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1 100 Robots

We describe the development of Centibots, a framework for very large teams of
robots that are able to perceive, explore, plan and collaborate in unknown environ-
ments. The Centibots team currently consist of approximately 100 robots (Figure
1). The Centibots team can be deployed in unexplored areas, and can efficiently
distribute tasks among themselves; the system also makes use of a mixed initiative
mode of interaction in which a user can influence missions as necessary. In con-
trast to simulation-based systems which abstract away aspects of the environment
for the purposes of exploring component technologies, the Centibots design reflects
an integrated end-to-end system.

Fig. 1. 100 robots. Four of the robots are Pioneer IIs
with SICK laser range-finders. The rest are Amigo-
bots with sonars, a camera and a small PC on top. The
OOI is in the hand of one of the authors.

As part of DARPA’s Soft-
ware for Distributed Robotics
(SDR) project, the Centibots
were tested on a mapping and
search mission in a new, un-
known environment. This ex-
periment involved deployment
of Centibots in three successive
stages: (1) a mapping stage for
the coordinated exploration of
the environment while simulta-
neously constructing a very high
accuracy occupancy map using a
laser range finder; (2) a search
stage in which the environ-
ment is exhaustively searched
for a predefined object of inter-

est (OOI), chosen so that it could be easily distinguished within the environment by
its shape and its color; and (3) an intruder detection stage in which robots are dis-
tributed throughout the environment to “guard” the OOI by continuously searching
the environment for human intruders. This stage included recharging a portion of
the robots to prove the system could continue indefinitely.

Previous work has largely focused on isolated aspects of our system, including
multi-robot exploration [1], architecture [3], task allocation [12], coordination [9],



and human interaction [11]. Here we describe the integration of various technologies
to achieve an operational robot team, which was tested under rigorous conditions by
SDR’s outside evaluation team during a final demonstration. The main criteria of
the evaluation focussed on the effectiveness of the robot team in performing the
mapping and surveillance task (Sections 2.2 and 3.3).1

Our approach to multirobot coordination is significantly different between the
mapping phase and the subsequent search and surveillance. Mapping is performed
with a small number (1-5) of robots working completely autonomously, often out
of contact with the base station. Their interactions are tightly focussed on solving a
single task, exhaustively mapping an area in the shortest time. We developed spe-
cialized algorithms based on utility theory to coordinate the mapping robots, under
the condition of an unknown environment, intermittent communication and no cen-
tralized planner. In search and surveillance, a much larger number of robots ( � 100)
must be coordinated, and the tasking is more flexible, e.g., robots can be commanded
to watch over a given area. Here, issues of spatial reasoning, task distribution, re-
source allocation, and user interaction become much more important.

In the following sections, we describe the coordination strategy for mapping
and exploration, and give the results of the evaluation for this phase. We then give
an account of search and surveillance, along with their results.

2 Distributed Mapping and Exploration
In the mapping phase, multiple robots explore the environment in order to build
a map that can be used in the subsequent search and surveillance phases. We de-
veloped a decentralized system that goes beyond the state of the art in multi-robot
mapping in that it does not depend on reliable communication between robots and
makes no assumptions about the robots’ relative start locations.

2.1 Overview of Exploration System

Robot

Fig. 2. Robot path (gray) and links
among poses. 1m grid shown for size.

Multi-robot Mapping Our technique for
multi-robot mapping is based on a represen-
tation of local probabilistic constraints among
robot poses. These constraints arise from robot
motion (odometry) and matching laser range-
finder scans. Figure 2 shows a laser map along
with the trajectory of a robot (gray) and the con-
straint links (black). The trajectory also repre-
sents robot motion links. The optimal position
of the poses is the one that maximizes the poste-
rior probability of all the constraints. Although
the constraints are nonlinear, there are efficient
approximations that work well in practice [4, 7, 8]. Note the fine detail of the laser
scan map resulting from this optimization, showing even the thickness of the walls.

1 Two other teams, one led by SAIC and one by MIT, also underwent the same evaluation
process, but as of this writing we do not have access to their results for comparison.
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Fig. 3. Pose constraints before (left) and after (right) linking the start and end of a loop.

The constraint network is ideal for integrating map information with uncertain
alignment. Consider first the case of closing a loop: a robot returns to a position it
has previously visited, but accumulated error causes it to be misaligned (Figure 3,
left). Here the robot has traversed an interrupted loop, going out of the top of the
figure before coming back. In the right side figure, scan matching has established
links with poses at the beginning of the loop, and by optimization the loop can be
closed correctly.

Fig. 4. Zippering two unregistered partial
maps. Poses “1” are found to be related
to poses “2”. After joining, the new poses
are added to the first map, starting from
the join point; note the additional loop
closure (circled region).

The constraint representation naturally
facilitates the merging of partial maps built
by different robots. For example, the left
side of Figure 4 shows the robot poses of
two partial maps built independently by two
robots, without any notion of where they are
with respect to each other. Suppose we can
link poses in one map (labeled “1”) to poses
in the other map (“2”), by some good deci-
sion process. Then, we can move the two
maps together to register them in the same
metric space. Finally, we go through one of

the partial maps and add all of its scans to the other map, just as if all scan were col-
lected by a single robot. In this process, the two maps are zippered together, adding
connections resulting in a globally consistent map.

Abstractly, the zippering process lets us take any partial maps produced by any
robots and put them together, once a common location (colocation) between their
trajectories has been identified (note that colocation is transitive). In order to de-
termine these common locations, we developed an efficient algorithm that sequen-
tially estimates the relative locations between robot pairs as they explore an envi-
ronment [6]. The approach considers only pairs of robots since the complexity of
estimating map matches is exponential in the number of robots considered jointly.
For each robot pair, the technique uses an adapted particle filter to estimate the po-
sition of one robot in the other robot’s partial map. By estimating the posterior over
robot positions both inside and outside the partial map, the approach is also able to
estimate whether or not there is an overlap between the robots’ maps. To accurately



determine the overlap probability, we developed a hierarchical Bayesian technique
that learns a prior over the structure of indoor environments and uses the structural
model to estimate the certainty of map matches [2, 10].

Active Multi-robot Colocation and Exploration Virtually any map matching
technique can generate false-positive matches, especially in large, highly symmet-
ric environments. A wrong map match between two robots can generate subsequent
wrong map matches with other robots. Thus, undoing a wrong match requires con-
sidering all other map matches as well. To avoid the complexity resulting from
wrong matches, we developed a technique that coordinates robots to actively verify
whether or not a map match hypothesis is correct. The approach is integrated into a
decision-theoretic multi-robot exploration strategy (see [6] for details).

Figure 5(b) shows an example run using our coordination technique. The two
robots, A and B, start from different, unknown locations. Initially, the robots explore
on their own. As they explore, each robot estimates the other robot’s location in its
own map, using the modified particle filter mentioned above. When deciding where
to move next, both A and B consider whether it is better to move to an unexplored
area (frontier), or to verify a hypothesis for the other robot’s location. At one point,
B decides to verify a hypothesis for A’s location. It sends A the message to stop and
moves to A’s hypothesized location. Upon reaching this location, both robots check
the presence of the other robot using their laser range-finders (robots are tagged with
highly reflective tape). When they detect each other, their maps are merged using the
zippering process described above. From then on, they explore the environment in
a coordinated way. If a hypothesis verification fails, on the other hand, then the
hypothesis is simply deleted, and all robots keep on exploring.

Our coordination technique works for more than two robots. Multiple robots
can share a common map and coordinate to explore and verify hypotheses for the
locations of other robots. Since each map merge operation increases the number
of robots sharing a common map, team coordination improves over time. Howard
et al. [5] also use robot detections to merge maps (and close loops). In contrast to
our active colocation technique, their approach is purely passive in that robots have
to detect each other coincidentally. Passive map merging can result in significant
delays, for example, when one robot follows the path of the other robot and never
actually detects it.

Exploration with Limited Communication Robots form so-called exploration
clusters, which are groups of robots that share a common map. A team leader robot
uses this map to coordinate the other robots. New robots can be added to a cluster,
once their relative location with respect to the cluster map is determined. Maps are
represented compactly as sets of laser range-scans annotated with robot poses and
probabilistic links (scans are recorded only every 50cm). Each robot integrates its
observations into its own map, and broadcasts the information to the other robots.
While most of the other robots only store this data, the team leader integrates all the
sensor information it receives. Thus the team leader has a complete and consistent
map representing the data collected by all robots in the cluster. Frequently, this map
is broadcast to the other robots, in order to guarantee consistency. The data can be
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Fig. 5. (a) Map overlayed with the ground truth CAD model of the building. The CAD model
was generated by manually measuring the locations and extensions of rooms and objects.
(b) Map and paths of an exploration run. The two robots start exploring from different, un-
known locations. After finding a good hypothesis for their relative locations, they meet at the
meeting point, merge their maps, and continue coordinated exploration.

sent very compactly, since only updated robot poses and links have to be transmitted
(scans are already stored by the other robots). The most complex broadcast follows
whenever a robot closes a loop, since the optimization operation modifies all robot
poses in a map.

Our exploration system achieves robustness to communication loss by enabling
every robot to explore the environment on its own. Whenever a robot in an explo-
ration cluster reaches an assigned goal point, it keeps on exploring based on its own
map until it receives a new goal point. Thus, if a robot moves outside the commu-
nication range of its cluster, it automatically keeps on building its own map until it
gets back into communication range. After getting back into communication, robots
exchange all the relevant data that was lost. Such a ’sync’ operation only involves
the communication of rather small data sets. The approach is also robust to loss of
the team leader, since any other robot in the cluster can explore on its own or take
over the team leader role. In the extreme, if none of the robots can communicate
with each other, each robot will explore the environment independently of the other
robots. The result will still be a complete map; only built less efficiently.

2.2 Experimental Evaluation of Mapping

The SDR project is unique in having an experimental validation conducted by an
outside group. For a week in January 2004, the Centibots were tested at a

�����	��

building in Ft. A.P. Hill, Virginia. We were tested under controlled conditions, with
a single operator in charge of the robot teams via the mixed initiative interface de-
scribed in the next section. The evaluation criteria for mapping included time to
create a map, topological accuracy, and percent of area mapped. Ground truth for
mapping was given by a manually constructed map (Figure 5(a)); in fact, the robot’s
maps were more accurate. Extensive software tuning was circumvented by limiting
access to only half of the experimental area during test runs.

The results for four official mapping runs are summarized in Table 1. In all runs,
the robots were able to autonoumously generate a highly accurate map of the whole
environment. The average mapping time for single robot exploration was 24 min-
utes; this time was reduced to 18 minutes when using two robots. We also performed



Fig. 6. Maps built during three autonomous exploration runs. The maps look almost identical,
even though they were built under very different circumstances; (left to right) by one robot,
by two robots starting from the same location, and by two robots starting from different,
unknown locations. The similarity between the maps illustrates the robustness of the system
and supports our belief that these maps are more accurate than the hand-built map.

additional experimental runs. In one setup, three robots were able to map the area
in 15 minutes. Two robots starting from different, unknown locations generated a
complete map within 26 minutes (this run is shown in Figure 5(b)). All generated
maps looked virtually identically, as shown in Figure 6.

3 Search and Surveillance

In this phase of the mission, the challenge of coordinating the robots becomes more
difficult because of the following factors.

� The number of robots is large ( � 100).� The mission goals are not predetermined, and can change during the mission.� The goals should be specified at a high level, e.g., “search the building.”� The robots must establish and maintain a communications network.� All robots must be controlled and coordinated by a single operator.

In Centibots there were only two high-level missions: the search for OOI and
the protection of the OOI. In both cases the first step was to determine where to
send the robots to achieve the mission: how the robots can cover the most free space
while maintaining other objectives such as a communication backbone. In the Cen-
tibots system, a spatial reasoner determines an optimal or near-optimal assignment
of robots to positions in the space, while a separate coordination module (the dis-
patcher) implements an assignment that follows the plan, and also monitors and
adapts the plan as robots fail.

Many interesting low-level behaviors are built into the search robots, allowing
the coordination module to abstract away some of the difficulties of the problem.
For example, robots have the ability to stay localized within a map, to navigate
to particular positions within the map, and even to perform simple traffic-control
behavior such as staying to the right in a corridor. In searching for the OOI, there are
behaviors to scan in a circle, to detect the object, and to transmit information about
its location. Finally, each robot has a single camera, and algorithms for detecting
people as moving objects and reporting their position.



3.1 SPARE
The SPARE component (for SPAtial-REasoning) is a general system dedicated to
the spatial allocations in Centibots. SPARE is structured in two parts: spatial repre-
sentation generation and spatial reasoning.

Occupancy Map 
 Skeleton Map 
 Spatial Reasoning

The output of the mapping phase of the mission is an occupancy map, specifying
occupied, unoccupied, and unknown regions. From this, the representation generator
constructs an abstract skeleton map of nodes and connections between the nodes.
The skeleton map is used by spatial reasoning processes to search for robot locations
that maximize their utility for a given task.

Spatial Representation The spatial representation creates an abstraction of the
map, called the topological graph (TG), that has the following characteristics:� It is topologically correct.� It is compact.� All points are reachable by the robots.� It can be used for a quick but correct path planning computation.� It contains enough points to find good solutions, but not too many to make the

search computationally unfeasable.

To create the TG, we first compute a Voronoi diagram (VD) from the input oc-
cupancy map (a 2D grid). TG is then generated from VD by filtering, feature iden-
tification, and expansion. Figure 7 shows some steps in the generation of TG. In
general, TG consists of a set of nodes and links that cover the area in a manner that
facilitates searching and visibility.

Fig. 7. VD components associated with vertices and edges of TG, and additional vertices
added by the expansion step.

Spatial Reasoning For any given mission, we abstract the problem of placing
robots in the environment to the task of assigning robots to nodes of TG. We as-
sume all the robots are homogenous, so any robot can fulfill any task requirement.
An assignment � is a mapping from the nodes of TG to 1 or 0 (robot or no robot).
It would be a simple modification to change the boolean value to a set of values to
account for classes of robots.

The cost ������� is a scalar function of the assignment. Since the number of assign-
ments is exponential in the number of nodes, we decompose the cost into subcosts
that can be easily calculated, and use an approximate method to determine a good
assignment (Section 3.1). In general, we want costs to be local to a single node, or at
least to a small neighborhood of nodes, so that incremental optimization algorithms



will work well. To this end, we determine the global cost by a summation of smaller
cost functions:

��������� �� �
�����

� ��! �"�$#
�
�&% !(' ��� (1)

where ) is the number of nodes in TG, and * is the number of cost functions. The �
�

are weights that can be changed to reflect the type of mission under consideration.
The weights were chosen empirically, to reflect the different priorities in the two
missions of searching for the OOI and protecting the OOI.

Note that, potentially, each “local” cost function #
�

could involve the whole as-
signment. In practice, we have developed 10 local cost functions, of which 8 relate
to a single node, 1 to a local neighborhood, and one which tries to minimize the
number of robots, and so uses the whole assignment.

Finding Good Assignments The problem is to identify the n-tuple ��% �	+ % 
 +-,.,/, % � �
that optimizes � with a weight distribution �

�
specific to the mission. The search

space size is 0 � where ) is the number of vertices in TG (typically, a few hundred).
In such a huge search space, and in the context of our application, our goal was not
to find an optimal solution but a satisficing one in a reasonable time (within a few
minutes). The quality of a solution is determined by a human expert: a solution is
considered good if no misallocation is detected by a human analysing the result.
We have found that a standard simulated annealing algorithm works well in finding
reasonable solutions.

Fig. 8. TG shown with superimposed assignment (squares) for
a guarding operation. The OOI is in the upper right room; the
operator is at the lower right. All rooms are covered for in-
truder detection, and the comms backbone has a max distance
of 10m per robot.

The SPARE system
has been tried on over
a dozen different maps
for several types of tasks.
For each map, the com-
putation time does not
exceed a few hundred
milliseconds. For a given
task, the difficulty lies
with manual tuning to
obtain suitable values for
the weight distribution

�
�
. This tuning is done

by trial and error. In prac-
tice, once a weight dis-
tribution is found for a
given task, the weight

distribution stays efficient on other maps. For instance, for the searching and protect-
ing tasks performed at the demonstration site in a completely unknown environment,
no new tuning of the weight distributions were necessary. Even if the optimality of



the solution returned by SPARE is impossible to evaluate formally, the cost diminu-
tion between the initial random solution and the final one is considerable (by a factor
of 100 on average). Figure 8 shows the TG and a guarding assignment for one of the
evaluation runs.

3.2 Hierarchical Dispatching

Once we have all the goals generated by SPARE, the operator assigns a mission to a
number of robots. The operator can refine the assignment by creating sub-teams to
achieve part of mission independently, or let the system coordinate the entire pool of
robots. For example, one team could be assigned to create a communications back-
bone for the search task. Within a team, a manager or dispatcher is chosen to assign
tasks to individual robots. Robots register with one or more dispatchers and receive
an assignment from the set of goals available to the team. A robot can register to
several dispatchers, with one preferred. If there are no more goals to be done for the
preferred dispatcher, the robot will ask other dispatchers for work, which is a way of
load-balancing. When the goal is finished, the robot calls back in to report the com-
pletion, says that it is available, and requests a new goal from the dispatcher. The
dispatcher can also allocate a set of goals at once for a robot to do, and the robot will
only re-contact the dispatcher when it has finished all of them. The dispatcher is de-
signed as a network service that resides physically anywhere on the network. It can
run on any team member and only requires local communication within the team. In
every experiment with Centibots, the operator only formed one team, therefore our
hierarchical dispatching was equivalent to a centralized approach. This approach
was quite effective because the team was limited in size (less than 50).

3.3 Experimental Evaluation of Search and Surveillance

For searching, the evaluation criteria were time to locate OOI(s), positional accu-
racy, and false detections. For the protection stage, the criteria were detection of in-
truders, and time to first detection. There were four evaluation runs, and the results
are shown in the Table 1. They show that the team was highly effective in finding
the object and setting up a guard perimeter. Note that we used very simple visual
detection hardware and algorithms, since we had limited computational resources
on the robots – false and missed detections were a failure of these algorithms, rather
than the spatial reasoning and dispatching processes.

Run Mapping Time Map Search Search Time Position Error / Intruder Time to
Area Robots False Pos Topo Error Detect Detect

1 22 min 96% 66 34 min / 0 11 cm / none 75% 8 sec
2 26 min 97% 55 76 min / 1 24 cm / none 50% 8 sec
3 17 min (2 robots) 95% 43 16 min / 0 20 cm / none 25%2 8 sec
4 19 min (2 robots) 96% 42 Missed / 2 NA 100% 48 sec

Avg. 21 min 96% 51 30 min / 0.75 14 cm / none 62% 18 sec

Table 1. Results of the 4 evaluation runs.
2 Caused by a misconfigured tracking filter, fixed before the next run.



4 Conclusions
It is a measure of the state of maturity of mobile robotics that it is possible to field
and evaluate a larg teams of robots in the short 18 months of this project. Our Centi-
bots team uses inexpensive COTS mobile robots, cameras, and processors; the algo-
rithms we have developed for mapping, planning and mixed-initiative deployment
will work in real-time, in a distributed fashion, with unreliable communications,
in an unknown environment. These are some of the toughest real-world conditions
yet imposed on a robotics project. We believe that evaluations like this one are an
important step to moving AI robotics into the real world.
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