (3) a novel semi-supervised learning algorithm to
train CRFs from partially labeled data; (4) the combination of local classifiers with CRFs to perform feature selection on
high-dimensional feature vectors. The system is extensively evaluated on two different datasets acquired in two different
cities with different sensors. An accuracy of 91% is achieved on a seven-class problem. The classifier is also applied to
the generation of a 3 km long semantic map.

Keywords

1. Introduction

Classification and semantic mapping are essential steps
toward the long-term goal of equipping a robot with the
ability to understand its environment. Classifiers generate
semantic information which can enable robots to perform
high-level reasoning about their environments. For instance,
in search and rescue tasks, a mobile robot that can reason
about objects such as doors, and places such as rooms, is
able to coordinate with first responders in a much more nat-
ural way. It can accept commands such as “Search the room
behind the third door on the right of this hallway”, and send
information such as “There is a wounded person behind
the desk in that room” (Kumar et al. 2004). As another
example, consider autonomous vehicles navigating in urban
areas. While the recent success of the DARPA Urban Chal-
lenge (see http://www.darpa.mil/grandchallenge/index.asp)
demonstrates that it is possible to develop autonomous vehi-
cles that can navigate safely in constrained settings, suc-
cessful operation in more realistic, populated urban areas
requires the ability to distinguish between objects such as
cars, people, buildings, trees, and traffic lights.

In this paper a classification framework based on
Conditional Random Fields (CRFs) is proposed. CRFs
are discriminative models for classification of structured
(dependent) data (Lafferty et al. 2001). CRFs provide a
flexible framework in which different types of spatial and
temporal dependencies can be represented.

1.1. Overview

The sequence of operations involved in the proposed clas-
sification systems is described in Figure 1. At the input
of the processing pipeline is the raw data: in the experi-
ments described in this paper, it is for instance acquired by a
modified car equipped with vision and 2D ranging sensors.

The first preprocessing phase contains two operations:
(1) projection of the laser returns onto the image and
(2) definition of Regions of Interest (ROIs) in the image
based on the projected returns. A ROI is defined around
each projected point. Feature extraction is then performed
in each of the ROIs. As we describe in the following, the
feature extraction stage is the key to achieving good clas-
sification results. A few vision features are illustrated in
Figure 1. The final stage of the processing pipeline con-
tains the actual classifier. In the case of Figure 1, the clas-
sifier estimates the label of the features representing each
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Fig. 1. The classification workflow (following the layout proposed by Duda et al. (2001)). On the left, an example of input data is shown: a color image

and a 2D laser scan. The red part of the scan does not fall within the field of view of the camera and is disregarded during the rest of the processing.

Below the “Preprocessing” block is an example of Region of Interest (ROI) generation. The ROI defined around the projection of each laser return in

the image is indicated by a yellow box. Above the "Feature Extraction” box, a few examples of vision features computed in the ROI in the far right of

the scene. The green lines are extracted based on an edge detector (see http://www.cs.uiuc.edu/homes/dhoiem/). Features such as the maximum length

of the lines in a ROI or the count of vertical lines are computed (as detailed in Section 6.2). The 3D plot represents the RGB space, and the size of the

blue dots is mapped to the number of counts in the bins of a RGB histogram. The third inset represents texture coefficients obtained with the Steerable

Pyramid descriptor (Simoncelli and Freeman 1995). The full set of features also includes laser features which are not illustrated here but developed in

Section 6.1. The image on the right shows the inferred labels. The estimate associated to each return is indicated by the color of the return. The legend

is provided at the bottom of the image.

laser return. Possible labels include “car”, “people” and
“foliage”.

In this paper, the flexibility of CRF-based classifica-
tion is presented using various models of increasing com-
plexity integrating 2D laser scans and imaging data. We
start with a simple chain CRF formed by linking consec-
utive laser beams in the scans. This configuration models
the geometrical structure of a scan and captures the typi-
cal shapes of objects. Temporal information is then incor-
porated by adding links between consecutive laser scans
based on correspondences obtained by a scan matching
algorithm. This leads to a network in which estimation
is equivalent to a filtering algorithm, thus taking tempo-
ral as well as spatial dependencies into account. This net-
work, and its associated estimation machinery, allows for
temporal smoothing as the network grows with the reg-
istration of incoming scans. Finally, it is shown that a
CRF can be used to capture the various structures char-
acterizing a geometric map. This involves defining a net-
work on a set of already aligned laser scans and running
estimation as a batch process. In the map-sized network
obtained in this way, classification is performed jointly

across the whole laser map and can, in turn, exploit larger
geometric structures to improve local classification. Some
of the inputs and outputs of the model are illustrated in
Figure 2.

By building on the recently developed Virtual Evidence
Boosting (VEB) procedure (Liao et al. 2007), a novel Max-
imum Pseudo-Likelihood (MPL) learning approach is pro-
posed, that is able to automatically select features during
the learning phase. Expert knowledge about the problem is
encoded as a selection of features capturing particular prop-
erties of the data such as geometry, color and texture. An
extension of MPL learning to the case of partially labeled
data is proposed thus significantly reducing the burden of
manual data annotation.

Based on two datasets acquired with different platforms
in two different cities, eight different sets of results are pre-
sented. This allows for an investigation of the performance
of the models applied to large-scale feature networks. The
generation of semantic maps based on this framework is
demonstrated. One of these networks involves the genera-
tion of a 3 km long semantic map and achieves an accuracy
of 91% on a seven-class problem. While the test networks
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Fig. 2. Examples of inputs and outputs of the 2D classification system. (a) One possible input of the system: a laser scan and the
corresponding image. In this figure the laser returns are projected onto the image and represented by yellow crosses. The laser scanner
used in the corresponding experiments can be seen at the bottom of the image. (b) The output obtained from (a). For each laser return,
the system estimates a class label which is here indicated by the color of the return. (c) A second possible input of the system: a set
of aligned 2D laser scans. The platform’s trajectory is displayed in magenta. The system also requires the images acquired along the
trajectory to perform classification. (d) The output obtained from (c). The system estimates a class label for each laser return is the 2D
map. The units of the axes are meters.

contain on average 7,500 nodes, the associated inference
time is less than 11 seconds on a standard PC.

The paper is concluded with a discussion on the limita-
tions of the proposed networks in terms of their smoothing
effect. The fundamental importance of features extracted
from data in the generation of accurate classifiers is also
highlighted.

This paper makes a number of contributions:

• Spatial and temporal correlations between laser returns
are represented using a single framework based on
CRFs.

• Filtering and smoothing are shown to be particular
instances of the inference process in this general rep-
resentation.

• The model is shown to also support the generation of
large-scale (a few kilometers long) 2D semantic maps,
while also being demonstrated on 3D data.

• An extension of MPL learning is proposed to train the
models from partially labeled data. It is based on a for-
mulation of CRFs that combine local classifiers rather

than reasoning directly on high-dimensional features as
implemented in standard log-linear formulations.

• The model can deal with different sensors as it is able
to incorporate multi-modal data by means of a feature
selection process in high-dimensional feature vectors
(using Logitboost).

• The model instantiated in its filtering, smoothing and
mapping version is demonstrated on real-world datasets
acquired in two different cities by two different vehicles.
A total of eight experiments are reported.

1.2. Paper Structure

This paper is organized as follows. Section 2 discusses
related work. Section 3 introduces CRFs as well as a
novel extension of MPL learning for training from partially
labeled data. Section 4 presents the core of the model. In
particular, the instantiation of the model from data and its
ability to represent spatial and temporal correlations are
developed. Section 5 shows how the model can be deployed
for the generation of semantic maps. Section 6 presents
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the various features used in our implementation. Section 7
proposes an experimental evaluation of the model when
used as a filter or a smoother. Section 8 proposes a second
experimental evaluation in which the model is used to gen-
erate semantic maps. Section 9 discusses the limitations of
the proposed approach by analyzing the nature of network
links. Section 10 concludes. Note that most of the figures
need to be seen in color, as in the online version of this
article.

2. Related Work

Most current approaches to mapping focus on building
geometric representations of an environment. The Simul-
taneous Localization and Mapping (SLAM) framework, in
particular, has addressed the problem of building accurate
geometric representation of an environment based on laser
data, on vision data, or combined laser and vision (Durrant-
Whyte and Bailey 2006). Landmark models combining
visual and geometric feature have been designed in con-
junction with Bayesian filters so that the landmark repre-
sentation can be updated over time (Douillard et al. 2007b;
Kumar et al. 2007; Kaupp et al. 2007). All of these tech-
niques reconstruct the geometry and the visual appearance
of the environment but do not readily allow the identifica-
tion of objects in a scene. As formulated by Pantofaru et al.
(2003), the next natural step is to extract a symbolic repre-
sentation of the environment in which objects and structures
of interest are labeled.

Semantic representations can be extremely valuable since
they enable robots to perform high-level reasoning about
environments and objects therein. Martinez-Mozos et al.
(2007) propose a method for classifying the pose of a robot
into semantic classes corresponding to places. Adaboost
(Schapire and Singer 1999) is used for training on features
extracted from 2D laser scans and vision data. There are
four main differences between the work described in this
paper and the method of Martinez-Mozos et al. (2007).
First, our method is developed for outdoor rather than
indoor applications. Second, the proposed method performs
object recognition rather than place recognition. The differ-
ence of scale between the two problems is crucial. The num-
ber of features which can be gathered in a given environ-
ment is often much larger than the number of features which
can be extracted from one object in the same environment.
As a consequence, the extraction of discriminative patterns
is facilitated in a place recognition problem. Third, in order
to perform multi-class classification, Martinez-Mozos et al.
(2007) combines binary classifiers in a heuristic manner
(this is further developed in Martinez-Mozos et al. (2005))
while the approach proposed here extends to an arbitrary
number of classes without any modification. Finally, the
model developed in this paper outputs a dense semantic
map of the whole environment (as illustrated in Figure 12)
while the system in Martinez-Mozos et al. (2007) provides
labels tied to the trajectory of the robot.

In the context of outdoor environments, various
approaches have been proposed to exploitspatio-temporal

information in performing classification of dynamic
objects. The work of Luber et al. (2008) extends the track-
ing algorithms developed by Schulz (2006) and Toyama
(2001) to represent the changing appearance of objects
imaged with a 2D laser scanner. This model integrates
both classification and tracking, and is able to represent
five classes including pedestrians, skaters and bicycles. The
specificity of the method lies in the use of an unsupervised
learning algorithm. As suggested, unsupervised training is
possible only if a few strong features allow the observa-
tions to be separated into distinct clusters corresponding to
classes. In the application described, such features include
the velocity of the track for example. Once the unsuper-
vised clustering has been applied, the mapping from clus-
ters to class labels requires the intervention of an operator
to specify which components in the cluster model corre-
spond to which classes. To avoid this external intervention
our approach uses supervised and semi-supervised learning
algorithms.

Other approaches to dynamic object detection based on
2D laser data and monocular imagery were developed by
Katz et al. (2008a,b) and Monteiro et al. (2006). These
emphasize the role of spatial and temporal integration to
achieving robust recognition as exploited in this work.
Other work, directly estimating the class of an object with-
out consideration of temporal correlations was developed
by Posner et al. (2007, 2010). The authors combine 3D
laser range data with camera information to classify surface
types such as brick, concrete, grass or pavement in outdoor
environments. Each laser scan is considered independently
for classification. Other work shows that performance can
be improved by jointly classifying laser returns using tech-
niques such as associative Markov networks (Triebel et al.
2006), Relational Markov Networks (Limketkai et al. 2005)
and other “object-oriented” types of models (Anguelov
et al. 2004).

In this paper CRFs (Douillard et al. 2007a, 2008) are
employed as a method for structured modeling of both tem-
poral and spatial relations between sensor data, features
and object models. Structured classification is also demon-
strated in Posner et al. (2008) where objects are classified
based on monocular imagery and laser data. This approach
does not incorporate temporal information and while it is
designed to handle multi-modal data, user-specified inputs
are required for each modality. A structured model is used
by Anguelov et al. (2005) where a Markov Random Field
model is used to segment objects from 3D laser scans.
The model employs simple geometric features to classify
four classes: ground, building, tree and shrubbery. Fried-
man et al. (2007) introduced Voronoi Random Fields, which
generate semantic place maps of indoor environments by
labeling the points on a Voronoi graph of a laser map using
CRFs.

Object recognition has been a major research topic in the
computer vision community (Murphy et al. 2003; Torralba
et al. 2004; Viola and Jones 2004; Fei-Fei and Perona 2005;
Hoiem et al. 2006; Vedaldi et al. 2007; Felzenszwalb et al.
2008; Sudderth et al. 2008). However, direct application of
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the algorithms to robotics problems is not always feasible or
appropriate. In particular, the sequential, real-time, multi-
perspective views encountered in robotic navigation is con-
ceptually different from most vision-based object recogni-
tion tasks. Indeed, robots can often exploit temporal and
spatial correlation between views to aid object classifica-
tion. It is also most common that robots do not need to use
vision alone and can benefit from other ranging or location
information to aid the classification task.

3. Structured Classification

This paper builds on previous work by addressing the clas-
sification problems of Douillard et al. (2007a, 2008) and by
combining multi-modal data fusion, structured reasoning
and temporal estimation into a single integrated model.

This section introduces techniques to jointly classify
structured (dependent) data. They are divided into two
general classes: generative and discriminative. Section 3.1
explains why a discriminative approach is chosen, and
in particular it introduces the CRF framework. Inference
mechanisms and learning algorithms are then discussed.
The standard MPL approach to CRF training is explained.
A modified version of MPL learning for training from
partially labeled data is introduced. It is shown that the
use of boosting classifiers within the models reduces the
complexity of the learning problem.

3.1. Generative or Discriminative?

Generally, probabilistic models fall into two categories:
generative and discriminative (Vapnik 2000; Ng and Jor-
dan 2002). A generative model is a joint probability of all
variables, whereas a discriminative model provides a model
only of the target variables conditioned on the observed
variables. A generative model can be used, for example,
to simulate (that is, generate) values of any variable in the
model, whereas a discriminative model allows only sam-
pling of the target variables conditioned on the observed
quantities (Bishop 2006). In the context of classification,
discriminative models directly represent the conditional dis-
tribution of the hidden labels given all of the observations,
p(x|z). In contrast, generative models represent the joint
distributions p(x, z) and the Bayes rule is used to extract
an estimate p(x|z) over class labels.

There are a number of advantages to using discrimina-
tive classifiers. As developed by Ng and Jordan (2002), one
advantage was articulated by Vapnik (2000) and relies on
the intuitive wisdom that “one should solve the (classifi-
cation) problem directly and never solve a more general
problem as an intermediate step (such as modeling p( z|x))”.
The term p(z|x) is called the sensor model in the context of
robotics studies. This term is required to extract an estimate
over classes p(x|z) from the joint distribution p(x, z). In con-
trast, a sensor model is not needed when the conditional
distribution p(x|z) is represented directly.

In addition, modeling the term p(z|x) is likely to be
computationally hard. It can be intuitively appreciated that

devising the model of a sensor (such as a camera or a
laser) is indeed a difficult task. This aspect often causes the
designer to assume the independence of the observations
given the states. Owing to these assumptions, the result-
ing generative representation cannot exploit inherent cor-
relations in adjacent observations. Better performances of
discriminative models were, in fact, observed in several
studies. Ng and Jordan (2002) compared a logistic regres-
sion classifier (a discriminative model) with a naive Bayes
classifier (a generative model). CRFs (a discriminative
model) have also been shown to provide better performance
than Markov Random Fields (a generative model) in var-
ious studies. These include man-made structure detection
systems based on vision data (Kumar 2005) with networks
instantiated as 2D lattices. Similar observations were made
in part-of-speech tagging experiments with chain networks
(Lafferty et al. 2001).

Since the problem considered here is the classification of
laser returns into semantic classes, that is, building the map-
ping p(x|z), without the need for an explicit sensor model
(p(z|x)) or an explicit model of the data (p(z)), we choose a
discriminative representation as the base model.

3.2. Conditional Random Fields

CRFs are undirected graphical models developed for label-
ing sequence data (Lafferty et al. 2001). CRFs directly
model p(x|z), the conditional distribution over the hidden
variables x given observations z. Here the set x repre-
sents the class labels to be estimated and the set z contains
the raw data. The CRF fundamental is briefly discussed
below, further details can be found in Sutton and McCallum
(2006).

In this work we consider a particular type of CRF which
are often referred to as pairwise CRFs. They contain only
two types of potential functions: local potentials φA and
pairwise potentials φI . In addition, we assume the hidden
states to be discrete since we consider classification net-
works only. The conditional distribution over all of the
labels x given the observations z becomes

p(x|z) = 1

Z( z)

∏

i

φA( xi, z)
∏

e

φI ( xe1 , xe2 , z) , (1)

where

φA(xi, z) = exp

(
λλλAA (xi, fA( z, xi) )

)
, (2)

φI ( xe1 , xe2 , z) = exp

(
λλλI I

(
xe1 , xe2 , fI ( z, {xe1 , xe2})

) )
.(3)

The term Z( z) refers to the partition function, i ranges over
the set of nodes and e over the set of edges. The functions
fA and fI extract the features required by functions A and
I, respectively. Functions fA and fI correspond to the fea-
ture extraction step appearing in Figure 1. The functions A
and I are the association and interaction potentials, respec-
tively. An association potential A can be a classifier which
estimates the class label of node xi but does not take into
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account information contained in the structure of the neigh-
borhood. An interaction potential I is a function associated
with each edge e of the CRF graph, where xe1 and xe2 are the
nodes connected by edge e. Intuitively, interaction poten-
tials measure the compatibility between neighboring nodes
and act as smoothers by correlating the estimation across
the network. The terms λA and λI are sets of weights mul-
tiplying the output of the functions A and I, respectively.
These weights are estimated during the training phase.

To differentiate between the terms A and φA, the latter
will be called the local potential. Depending on the context,
φA will either return a scalar or a vector; this will be indi-
cated in the text. In the equations above, it returns a scalar.
Also, to differentiate between the terms I and φI , the latter
will be called the pairwise potential. The term φI can either
be a scalar or a matrix, which will be clear from the context.
In the equations above, it is a scalar. When φI is a matrix,
its size is [L × L], where L is the number of classes, and it
is referred to as the pairwise matrix. To simplify the nota-
tion, the dependency of the terms φA and φI on z will not be
made explicit in the remainder of this document.

The set of Equations (1), (2) and (3) will be referred to in
the text via the more compact formulation below, where all
of the terms have been gathered in the exponential:

p(x|z) = 1

Z
exp

(
λλλA

∑

i

A (xi, fA(z, xi) )

+λλλI

∑

e

I (xe1, xe2, fI (z, xe) )

)
. (4)

In this paper, we assume that the random field defined
by Equation (4) is homogeneous: the functions A and I are
independent of the nodes at which they are instantiated.
In addition, we assume that the field is isotropic, that is,
the interaction potential I is non-directional: I( xe1 , xe2 , fI ) =
I( xe2 , xe1 , fI ).

It is important to note that CRFs are globally conditioned
on the whole set of observations z. This allows the inte-
gration of more complex observations into the model. For
instance, the ROI displayed in Figure 1 overlap and will
generate observations with an overlapping content. Such
cases can seamlessly be integrated in a CRF while they
would be more problematic in generative models.

3.3. CRF Inference

A widely used inference framework is Belief Propagation
(BP) (Pearl 1988; Jordan and Weiss 2002). BP generates
exact results in a graph such as trees or polytrees. However,
in cyclic graphs the algorithm is only approximate and is not
guaranteed to converge (Murphy et al. 1999). In the case of
cyclic graphs, the algorithm is called loopy BP. A number
of theoretical studies have formulated theoretical conditions
with respect to the convergence of loopy BP, for instance,
in terms of the Bethe free energy (Watanabe and Fuku-
mizu 2010). In practice, loopy BP often converges to good
approximates and has been successfully applied to several
problems (Frey and MacKay 1997; Freeman et al. 2000). In

our experiments, convergence was verified experimentally;
the corresponding analysis is reported in Section 8.5.

Inference algorithms are based on the concept of margi-
nalization. In the case of pairwise networks, the marginal-
ization process as implemented by BP has an intuitive
formulation. The sequence of computations specified by the
algorithm can be interpreted as a flow of messages across
the network. If the states of the nodes are discrete (such as
in classification problems), a message mji( xi) from node j
to node i has the following form (Jordan and Weiss 2002):

mji( xi) =
∑

xj

⎛

⎝φA( xj) φI ( xi, xj)
∏

k∈N (j)\i

mkj( xj)

⎞

⎠ , (5)

where the functions φA and φI are as defined in the previous
section.

Once the messages have been propagated, the distribution
over the states of a node can be recovered as follows:

p(xi|z) ∝ φA( xi)
∏

k∈N (i)

mki( xi) . (6)

Other types of query such as the Maximum A Posteriori
(MAP) inference involve similar mechanisms (Jordan and
Weiss 2002).

There are several other techniques for performing infer-
ence in the literature (Sudderth et al. 2003; Szummer et al.
2008). BP was chosen because it allows an intuitive inter-
pretation of inference in terms of network messages which
enables the generalization of the concepts of smoothing
and filtering under the more general notion of inference in
a probabilistic graph (Section 4). Other potentially faster
inference techniques such as graph cuts or tree re-weighted
message passing for instance (Greig et al. 1989; Wainwright
et al. 2005) were not considered here.

3.4. CRF Training

To introduce general learning concepts as applied to the
CRF framework we use the following formulation of a CRF:

p(x|z) = 1

Z( z)

∏

c∈C
exp (w · fc( xc, z) ) , (7)

where C is a set of node cliques (the dependency of w
on z is not made explicit in this formulation to simplify
the notation). This expression corresponds to a standard
log-linear CRF and is different from that given in Equa-
tion (4): the potential functions φc( xc, z) are now defined
as log-linear combinations of the feature functions fc, i.e.
φc( xc, z) = exp (w · fc( xc, z) ). This standard formulation is
introduced to point out the benefits of the proposed model.
The details of the relationship between this formulation and
the formulation in Equation (4) are given in the next section.

Learning a CRF consists of defining the set of weights w
in Equation (7), based on a labeled training set. Learning
can also be performed on a set of partially labeled data; this
will be further discussed in Section 3.6. Maximum Like-
lihood (ML) estimation provides a general framework for
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Fig. 3. Illustration of the assumption made during MPL learn-
ing. The Markov blanket of the middle node consists of the four
nodes which are directly connected to it. During learning, only the
neighbors in the Markov blanket are considered and the rest of
the network is disregarded when processing this particular node
(and a node contributes to several Markov blankets). This assump-
tion makes the computation of the partition function Z tractable.
MPL learning also assumes that the nodes in the Markov blanket
are observed, that is, it requires their label to be known. Labeled
nodes are indicated by their gray color.

automatically adjusting the free parameters of a model to
fit empirical data. Applied to a CRF, it requires maximiz-
ing the conditional likelihood p(x|z) of a labeled set {x, z}
with respect to the parameters w. For the remainder of this
section, the dependency of the model on its parameters
will be made explicit by writing the conditional likelihood
p(x|z, w).

The model is more conveniently expressed as a log-linear
combination of features. The learning problem consists then
of minimizing the negative log-likelihood:

L( w) � − log p( x|z, w) (8)

= −
∑

c∈C
w · fc( xc, z) + log Z( z, w) . (9)

Such an optimization problem is NP-hard due to the
term Z(z, w) (Kumar 2005) which involves summing over
an exponential number of states configurations; we recall
here the formulation of the partition function: Z(z, w) =∑

x

∏
c∈C exp (w · fc(xc, z) ).

To circumvent this difficulty, various techniques have
been proposed to compute approximations of the partition
function Z(z, w). Some approaches approximate log Z(z, w)
directly, such as by Markov chain Monte Carlo (MCMC)
(Liao 2006) or variational methods (Yedidia et al. 2002).
Other approaches estimate the parameters locally, that is,
they replace the global normalization constant Z(z, w)
by a set of local normalizations (Sutton and McCallum
2007). We now focus on one such local approach: pseudo-
likelihood.

MPL (Besag 1975) is a classical training method which
performs ML estimation on sub-graphs of the networks.

This is illustrated in Figure 3. Formally, the pseudo-
likelihood is expressed as (Liao 2006)

PL( x|z, w) �
∏

i

p( xi|MB( xi) , w) (10)

=
∏

i

1

Z( MB( xi) , w)

exp (w · fi ({xi, MB( xi) }, z)) , (11)

where MB( xi) is the Markov blanket of node xi: the set
of nodes which are directly connected to node xi. As this
formulation suggests, the pseudo-likelihood is the product
of all of the local likelihoods, p( xi|MB( xi) , w). The term
Z( MB( xi) , w) is equal to

∑
x′

i
exp

(
w · fi

({x′
i, MB( xi) }, z

))

and represents the local partition function. It can be easily
computed since it involves only the set of immediate neigh-
bors of xi rather than the whole set of nodes in the graph
as was the case for the global partition function Z( z, w).
As a result, evaluating the pseudo-likelihood is much faster
than computing the full likelihood p( x|z, w) since it only
requires evaluating local normalizing functions and avoids
the computation of the global partition function Z( z, w).
The difference in complexity between the computation of
the likelihood and the pseudo-likelihood is exponential in
the number of nodes in the network.

Inference in models trained with MPL can be performed
with various techniques including BP (described in the
previous section) or MCMC techniques (Liao 2006).

3.5. Logitboost-based Training

While the MPL approach renders the learning problem
computationally feasible, it has two drawbacks in addition
to being an approximation. We review each of them and
explain the solution adopted in this work.

The first limitation of MPL learning is the need for entire
labeling of the network: when processing a given node, the
MPL procedure requires the labels of the neighbor nodes to
be known. Based on these labels, the parameters describ-
ing neighborhood interactions can be learnt. As observed in
several studies, assuming the states of the neighbor nodes
to be known during training might result in over-estimating
the weights in the pairwise connections (Geyer and Thomp-
son 1992; Kumar 2005). In Section 3.6 we present a novel
extension of the MPL procedure which does not require the
neighborhood labels to be known during training. In addi-
tion, we show that the latter version of MPL learning can
handle partially labeled data.

A second limitation of the standard MPL approach is
linked to the potentially large number of weights w. As can
be seen in Equation (7), in standard log-linear models, w
directly multiplies the feature vector f, which implies that
the model requires one weight per dimension of the fea-
ture vector f. In our application, the feature vectors have
a dimensionality of 1,470. The associated model would
require 1,470 weights to be learnt. Such a large number
of features slows down the learning process considerably
which can, in some cases, be too slow for practical deploy-
ment. As an example, with the set of networks described
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in Section 5 and limiting the number of parameters to be
estimated to eight (by using only two parameters to repre-
sent the pairwise matrix, see Section 8), learning the model
already took approximately 3 hours.

Some approaches based on L1 regularization have shown
that feature selection can be performed in conjunction with
CRF training (Vail et al. 2007). In effect, these techniques
find the features which are not useful for classification
and drive the associated weights to zero. The resulting
model is sparse. However, the optimization is still per-
formed directly in the feature space leading to long learning
times.

As a consequence, we approach the learning problem
from a different angle. The specificity of our approach lies
in the way a pairwise CRF is defined; the corresponding
formulation is given in Equation (4). Specifically, it lies in
the way the association potentials A are defined: the associ-
ation potentials A are classifiers. For the reasons developed
in Section 6.3, A is implemented as a Logitboost classifier
(Friedman et al. 2000).

Using a classifier as an association potential significantly
reduces the number of weights in the vector w. This comes
from the following aspect. As defined in Equation (4), the
association potentials A are a function of the features fA.
Unlike a standard log-linear model, the weights defining
the model do not directly multiply the (potentially high-
dimensional) feature vectors fA but the output of A. Since
A is a Logitboost classifier, its output is a distribution
over class labels. This distribution comes in the format
of a vector whose dimensionality is equal to the num-
ber of classes. The latter is usually much lower than the
dimensionality of fA. As a consequence, the number of
weights in the vector λA is much smaller than in the origi-
nal set of weights w, which can significantly accelerates the
learning procedure.

The proposed learning approach proceeds as follows.
A Logitboost classifier A is first learnt on the set of fea-
ture vectors {fA}. This process runs through each of the
dimensions of the feature vectors. However, unlike in stan-
dard learning in log-linear models, this first phase does not
require the join optimization of the weights on the local and
pairwise features. Once the association potential is learnt,
the weights λλλA of the CRF model multiply the output of
A and are learnt during a second phase via the modified
version of MPL training presented in Section 3.6.

In addition, a Logitboost classifier can be made to return
a normalized distribution over classes. This implies that A
(which is a Logitboost classifier) does not need to be multi-
plied by the weights λλλA. The reason for this is the following.
The role of the weights λλλA and λλλI is to balance the influence
of local and neighborhood information when computing the
distribution given by Equation (4). When the output of A
is not bounded, the weights λλλA re-scale A’s output so that
it is numerically comparable to I’s output. When A’s out-
put is normalized, re-scaling becomes unnecessary and the
weights λλλI suffice to balance the effect of local and neigh-
borhood information. As a consequence, the proposed CRF
formulation avoids the optimization of the local weights

λλλA. Modeling the interaction potential A by a classifier is
in effect equivalent to performing a second feature extrac-
tion process. The first pass of feature extraction provides the
feature vector fA. The second pass provides a normalized
distribution over class labels, that is, the output of A.

A formulation of pairwise CRFs based on associa-
tion potentials implemented as classifiers had not been
combined with semi-supervised MPL learning (semi-
supervised MPL is detailed in Section 3.6). Similar
approaches using Boosting for building local potentials
have been presented, see Heitz et al. (2009) for instance.
Note that not only can Boosting classifiers be used, but any
classifier returning a distribution over class labels, see for
instance Vallespi-Gonzalez (2008).

3.6. Semi-supervised MPL

Training very large networks (such as those presented in
Section 4) with a fully supervised approach is not practi-
cal as it requires labeling every single laser return in the
training set. Therefore, we resort to a novel semi-supervised
extension of the MPL procedure.

The formulation of the corresponding pseudo-likelihood
function is as follows:

PL( x|z) =
∏

i

1

Z( MB( xi) , w)
φA( xi)︸ ︷︷ ︸

Local Potential

∏

k∈MB(xi)

Pairwise Matrix︷ ︸︸ ︷
φI ( xi, xk) φA( xk)︸ ︷︷ ︸

Neighbor Local Potential

(12)

This equation will be explained shortly. It assumes that
the CRF is in the form given in Equation (1). The terms φA

and φI are defined in Equations (2) and (3), respectively.
The pseudo-likelihood formulation proposed above can

be recovered from the general form of the pseudo-
likelihood function. The general formulation was given in
Equation (11) and is repeated here

PL( x|z, w) =
∏

i

p( xi|MB( xi) , w)

Using the form of a CRF model given in Equation (1),
the pseudo-likelihood can be re-written as

p(x|z) =
∏

i

1

Z( MB( xi) , w)
φA( xi)

∏

k∈MB(xi)

φI ( xi, xk) , (13)

The term φA( xk) does not appear in the latter equa-
tion while it does in the expression we are trying to
recover (Equation (12)). As explained in Section 3.5, a MPL
approach requires the neighbor labels to be known during
training. These labels correspond here to the term xk . How-
ever, here we wish to relax the assumption that neighbor
labels are known during training. To do so, we marginalize
out xk . This corresponds to multiplying the matrix φI ( xi, xk)
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by the distribution over xk , which is given by (normalizing)
the term φA( xk), that is,

φI ( xi, xk) φA( xk) =

Pairwise Matrix︷ ︸︸ ︷⎡

⎢⎣
φI11 . . . φI1L

...
. . .

φIL1 φILL

⎤

⎥⎦

⎡

⎢⎣
φA( x1

k)
...

φA( xL
k )

⎤

⎥⎦ .

︸ ︷︷ ︸
Neighbor Local Potential

(14)

The additional indices ranging from 1 to L refer to the
various instances of label xk given that the classification
problem involves L classes. Marginalizing out a variable is
a standard inference mechanism. It is applied here to the
MPL formulation to relax the requirement of having fully
labeled data. This marginalization leads us to the formula
we were trying to recover:

PL( xL, xU |z) =
∏

i∈L

1

Z( MB( xi) , w)
φA( xi)

∏

k∈MB(xi)∩(L∪U)

φI ( xi, xk) φA( xk) , (15)

where L and U explicitly indicate labeled and unlabeled
nodes, respectively. The intuition behind the marginaliza-
tion process is described in Figure 4.

When learning a CRF based on this modified MPL
approach, each of the nodes indexed by i needs to be
labeled. However, their neighbors, referred to as MB( xi),
do not need to be labeled since they intervene via their local
potentials φA( xk) rather than their label This differentiates
the above formulation from the standard MPL approach
which requires all of the nodes to be labeled.

In terms of implementation, the association potential A
is learned first. As discussed in Section 3.4, the Logitboost
algorithm is used for this first phase of the training. Also,
since a Logitboost classifier returns a normalized distri-
bution over classes, the weights λA need not be learned
and are simply set to one (as discussed in Section 3.5).
Then, the above semi-supervised version of MPL learn-
ing is applied to learn the terms related to the interaction
potential I. In our implementation the pairwise matrix φI is
directly learned without explicitly learning the terms λI and
I . The optimization algorithm used for this second phase
of the learning is a Broyden—Fletcher—Goldfarb-–Shanno
(BFGS)-based technique (Sutton and McCallum 2006) (as
implemented by the Matlab function “fmincon”).

Such a MPL formulation allows us to investigate the per-
formance of the proposed spatio-temporal model applied to
large-scale networks (presented in the following sections).
Equation (12) corresponds to a simple yet efficient exten-
sion of MPL learning to partially labeled data. With this
formulation it is possible to exploit the connections between
labeled nodes and all of their neighbors, independently of
whether the latter are labeled. Note that the derivations pre-
sented here corresponds to the case of a constant pairwise

Fig. 4. Illustration of the proposed semi-supervised MPL learn-
ing. This figure should be viewed in parallel with Figure 3 which
illustrates the standard MPL approach. The association potential
A is applied to the central node xi and generates the term φA( xi)
of Equation (12). The association potential is also applied to each
of the four neighbors in the Markov blanket of xi. In these cases,
it generates the terms φA( xk). The four neighbor potentials are
“sent” across the links as indicated by the blue arrows. This oper-
ation corresponds to the multiplication of the neighbor potentials
to the pairwise matrix in Equation (12). It results in marginaliz-
ing out the variables xk . The word “sent” is used here because
marginalization is an inference mechanism which is interpreted
in the context of BP as sending messages. Marginalization being
performed, the resulting terms are multiplied to the local potential
φA( xi). This sequence of operations allows the local likelihood
p( xi|MB( xi) , w) to be computed at node xi. The whole process is
repeated at each of the labeled nodes to complete the calculation
of the pseudo-likelihood; this corresponds to the outer product in
Equation (12). Note that this overall process only requires a sub-
set of nodes to be labeled. Then, the algorithm is able to exploit
the information provided by the neighborhood independently of
whether neighbor nodes are labeled. This is in contrast to the
standard MPL approach which requires all of the nodes to be
labeled.

potential matrix, that is, independent of the observations
unlike what is shown in the CRF definition in Equation (4).
Section 5.2 also presents an approach by which the pairwise
potentials can be made dependent on the observations. The
learning procedure remains the same but the term fI ( z, x)
in Equation (4) plays the role of a switch (implemented as a
classifier) which allows the use of several pairwise matrices
and leads to a more accurate modeling of the network links.

4. From Laser Scans to Conditional Random
Fields

This section describes how the graph structure of a CRF can
be generated from laser data. Each node of the resulting net-
work corresponds to a laser return whose hidden state cor-
responds to object types: car, trunk, foliage, people, wall,
grass and other (the class “other” representing any other
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Fig. 5. (a) Graphical model of a chain CRF for single time slice object recognition. Each hidden node xi represents one (non-out-
of-range) return in a laser scan. The nodes zi represent the features extracted from the laser scan and the corresponding image. (b)
Graphical model of the spatio-temporal CRF. Nodes xi,j represent the ith laser return observed at time j. Temporal links are generated
between time slices based on the ICP matching algorithm.

type of object). These classes were chosen because they
cover the set of typical objects encountered in the datasets
used in this paper. The choice of classes is task specific, e.g.
for the task of identifying moving objects the classes chosen
would be cars, pedestrians and bicycles (Katz et al. 2008a).

This section is organized according to the increasing
complexity of the presented networks. The representation
of spatial relationships is first introduced by modeling sin-
gle laser scans as chain CRFs. Then, consecutive scans are
connected according to their alignment to model temporal
relationships and effectively implement operations such as
filtering and smoothing.

4.1. Spatial Reasoning

CRFs were selected as the basis for the proposed model
owing to their ability to encode spatial and temporal depen-
dencies in the classification process. Spatial dependencies
come from the natural organization of the laser data into
clusters of returns: spatially close samples are likely to have
the same label. Temporal dependencies come from overlap-
ping observations performed at successive times: samples
generated by the same object and acquired at successive
times are likely to be dependent. In the context of a CRF
network, these two types of dependencies are represented
by two sets of links.

In a given laser scan, spatial dependencies can be rep-
resented by the CRF model displayed in Figure 5(a). This
model is a chain network connecting the successive returns
in the scan. Laser returns which are separated by more
than a few meters from each other are not likely to be
dependent. As a result, network links are instantiated only
between returns separated by a distance inferior to a cer-
tain threshold. In our implementation, this threshold was set
to 1 m.

By performing probabilistic inference, the classes of the
laser returns connected in the model are jointly estimated.
Local observations zi are passed onto each node via the
association potentials A and the resulting local estimates are
propagated in the network via the interaction potentials I.

Since this first type of network is a chain, inference is
exact and can be performed with BP (introduced in Sec-
tion 3.3). The tests with this model (Section 7) are per-
formed with fully labeled data to first verify performance
gains. Training is based on a standard CRF learning pro-
cedure: VEB (Liao et al. 2007). Experiments involving
the proposed semi-supervised MPL procedure and partially
labeled data are reported in Section 8.

4.2. Temporal Reasoning

Owing to the sequential nature of robotics applications, a
substantial amount of information can be gained by taking
into account temporal dependencies. Using the same ele-
mentary components of CRFs, i.e. nodes and links, we now
build a model achieving temporal smoothing in addition
to exploiting the geometric structure of laser scans. This
model is illustrated in Figure 5(b).

In this work, the links modeling the temporal dependen-
cies are instantiated such that they represent the associa-
tions obtained by the Iterative Closest Point (ICP) match-
ing algorithm (Zhang 1994). The resulting network con-
nects successive chain networks and is characterized by a
cyclic topology. This network models spatial correlations
via links connecting the nodes within one scan and tem-
poral correlations via links connecting the successive chain
networks.

Corresponding to different variants of temporal state
estimation, our spatio-temporal model can be deployed to
perform three types of inference:
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Fig. 6. Example of classification improvements obtained with a spatio-temporal CRF. (a) The estimates obtained with local classifica-
tion (i.e. using only the A functions in Equation (4)). (b) The estimates obtained using a CRF as the model displayed in Figure 5(b). The
right part of each figure shows a sequence of laser scans projected in a global frame. The units of the axes are meters. The estimates
are indicated by the color of each return: red for car and blue for other. The black links represent the temporal edges of the underlying
network. The left part of each figure displays the last image of the sequence as well as the projection in the image of the corresponding
laser returns. In the sequence used to generate this figure, a car is moving toward our vehicle and a cyclist is moving away from our
vehicle. Based on local classification (a), some of the returns are mis-classified since all of the returns associated to the cyclist should
be blue and all of the returns associated to the car should be red. Based on structured classification (b), almost all returns are classified
correctly.
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Fig. 7. Representation of a Delaunay CRF generated from urban data (the dataset is described in Section 7.1). The trajectory of the
vehicle is displayed in orange. Laser returns are assembled into a mesh by means of the Delaunay triangulation. Returns and triangulation
links are plotted in dark and light blue, respectively. For this display the maximum link length is set to 2 m instead of 50 cm as in the
deployed version of the system.

• Off-line smoothing: all scans in a temporal sequence
are connected using ICP. Loopy BP is then run in the
whole network to estimate the class of each laser return
in the sequence. During loopy BP, each node sends
messages to its neighbors through structural and tem-
poral links (vertical and horizontal links in Figure 5(b),
respectively).

• On-line fixed-lag smoothing: here, scans are added to
the model in an on-line fashion. To label a specific scan,
the system waits until a certain number of additional
scans become available. It then runs loopy BP which
combines past and future observations to estimate the
network’s labels.

• On-line filtering: in this case the spatio-temporal model
includes scans up to the current time slice result-
ing in an estimation process which integrates prior
estimates.

An example of on-line fixed-lag smoothing is presented
in Figure 6. It can be seen in this figure that the sets of nodes
corresponding to the car and the cyclist are classified cor-
rectly when a CRF is used to integrate spatial and temporal
information. The estimates given by local estimation, that
is, estimation which does not take into account the infor-
mation provided by the network links, are only partially
correct.

Since spatio-temporal networks contain cycles, inference
is based on loopy BP and is as a result only approximate.
Alternatives to approximate techniques are discussed in
Section 5.3. The tests with this model (Section 7) are per-
formed with fully labeled data to first verify performance
gains. Training is based on a standard CRF learning pro-
cedure: VEB (Liao et al. 2007). Experiments involving
the proposed semi-supervised MPL procedure and partially
labeled data are reported in Section 8.

5. 2D Semantic Mapping

We now show how a larger scale CRF network can be
built to generate a semantic map. The proposed map build-
ing approach requires as an input a set of already aligned
2D laser scans. In our implementation, the ICP algo-
rithm was used to perform scan registration. However, in
spatially more complex datasets containing loops, consis-
tently aligned scans can be generated using various existing
SLAM techniques (Williams 2001; Thrun et al. 2005; Bosse
and Zlot 2008).

In this section, we present three types of CRFs which
will be compared to better understand how to model spatial
dependencies. We explain how the three different models
can be instantiated from aligned laser data and indicate
which inference and learning techniques are used in each
case. As in the previous models, the hidden states represent
the object types of the laser returns.

5.1. Delaunay CRF

In this first type of network, the connections between
the nodes are obtained using the Delaunay triangulation
procedure (De Berg et al. 2000) which efficiently finds a
triangulation with non-overlapping edges. The system then
removes links which are longer than a pre-defined thresh-
old (50 cm in our application) since distant nodes are not
likely to be strongly correlated. An example of Delaunay
CRF graph is shown in Figure 7.

Since a Delaunay CRF contains cycles, inference is per-
formed with loopy BP. To train a Delaunay CRF, the semi-
supervised version of MPL learning detailed in Section 3.6
is used.

Structured classification as performed by CRFs should
improve on classification results since neighborhood
dependencies are accounted for by interaction potentials.
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However, as will be illustrated by the experimental results,
the Delaunay CRF does not in fact improve the classifica-
tion by much. This is due to spatial correlation modeling
being too coarse. In the Delaunay CRF, the terms φI in
Equation (12) are learned as a constant matrix instantiated
at each of the links. This gives the network a smoothing
effect on top of the local classification. Since all of the
links are represented with the same matrix, only one type
of node-to-node relationship is encoded. In our application,
the learning results in a pairwise matrix close to the iden-
tity matrix which means that it models the following type
of correlation: “two neighbor nodes are likely to have the
same label”. While this type of link may be appropriate for
modeling a single scan or very structured parts of the envi-
ronment, it may over-smooth the estimates in areas where
the density of objects increases.

5.2. Delaunay CRF with Link Selection

To model more than one type of node-to-node relationship,
a second type of network is introduced in which interaction
potentials fI are function of the observations. This means
that the function fI in Equation (4) is now modeled while it
was not used in the previous types of networks. In particu-
lar, it implements a Logitboost binary classifier which plays
the role of a switch and allows different pairwise matrices
to be used to represent the network links.

Depending on the output of the interaction potential fI

(the Logitboost binary classifier) the pairwise potential φI

takes on different values, that is, the value of fI dictates
the selection of one pairwise matrix amongst a set of them.
In this way, the type of pairwise relationship instantiated is
changed depending on the observations at the two ends of a
link.

The Logitboost binary classifier estimates the similarity
of two nodes and is trained using the difference of obser-
vations dij = |zi − zj| between the two nodes i and j at the
ends of a link. The operator | · | refers to the absolute value
and is applied to each dimension of the vector. Here dij is
given the label 1 if the two nodes have the same label, oth-
erwise it is given the label 0. The training of this classifier is
performed before running MPL learning, as is done for the
Logitboost classifier modeling the association potential A.
Since this second type of network contains loops, inference
is also performed using loopy BP.

As will be shown by the experimental analysis in Sec-
tion 8.2, the accuracy of this second type of network
improves over local classification which confirms our anal-
ysis of the role played by network links: link instantia-
tion must be determined on a case-by-case basis not to
over-smooth the estimates. This analysis will be further
developed in Section 9.

5.3. Tree CRF

The previous two types of networks contain cycles, which
implies the use of an approximate inference algorithm. We
now present a third type of network which is cycle free.

To design non-cyclic networks we start from the follow-
ing observation: laser returns in a scan map are naturally
organized into clusters. These clusters can be identified
by analyzing the connectivity of the Delaunay graph and
finding its disconnected sub-components. Disconnected
sub-components appear when removing longer links in the
original triangulation. In Figure 8, the extracted clusters are
indicated by green rectangles. The Delaunay triangulation
is used here to cluster the data which leads to the defini-
tion of a graph. Edges could also be defined using k-nearest
neighbors or by connecting all of the neighbors within a
fixed radius.

Once the clusters are identified, the nodes of a particular
cluster are connected by a tree of depth one. To accom-
plish this, a root node is instantiated for each cluster and
each node in the cluster becomes a leaf node. The root node
does not have an explicit state. From the point of view of
BP, it is neutral since its local potential is maintained uni-
form. Such a root node has in fact no physical meaning but
simply allows a tree structure to be created: it provides a
node which all of the cluster node can attach to. This results
in a tree-like topology which is cycle free and, as a con-
sequence, permits the use of an exact inference technique.
With this third type of network, BP is used for inference.
A tree CRF does not encode node-to-node smoothing but
rather performs smoothing in a whole cluster at once. The
trees associated with the clusters in Figure 8 are represented
by green volumes. Computing the minimum spanning tree
of the points in each cluster would be another way to build
trees but the computational cost would be higher, of the
order of O( V log E), where V is the number of points or
vertices and E the number of edges (Cormen et al. 2001).
The proposed approach has a complexity of O( V ).

The possibility of using exact inference is a strong advan-
tage since in the case of approximate inference (based
on loopy BP for example) the convergence of the algo-
rithm is not guaranteed. As suggested by Murphy et al.
(1999), while convergence of loopy BP in cyclic net-
works is not proven, it can be checked experimentally.
To evaluate the convergence of the inference procedure
in the two previous networks, an empirical convergence
analysis is presented in Section 8.5. The tree CRFs are
learnt with the semi-supervised MPL approach proposed in
Section 3.6.

6. Features

The CRF model used in this work as defined in Equation (4)
involves the feature functions fA and fI . This section pro-
vides details of the features generated by the function fA.
As discussed in the previous section, fI is either not used
(for instance, in the cases of Delaunay CRFs without link
selection and tree CRFs) or implemented as a Logitboost
binary classifier (as in the case of Delaunay CRFs with link
selection).

For clarity, in this section the output of fA will be referred
to as f. Here f is a high-dimensional vector computed for
each laser return in a scan. Its dimensionality is 1,470.
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Fig. 8. Representation of a tree CRF in one region of a graph generated from data (the same scene as shown in Figure 7). The trajectory
of the vehicle is displayed in orange. Laser returns are first assembled into a mesh by means of the Delaunay triangulation. Returns and
triangulation links are plotted in dark and light blue, respectively. By analyzing the connectivity structure of the graph in blue, clusters
of returns are extracted. Identified clusters are indicated by the green rectangles. Once the clusters of returns have been formed, the
triangulation links are disregarded. A root node is then created for each cluster and linked to all of the returns in the clusters. The root
nodes are plotted as green nodes above the ground. For clarity all of the pairwise connections between the root nodes and the nodes in
the corresponding cluster are not displayed. However, the overall tree structures are represented by the volume materialized with the
green edges.

It results from the concatenation of geometric and visual
features:

f = [fgeo, fvisu]. (15)

Geometric features are described first. We then show how
visual features can be extracted via registration of the laser
data with respect to the imagery. Finally, we explain how the
use of Logitboost allows the selection of effective features
for classification.

The offset between the positions of the laser and the cam-
era on the vehicle generates projection artifacts (Douillard
2009). A simple heuristic is applied to filter out returns
which are potentially mis-projected. This heuristic consists
in working through the projected scan, from the far right to
the center of the image. We only keep the returns which
are closer to the center than the previous returns in the
scans. A second pass is run from the left to the center of
the image. The selected returns form a scan whose projec-
tion in the image is concave, which has the effect of filtering
out projection artifacts.

6.1. Laser Features

Geometric features capture the shape of objects in a laser
scan. The geometric feature vector computed for one laser
return has a dimensionality of 231 and results from the con-
catenation of 38 different multi-dimensional features. Only
the features which are the most useful for classification are
presented here. In Section 6.3, it is explained how features

can be ranked according to their usefulness. Some of these
38 features are as follows:

fgeo = [
fnAngle, fminAngle, fcSplineFit, fcEigVal1, fmaxFilter, . . .

]
.

(16)

The features fnAngle and fminAngle respectively refer to
the norm and the minimum of a multi-dimensional angle
descriptor fangle which has been designed for this applica-
tion. Its kth dimension is computed as follows:

fangle( k) = |∠ (ri−k − ri, ri+k − ri)| , (17)

where ∠( a, b) represents the angle formed by two vectors a
and b; in our implementation, an angle is expressed modulo
π . The vector ri refers to the 2D position of the ith return
in the scan being processed, and k varies from −10 to +10.
The dimensionality of both fnAngle and fminAngle features is
one. In the various models learned across the experiments,
features computed from the descriptor fangle were amongst
the best for the recognition of tree trunk and pedestrian
classes. In these two cases, features capture typical curvi-
linear shapes when, for example, the scan hits these objects
at about 1 m above the ground.

The features fcSplineFit and fcEigVal1 characterize the shape
of a cluster of returns. Clusters are extracted within one scan
based on a simple distance criteria: returns closer than a
threshold (we used 1 m in our applications) are associated
with the same cluster. Based on the identified clusters, var-
ious quantities are computed. Feature fcSplineFit is obtained
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as the error of the fit of a spline to the curve formed by
the cluster of 2D returns. Feature fcEigVal1 is the largest
eigenvalue of the covariance matrix describing the cluster.
While not being ranked amongst the most important fea-
tures, cluster-based features are useful in classifying all of
the seven classes considered in this work. Note that all of the
returns within one cluster receive the same cluster features.

The feature fmaxFilter is obtained as the maximum
response of a filter run in a window centered on a given
return. This filter is essentially a low-pass discrete filter pro-
cessing a scan represented as a sequence of angles. This
filter provides a multi-dimensional representation whose
various dimensions have proven useful in detecting the class
car and the class pedestrian.

6.2. Vision Features

A CRF learned with a Logitboost-based algorithm can inte-
grate both geometric information and any other type of
data, in particular, visual features extracted from monoc-
ular color images. Visual features are extracted as follows.
A ROI is defined around the projection of each laser return
in the image and a set of features is computed within this
ROI. The parameters required to perform the projection
are defined through the camera laser calibration procedure
developed by Zhang and Pless (2004). The size of the ROI is
changed depending on the range of the return. This provides
a mechanism to deal with changes in scales across images.
It was verified that the use of size varying ROIs improves
classification accuracy by 4%. Examples of ROIs generated
by the system are shown in Figure 9.

To obtain a visual feature vector fvisu of constant dimen-
sionality despite size varying ROIs, vision features are
designed which are independent of patch size. This is
achieved by using distribution-like features (e.g. a his-
togram with a fixed number of bins) and whose dimension-
ality is constant (e.g. equal to the number of bins in the
histogram). A larger ROI leads to a better sampled distri-
bution (e.g. a larger number of samples in the histogram)
while the actual feature dimensionality remains invariant.

The overall visual feature vector fvisu associated with
each return has a dimensionality of 1,239 and results from
the concatenation of 51 multi-dimensional features com-
puted in the ROI. Only the most useful subset of features
are described here. The presentation follows the ranking of
the features obtained as explained in Section 6.3:

fvisu = [
fpyr, fhsv, frgb, fhog, fhaar, flines, fsift, . . .

]
. (18)

The feature fpyr contains texture information encoded
as the steerable pyramid (Simoncelli and Freeman 1995)
coefficients of the ROI as well as the minimum and the
maximum of these coefficients. These extrema are use-
ful in classifying cars which from most point of views
have a relatively low texture maximum due to their smooth
surface.

The features fhsv and frgb contain a 3D histogram of the
RGB and HSV data in the ROI, respectively. A 3D his-
togram is built as follows. The RGB or the HSV space

defines a 3D space which is discretized to form a 3D grid.
Each cell of the grid is a bin in the histogram. Based on the
RGB or HSV coordinates of a pixel, a sample is added to the
appropriate bin. HSV and RGB histograms were selected in
the representation of each of the seven classes. On average,
HSV histogram feature received a better rank than RGB-
based features. This confirms the analysis made in various
studies (Douillard 2009). An example of RGB histogram is
shown in Figure 1.

The features fhog are histograms of gradients (see http://
www. robots. ox. ac. uk/∼vgg/research/caltech/phog.html).
These features are selected by the learning algorithm for the
modeling of the classes car, pedestrian and grass.

The feature fhaar contains Haar features computed in the
return’s ROI according to the integral image approach pro-
posed in (Viola and Jones 2004). Haar features are useful in
classifying the classes tree trunk and foliage.

The feature flines contains a set of quantities des-
cribing the lines found by a line detector (see http://www.
cs.uiuc.edu/homes/dhoiem/) in the ROI. These quantities
include the number of extracted lines, the maximum length
of these lines and a flag which indicates whether the line
of maximum length is vertical. These features have been
useful in classifying all of the seven considered classes.

The feature fsift contains the Sift descriptor (Lowe 2004)
of the ROI’s center as well as the number of Sift features
found in the ROI. Sift features were selected during the
training of various models to represent the classes grass and
other.

6.3. Feature Selection and Dimensionality
Reduction

The learning procedure described in Section 3.6 is based
on a version of Logitboost which uses decisions stumps as
weak classifiers. With the latter algorithm, the dimensions
of the feature vector can be ranked according to their abil-
ity to discriminate between the various classes. This ranking
is obtained once the algorithm has processed each dimen-
sion of the feature vector. For each dimension, it attempts to
separate two classes based on a simple threshold. Once the
threshold has been computed, the algorithm estimates the
quality of the separation provided by this threshold. This is
referred to as the quality estimate qk , where k is the index of
the associated dimension. Once the algorithm has inspected
all dimensions of the feature vector, it selects the dimension
associated with the best qk and augments the model accord-
ingly. This completes one iteration of Logitboost. The same
process is repeated until a pre-defined number of iterations
is reached. Effectively, the algorithm implements a greedy
search by finding the best feature at each iteration. This
results in an explicit ranking of the features where the rank
of a feature is the iteration at which it was selected. As illus-
trated in Sections 6.1 and 6.2, such a ranking is crucial in
the design process since it explicitly indicates which aspect
of the data is useful (it allows us to focus the design on
features improving the top of the ranking).
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Fig. 9. Examples of ROIs generated by the system. The ROIs are indicated by the yellow rectangles, the laser returns are indicated by
the yellow crosses at the center of the rectangles. It can be seen that the size of the ROI is decreased for longer ranges. As discussed in
Section 3.2, the fact that these ROIs overlap and generate feature vectors with an overlapping content is not a problem from the point of
view of a CRF. Since a CRF is globally conditioned on the set of observations, it can readily integrate the content of overlapping feature
vectors.

Feature selection as performed by Logitboost based on
decision stumps can also be seen as a dimensionality reduc-
tion procedure. One hundred rounds of Logitboost will
result in the selection of 100 dimensions of the original fea-
ture vector. This implies that during the testing phase only
these 100 selected features need to be computed allowing
real-time implementation; see Table 6 later in this article.
In addition, since the dimensions of the feature vector are
processed one at a time, no overall normalization of the fea-
ture vector is required which is an advantage with respect
to more standard dimensionality reduction techniques such
as those introduced by Fisher (1936), Hotelling (1933),
Roweis and Saul (2000), and Tenenbaum et al. (2000).

Another interesting aspect of Logitboost is linked to
its ability to process multi-modal data. Features computed
from an additional modality can be concatenated to the
overall feature vector in the same manner as laser and
vision features in Sections 6.1 and 6.2. The feature vector
in this sense plays the role of a proxy between the various
modalities and the learning algorithm.

7. Experimental Results: Spatial and
Temporal Reasoning

7.1. Experimental Setup

Experiments were performed using outdoor data collected
with a modified car traveling at a speed of 0–40 km h−1 on a

university campus and surrounding urban areas. The scenes
typically contain buildings, walls, cars, bushes, trees, and
lawns. Results are presented using two different datasets
to illustrate how the model can be applied to different
urban environments. One dataset was acquired in Sydney,
Australia, and will be referred to as the Sydney dataset.
The other was acquired in Boston, MA, USA and will be
referred to as the Boston dataset. Each of the two datasets
approximately corresponds to 20 minutes of logging with a
monocular color camera and 2D laser scanners. To acquire
the two datasets, different vehicles and different sensor
brands were used.

The evaluations of the various classifiers are performed
using K-fold cross-validation (K being either 5 or 10
depending on the experiments).

7.2. Sydney Dataset

In this first set of experiments we consider two classes: car
and other. Seven-class results are presented in Section 8.
Table 1 summarizes the experimental results in terms of
classification accuracy. The accuracies are given in per-
centages and computed using 10-fold cross-validation on
a set of 100 manually labeled scans selected in the Sydney
dataset. In this dataset every return is labeled.

For each cross-validation, different models were trained
with 200 iterations of VEB. This number of iterations is
an upper limit rather than a fixed number of rounds since
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Table 1. Classification Accuracy (%) for a Car Detection Problem
(Sydney Dataset)

Training set geo only visu only geo+visu geo+visu

Number of time 1 1 1 ∓10
slices in the model
CRF 68.9 81.8 83.3 88.1
Logitboost 67.6 81.5 83.2 ×

VEB modifies the model only if it can find a feature which
improves the accuracy. It keeps running until the prescribed
number of iterations but may, in effect, stop selecting fea-
tures before halting. Typically, in our application, VEB
stopped selecting features at about iteration 130.

VEB models were computed allowing learning of pair-
wise relationships only after iteration 100. It was found that
this procedure increases the weights of local features and
improves classification results.

The first line of Table 1 indicates the types of features
used to learn the classifier. Four different configurations
were tested: first using geometric features only, second
using visual features only, third using both geometric and
visual features, and fourth with geometric and visual fea-
tures integrated over a period of 21 times slices. The second
line of Table 1 indicates the number of time slices in the net-
work: “1” means that a network as presented in Figure 5(a)
was used; “∓10” refers to the classifier shown in Figure 5(b)
instantiated with 10 unlabeled scans prior and posterior to
the labeled scan.

Two types of classifiers were used: CRFs and Logit-
boost classifiers. While a CRF takes into account the neigh-
borhood information to perform classification, Logitboost
learns a classifier that only supports independent classifica-
tion, that is, which does not use neighborhood information.
This is equivalent to using only the A functions in Equa-
tion (4) and not modeling the term I. Logitboost is used here
for comparison purposes in order to investigate the gain in
accuracy obtained with a classifier that takes into account
the structure of the scan.

The first three columns of Table 1 show that classification
results are improving as richer features are used for learn-
ing. It can also be seen that the CRF models consistently
lead to slightly more accurate classification. In addition,
as presented in Section 4.2, a CRF model can readily be
extended into a spatio-temporal model. The latter leads to
an improvement of almost 5% in classification accuracy
(right-most column of Table 1). This shows that the pro-
posed spatio-temporal model, through the use of past and
posterior information, performs better. The cross in the bot-
tom right of the table refers to the fact that Logitboost does
not allow the incorporation of temporal information in a
straightforward manner.

To evaluate the difficulty of the classification task,
we also performed Logitboost classification using visual
Haar features, which results in the well-known approach
proposed by Viola and Jones (2004). The accuracy of this

approach is 77.09%, which shows that even the single time
slice approach (83.26%) outperforms the reference work of
Viola and Jones. The improvement in accuracy obtained in
our tests comes from the use of richer features as well as
the ability of a CRF to capture neighborhood relationships.

Figure 10 shows four examples of classification results.
It can be seen that the spatio-temporal model gives the best
results. While the Logitboost classifier tends to alternate
correct and incorrect classifications across one scan, the
ability of the CRF classifiers to capture the true arrange-
ment of the labels (that is, their structure) is illustrated
by the block-like distribution of the inferred labels. Fig-
ure 10(b) shows the three classifiers failing in a very dark
area of the image (right of the image). In the rest of the
image which is still quite dark, as well as in images with
various lighting conditions (Figures 10(a), 10(c) and 10(d))
the spatio-temporal model does provide good classification
results.

7.3. Boston Dataset

The comparisons between the different setups described in
Table 1 were also performed using the Boston dataset. The
corresponding results are indicated in Table 2 and were
obtained with five-fold cross-validation on a set of 400 man-
ually labeled scans. Each of these scans were fully labeled.
For this second set of tests, the classes of interest were also
car and other.

Figure 11 shows an example of image extracted from the
Boston dataset. The laser scanner used to acquire this data
is a Velodyne sensor (see http://www.velodyne.com/lidar/)
which is a 3D LIDAR (Light Detection and Ranging) unit
composed of 64 2D laser scanners positioned on the device
with increasing pitch angle. To perform this set of exper-
iments we used the data provided by 6 of these 64 lasers.
Unlike in the Sydney dataset, these lasers are downward
looking. Examples of scans generated by these six lasers
are displayed in Figure 11.

The six selected lasers are characterized by a slightly dif-
ferent pitch angle which allows networks to be built from
laser returns such as that displayed in Figure 11. While the
scan-to-scan links in these networks do not strictly corre-
spond to temporal links (since the Velodyne unit fires the
six lasers at the same time) these networks can be thought
of as belonging to the category “on-line filtering” described
in Section 4.2. Having six laser scanners looking down-
wards, each of them with a slightly larger pitch angle than
the previous one, is approximatively equivalent to using one
downward-looking sensor scanning at six consecutive time
steps. As a consequence, this setup provides networks of the
type “on-line filtering”.

The results in Table 2 show the same trends as Table 1.
As more features are added (moving from the left col-
umn to the right column of the table), the classification
accuracy increases. Classification accuracy is also increased
when using CRFs, which unlike Logitboost, enforces con-
sistency in the sequence of estimates. The value “−5” in the
right-most column refers to the “on-line filtering” networks
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Fig. 10. Examples of classification results. The laser returns are projected into the images and indicated by two markers. Each marker
corresponds to one class of object. The markers + in yellow corresponds to the class “car” and the marker ◦ in magenta corresponds to
the class “other”. The color of the bars above each return indicates the inferred label: red means that the inferred label is car and cyan
refers to the label other. The height of the bars represents the confidence associated with the inferred label which is obtained here as its
associated probability. The classifiers used to generate the different estimates are specified on the left.

Table 2. Classification Accuracy (%) for a Car Detection Problem
(Boston Dataset)

Training set geo only visu only geo+visu geo+visu

Number of time 1 1 1 −5
slices in the model
CRF 81.8 85.0 88.5 90.0
Logitboost 81.4 82.6 88.0 ×

which are built by connecting five unlabeled scans before
each labeled scan. As with the Sydney dataset, temporal
information further improves the performance.

It is interesting to note that the classification accuracies
achieved on this second dataset for the car detection prob-
lem are similar to those achieved on the Sydney dataset:
the overall accuracy is about 90% in the Boston dataset and
88% in the Sydney dataset. The resolution of the imagery as
well as the density of the laser returns were quite different
between the two datasets: the image size is [240×376] pix-
els in the Boston dataset and [756 × 1,134] pixels in the

Sydney dataset; on average 300 laser returns were avail-
able per image in the Boston dataset against 100 in the
Sydney dataset. In spite of these differences, the proposed
model provides comparable results which demonstrates its
applicability to different types of lasers and cameras.

With respect to the first experiments, the lower resolu-
tion of the vision data and the larger number of returns
available per image lead to a vision classifier with an accu-
racy (82.6%) only slightly above that obtained with the laser
classifier (81.4%). In the Sydney dataset, a much richer
imagery resulted in 13.9% difference in accuracy between
the vision-only and the laser-only classifiers. However, in
both cases, the model is able to exploit the best of each
modality to maintain overall accuracy. This is made pos-
sible by the Logitboost algorithm which selects the most
discriminative features during learning.

8. Experimental Results: 2D Semantic Maps

This section presents the classification performance
obtained with the three models introduced in Section 5. For
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Fig. 11. An example image from the Boston dataset displayed with the associated projected laser returns (in yellow). A part of the CRF
network built from these laser returns is displayed in blue in the inset in the top left corner. The labeled scan is that forming the upper
side of the network. The image in this inset corresponds to a magnification of the area indicated by the arrow. This figure also illustrates
the low resolution of the image, notably with respect to the images in the Sydney dataset (see Figure 10).

Table 3. Characteristics of the Training and Testing Sets. These
Numbers are Averaged Over the 10 Tests used for Cross-
validation. The Number of Nodes does not Correspond to the
Number of Returns per Scan since Some Returns are Disregarded
when Creating the Delaunay Triangulation.

Length of Number of Number of nodes
vehicle scans total total
trajectory labeled labeled

Training set 2.6 km 3,843 67,612
72 5,168

Testing set 290 m 4,27 7,511
8 574

these three networks, the hidden state of each node ranges
over the seven object types: car, tree trunk, foliage, people,
wall, grass, and other (“other” referring to any other object
type). Results for local classification are first presented in
order to provide a baseline for comparison. All of the eval-
uations were performed using 10-fold cross-validation and
the models trained with the semi-supervised MPL learning
proposed in Section 3.6.

The characteristics of the training and testing sets aver-
aged over the 10-fold cross-validation sets are provided in
Table 3. The Sydney dataset was used for these experiments
since it contains horizontal 2D laser scans which can be
registered using ICP. The registration of downward looking
scans is a more complex problem (successive downward-
looking scans do not hit objects at the same location requir-
ing the use of a different approach or a full 3D ICP) preclud-
ing these mapping experiments using the Boston dataset.

Table 4. Local Classification: Confusion Matrix (Corresponding
Accuracy: 90.4%)

Inferred

Truth Car Trunk Foliage People Wall Grass Other

Car 1,967 1 7 10 3 0 48
Trunk 4 165 18 0 4 0 11
Foliage 25 18 1,451 0 24 0 71
People 6 2 2 145 0 0 6
Wall 6 6 21 0 513 1 39
Grass 0 0 1 1 1 146 4
Other 54 5 123 3 24 0 811

8.1. Local Classification

A seven-class Logitboost classifier is learned and instanti-
ated at each node of the network as the association potential
A (Equation (4)). Local classification, that is classifica-
tion which does not take neighborhood information into
account, is performed and leads to the confusion matrix pre-
sented in Table 4. This confusion matrix displays a strong
diagonal which corresponds to an accuracy of 90.4%. A
compact characterization of the confusion matrix is given
by precision and recall values (for a definition of precision
and recall values, see Douillard (2009)). These are pre-
sented in Table 5. Averaged over the seven classes, the clas-
sifier achieves a precision of 89.0% and a recall of 98.1%.

To obtain these results an additional set of features was
used. The original set f = [fgeo, fvisu] described in Section 6
was augmented with the set fbinary. The latter features are
generated with Logitboost binary classifiers. For each of
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Table 5. Local Classification (%): Precision and Recall

Car Trunk Foliage People Wall Grass Other

Precision 96.6 81.7 91.3 90.1 87.5 95.4 79.5
Recall 97.9 99.3 96.4 99.7 98.5 99.9 95.4

the seven classes, a binary classifier is learned using the
set {f}. This is then run on the training and testing sets and
produces a one-dimensional binary output. This output is
an estimated class label but is used here as an additional
feature concatenated to f. The overall operation results in a
f vector augmented with seven binary-valued dimensions.
For this experiment such features are key to the perfor-
mance of the classifier, resulting in an increase in accu-
racy of 8.4%. The critical role of the fbinary features in the
Sydney dataset is related to the resolution of the imagery.
The Sydney dataset contains the images with the highest
resolution which significantly improves local classification.
Given this amount of visual data, each binary classifier can,
in the ROI associated with a laser return, find the infor-
mation specific to a class. When the image resolution is
low, as in the Boston dataset, the information content of
a ROI is blurred and the binary features do not make a
difference.

8.2. Delaunay CRF Classification

8.2.1. CRF Without Link Selection The accuracy achieved
is 90.3% providing no improvements on local classifica-
tion. As described in Section 5.2, spatial correlation mod-
eling is too coarse, consisting of only one type of link
which cannot accurately model the relationships between
all neighbor nodes. Consequently the links represent the
single predominant relationship in the data. In the Sydney
dataset this neighborhood relationship is “neighbor nodes
have the same label”. The resulting learnt links thus enforce
this “same-to-same” relationship across the network lead-
ing to over-smoothed class estimates. To verify that a better
modeling of the CRF links improves the classification per-
formance, we now present results generated by Delaunay
CRFs equipped with link selection capabilities.

8.2.2. CRF With Link Selection The accuracy achieved by
CRF models with link selection is 91.4%, a 1.0% improve-
ment in accuracy. Since the local accuracy is already high,
the improvement provided by the network is better articu-
lated by the reduction in the error rate of 10.4%. This result
validates the claim that a set of link types encoding a vari-
ety of node-to-node relationships is required to exploit the
spatial correlations in the laser map.

8.3. Tree-based CRF Classification

The two types of networks evaluated in the previous sec-
tion contain cycles and require the use of an approximate
inference algorithm. The tree-based CRFs presented in Sec-
tion 5.3 avoid this issue and allow the use of an exact
inference procedure using BP.

Table 6. Computation Times Averaged Over the 10 Tests Involved
in Cross-validation

Feature Extraction Learning Inference
(per scan) (training set) (test set)

Delaunay CRF 1.2 s 6.7 min 1.5 min
(with link selection)
Tree-based CRF 1.2 s 1.5 min 10.0 s

This tree network achieves an accuracy of 91.1% which
is slightly below the accuracy given by a Delaunay CRF
with link selection while still improving on local classifica-
tion. However, the major improvement brought by this third
type of network is in terms of computational time. Since the
network has the complexity of a tree of depth one, learning
and inference, in addition to being exact, can be imple-
mented very efficiently. As shown in Table 6, a tree0based
CRF is 80% faster at training and 90% faster at testing than
a Delaunay CRF. Both network types use the same image
and scan features which are extracted in 1.2 seconds on
average. These quantities are based on a Matlab implemen-
tation run on a 2.33 GHz machine. As shown in Table 3, the
test set contains 7,511 nodes on average which suggests that
the tree-based CRF approach is in its current state close to
real time, with feature extraction being the main bottleneck.

8.4. Map of Objects

This section presents a visualization of some of the map-
ping results. It follows the layout of Figure 12 in which the
vehicle is traveling from right to left.

At the location of the first inset, the vehicle is going up a
straight road with a fence on the left and right and, from the
foreground to the background, another fence, a car, a park-
ing meter and a bush. All of these objects were correctly
classified (with the fences and the parking meter identified
as “other").

In the second inset, the vehicle is coming into a curve
facing a parking lot with a bush on the side of the road.
Four returns seen in the background of the image are mis-
classified as “other". The class “other" regularly generates
false positives due to the large number of training samples
in this class. Various ways of re-weighting the training
samples or balancing the training set were tried without
significant improvements.

On reaching the third inset, a car driving in the opposite
direction came into the field of view of our vehicle’s sen-
sors. The trace left by this car in the map appears in the
magnified inset as a set of blue dots along side our vehicle’s
trajectory. Dynamic objects are not considered explicitly in
this work. They are assumed to move slowly enough for ICP
to produce correct registrations. In the campus area where
this data was acquired, this assumption has proven to be
valid. In spite of a few mis-classifications in the bush on
the left side of the road, the pedestrians on the footpath as
well as the wall of the building are identified correctly.

Entering the fourth inset, the vehicle is facing a second
car which appears in the map as a blue trace intersecting the
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Fig. 12. Visualization of 750 m long portion of the estimated map of objects which has a total length of 3 km. The map was generated
using the tree-based CRF model. The legend is indicated in the bottom left part of the 2D plane. The color of the vehicle’s trajectory is
specified in the bottom right part of the same plane. The coordinates in the plane of the map are in meters. Each inset along the trajectory
is magnified and associated with an image displayed with the inferred labels indicated by the colors of the returns. The location of the
vehicle is shown in each magnified patch with a square and its orientation indicated by the arrow attached to it. The laser scanner
mounted on the vehicle can be seen in the bottom part of each image.

vehicle’s trajectory. Apart from one misclassified return on
one of the pedestrians, and one misclassified return on the
tree in the right of the image, the inferred labels are accu-
rate. Note that the first right return is classified correctly
illustrating the accuracy of the model at the border between
objects.

An additional set of visualizations of the classifica-
tion results generated by a semantic map is provided in
Figure 13.

8.5. Convergence Analysis of Inference

As discussed in Section 3.2, convergence in graphs with
cycles is not guaranteed but can be checked experimentally.
In this section, the converge of loopy BP is explored. The
Boston dataset was used for this last set of experiments.
The behavior of loopy BP in a cyclic network was analyzed
using a set of 400 manually labeled scans and five-fold
cross-validation.
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Fig. 13. Examples of classification results extracted from a semantic map such as that shown in Figure 12. Each image presents
estimated class labels which are indicated by the colors of the laser returns. The legend is indicated at the bottom of each image. (a)
Apart from the few blue returns on the right and the following red return, the classification is accurate. (b) The pedestrian on the right
as well as the other pedestrian in the background on the left are identified correctly. The rest of the classification is correct. (c) The
wall in the background is correctly classified. The other inferred labels are correct. (d) The estimation of the foliage on the left and the
pedestrian on the right is correct. The other estimates are also correct. (e) The overall classification is correct. When zooming into the
left of the image, it can be checked that the red return between the yellow returns corresponds to the gap between the leg and the arm of
the person; as a result, these inferred labels are correct. (f) From left to right, the vegetation, the cars, the bush, the pedestrians and the
fence are classified correctly (apart from one green return on the fence).

The evaluation is summarized in Figure 14. Inference
is performed in each of the networks involved in cross-
validation with a varying number of loopy BP iterations.
The accuracies provided correspond to the classification of
the two classes car and other. The networks used for these
tests are those described in Section 7.3.

The left plot of Figure 14 shows that on average loopy
BP converges after about five iterations where the accuracy
reaches a plateau and is higher than the accuracy obtained
with local classification. The right plot of Figure 14 shows
that, as expected, the inference time increases linearly with
the number of loopy BP iterations.
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Fig. 14. Empirical analysis of the convergence of loopy BP. On the left, classification accuracies obtained on a car detection problem are
plotted as a function of the number of loopy BP iterations. On the right, the corresponding computation times are shown. The red plots
refer to local classification. All of the points in the plots are averaged over five-fold cross-validation and correspond to a car detection
problem.

Fig. 15. A simple two-node network. Here φA1 and φA2 are the
local potentials on node 1 and 2, respectively, m12 and m21 are
the messages sent across the link during BP, and φI is the pairwise
potential matrix representing the link. The functions φA and φI are
defined in Equations (2) and (3), respectively.

9. Discussion

This section discusses the effect of the pairwise connections
as encoded by the proposed CRF models. After introducing
the analysis via a thought experiment, the limitations related
to smoothing behaviors are discussed. The benefit of the
proposed model is also to allow the type of analysis which
is now developed thus providing insights into the modeling
of spatio-temporal correlations.

9.1. A Thought Experiment

Assume that a network contains only two nodes and assume
that this network is a classifier so that the states of the
nodes belong to a discrete set. The two nodes are linked
and this two-node network contains only one link, as shown
in Figure 15.

Recall that the pairwise potential (φI in Figure 15), which
quantifies the relationship represented by the link, is learnt
as one or several matrices. Assume for now that the model
contains only one pairwise matrix. The size of this matrix
is L × L, where L is the dimensionality of the state space,
here, the number of classes. Performing inference with BP
involves multiplying the local potential of each node by the
pairwise potential matrix. This is illustrated in Figure 15.

The experiment consists of defining the relationship a
link should encode given that the true state of each node
is known. Two cases are considered: (1) the two nodes have
the same state; (2) the two nodes have a different state. In
the context of this thought experiment, defining the true
relationship between two nodes (that is, the relationship a
link should encode) is equivalent to solving the following
system of linear equations:

φA1 = φIL × φA2 ,

φA2 = φIL × φA1 , (19)

where the unknowns are the elements of the matrix φIL

(encoding the true relationship between the nodes 1 and 2),
and the index L refers as above to the size of the state space.
The φA vectors are as in Table 7: they contain only zeros
except in the dimension corresponding to the label of the
node. Note that solving this system is in general not part of
a learning or an inference procedure. However, the mecha-
nism encoded by each of these equations corresponds to the
propagation of messages in BP (see Equation (5)), which
makes this discussion applicable to system using BP for
inference.
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Table 7. Examples of Possible φI3 . Here label1 and label2 Refer
to the True Label or State of Nodes 1 and 2, Respectively; φA1 and
φA2 Refer to the “Ideal” Local Potential on Nodes 1 and 2, “Ideal”
in the Sense That They are Non-zero Only on the Dimension Cor-
responding to the True Label. The Various φI3 Matrices are Such
That φA1 = φI3 × φA2 and φA2 = φI3 × φA1 , That is, They Verify
Equations (19). This Table Illustrates the Fact That When L ≥ 3,
the Value of the Pairwise Matrix φIL becomes Dependent on the
State of the Two Connected Nodes.

label1 label2 φA1 φA2 φI3

1 2

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
0
1
0

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦

⎡

⎣
0 1 1
1 0 0
1 0 0

⎤

⎦

1 3

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

...
...

The first scenario involves two nodes with the same state.
In this case, the true relationship between the two nodes is
encoded by an identity matrix. It can be readily verified that
the identity matrix satisfies the system of Equations (19).

In the second scenario, the two nodes have a different
state. First consider the case in which the size of the state
space is two, that is L = 2. The pairwise matrix which
encodes the true relationship between the two nodes is then

φI2 =
[

0 1
1 0

]
. (20)

It can be verified that this matrix satisfies Equations (19).
Since the φIL matrix is symmetric, the number of

unknown is L( L + 1)/2. If all of the diagonal terms
take the same value, the number of unknown becomes
L( L + 1)/2−( L − 1). This last term is equal to two when
L = 2. This means that number of unknowns is two for
a system of two equations and confirms that the set of
equations describing φIL can be solved uniquely in this case.

When L = 3, the true relationship between the two nodes
becomes dependent on the state of each node. That is, a
different matrix φI3 needs to be used for each pair of labels
{ label1 , label2 }. Table 7 illustrates this point. In addition,
when the pair of labels { label1 , label2 } is fixed, several φI3

matrices satisfy Equations (19).
When L ≥ 3, there are more unknowns than equations;

the number of elements in φIL increases with L but there are
still only two equations. This means that the system of lin-
ear equations, Equations (19), have multiple solutions and
several φIL matrices can be proposed in Table 7.

The outcome of this simple thought experiment is the fol-
lowing: as L becomes larger, a growing set of φIL matrices is
required to encode the true relationship between two nodes.
This means that accurately linking network nodes requires
a number of relationships to be modeled.

Some of the evaluations presented in the previous sec-
tions involved seven classes and can be used here to
illustrate the conclusion we have just formulated. A link

between two different nodes may represent a transition from
the class car to the class foliage, or from the class trunk
to the class person, and so on. An accurate model would
need to represent all of these types of links, each one being
encoded with one φI7 matrix.

9.2. Pairwise Potentials as Smoothers

The strategy consisting in using a limited number of link
types is an alternative to the problem of accurate link
instantiation. Pushed to the extreme, this strategy results in
using only one type of pairwise potential across the whole
network.

In this paper, this problem has been partially avoided
through various strategies. In Section 4.1, only laser returns
spatially close are linked leading to models representing
only one type of similarity link. In Section 4.1, temporal
links given by the ICP algorithm are all modeled by the
same pairwise potential, again avoiding the link instantia-
tion problem. In Section 8.2, the Delaunay CRF with link
selection also represents only similarity relationships.

The pairwise relationships employed in this study effec-
tively behave as smoothers. “Smoothers” can be understood
by analogy with interpolation procedures. When a linear
interpolation algorithm is run over a grid, the resulting val-
ues in the grid are a weighted combination of the values in
a local neighborhood. Using network links encoding simi-
larity produces the same smoothing effect. The smoothing
effect at one time slice for models used in Section 7.2 is
illustrated in Figure 16.

Recognizing the smoothing behavior of spatio-temporal
networks helps to understand the benefits of such networks.
Figure 17 shows the network accuracy as a function of the
local classification accuracy. An interesting behavior can be
noticed: the accuracy of the network only slightly improves
on local accuracy which shows that the local accuracy
drives the network accuracy.

This last remark indicates the fundamental importance of
local features. Local features are what allow the classifier to
achieve most classification accuracy. This is confirmed by
the results presented in Section 8.1: an accuracy of 91%
was achieved after local classification; this accuracy was
improved by about 2% after running inference in the net-
works. It is also confirmed by the simulation presented in
Figure 17 and the display of Figure 16.

10. Conclusion

A 2D probabilistic representation for multi-class multi-
sensor object recognition has been presented. This
representation is based on CRFs which are used as a flex-
ible modeling tool to automatically select the relevant fea-
tures extracted from the various modalities and represent
different types of spatial and temporal correlations.

Based on two datasets acquired in two different cities
with different sensors, eight different sets of results have
been presented. The benefits of modeling spatial and tem-
poral correlations were first evaluated on a car detection
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Fig. 16. Illustration of the smoothing effect provided by the one time slice networks tested in Section 7.2. Top row of images: classi-
fication before running BP. Bottom row of images: classification after running BP. All of the laser returns falling on the same objects
should have the same estimated labels (that is, same color) but some are mis-classified and are indicated in the top row by a yel-
low rectangle. After performing inference in the various networks, all of the mis-classifications are corrected. The corrected estimates
are indicated in the bottom row by a rectangle. BP allows each estimate to take into account the state of its neighbors and leads to
improved classification. This display illustrates that a smoothing process is at the core of the correction mechanism provided by joint
classification.

Fig. 17. Simulation of the accuracy gained by modeling pairwise relationships. The simulator uses chain networks such as that displayed
in Figure 3.6. Each node has a binary state. An observation o of a node is generated according to a binomial distribution: P( o = k) ∝
pk( 1−p)n−k , with n = 2 since the states are binary. The parameters p corresponds to the x-axis. The blue curve represents the measured
local accuracy which is equal to the accuracy of the set of observations {o}. The red curve is the accuracy obtained after feeding the
observations {o} to a chain network. For each value of p, the network model is trained with ML on a 1,000 node long network. The true
labels of this network are assigned by blocks of variable length to simulate some structure in the chain. The chain network is then tested
on a second network of equal length. BP is used to perform inference. This plot shows that above random, that is for p > 0.5, the bulk
of the accuracy is achieved by local classification since the red curve is above but close to the blue curve. It can also be seen that for a
local accuracy of 90%, this simulation predicts a network accuracy of 92%, which matches the results obtained in Sections 8.1 and 8.2.
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problem where an increase in accuracy of up to 5% was
measured.

Three different types of networks have been introduced
to build semantic maps. These were evaluated on a seven-
class classification problem where an accuracy of 91% was
achieved. The mapping experiments yielded some insight
into the smoothing role of pairwise links. It has been
demonstrated how over-smoothing can be partially avoided
by creating networks which automatically select the types of
links to be used. Computation times were evaluated show-
ing that the larger networks involved in our study are close
to being real-time requiring about 11 seconds for inference
on a set of 7,500 nodes. Finally, by means of an empirical
study, the convergence of the inference algorithm used in
cyclic networks has been verified. Convergence is in general
observed in about five iterations.

The discussion concluding this publication has des-
cribed the limitations of the proposed networks in terms
of their smoothing effect. The fundamental role of features
in achieving high classification accuracies has also been
highlighted.
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Notes
1. Note that another sensor setup is also used in Section 7.3

involving a 3D range scanner (a Velodyne sensor) and monoc-
ular color imagery. The corresponding set of experiments
demonstrate the applicability of the proposed framework to
3D data and as a consequence its applicability to the genera-
tion of full 3D semantic models.

2. The number of returns acquired by a 2D laser scanner over a
3 km long trajectory is larger than 7,500 (more details are pro-
vided in Table 3 later in the article). Here, 7,500 corresponds
to the average number of nodes in the testing sets generated
for 10-fold cross-validation.

3. This was, in fact, the first evidence pointing us to the analy-
sis developed in Section 9 which emphasizes the predominant
role of local features.

4. More evidence leading to the conclusions in Section 9 which
emphasize local features as opposed to network connections.

5. In particular, the computation of an additional set of weights
was implemented in the Logitboost algorithm. The latter mul-
tiply the original Logitboost weight of each sample in such
way that each class receives, on the average, the same mass.
This did not improve the classification results. The Boost-
ing technique developed by (Leskovec and Taylor 2003) for
unbalanced datasets is another alternative.
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