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Abstract— Efficient exploration of unknown environments is
a fundamental problem in mobile robotics. In this paper we
present an approach to distributed multi-robot mapping and
exploration. Our system enables teams of robots to efficiently
explore environments from different, unknown locations. In order
to ensure consistency when combining their data into shared
maps, the robots actively seek to verify their relative locations.
Using shared maps, they coordinate their exploration strategies
so as to maximize the efficiency of exploration. Our system was
evaluated under extremely realistic real-world conditions. An
outside evaluation team found the system to be highly efficient
and robust. The maps generated by our approach are consistently
more accurate than those generated by manually measuring the
locations and extensions of rooms and objects.

I. INTRODUCTION

Efficient exploration of unknown environments is a fun-
damental problem in mobile robotics. As autonomous ex-
ploration and map building becomes increasingly robust on
single robots, the next challenge is to extend these techniques
to teams of robots. Compared to the problems occurring in
single robot exploration, the extension to multiple robots poses
several new challenges, including (1) coordination of robots,
(2) integration of information collected by different robots into
a consistent map, and (3) dealing with limited communication.

Coordination: Increasing efficiency is one of the key rea-
sons for deploying teams of robots instead of single robots.
The more robots that explore an environment, the more
important the coordination between their actions becomes.
The difficulty of the coordination task strongly depends on
the knowledge of the robots. If the robots know their relative
locations and share a map of the area they explored so far, then
effective coordination can be achieved by guiding the robots
into different, non-overlapping areas of the environment [1],
[29], [37], [2]. This can be done by assigning the robots
to different exploration frontiers, which are transitions from
explored free-space to unexplored areas [36], [1]. However,
if the robots do not know their relative locations, then it is
far less obvious how to effectively coordinate them, since the
robots do not share a common map or frame of reference.

Map merging: In order to build a consistent model of an
environment, the data collected by the different robots has
to be integrated into a single map. Furthermore, such an
integration should be done as early as possible, since the
availability of a shared map greatly facilitates the coordination
between robots. If the initial locations of the robots are known,
map merging is a rather straightforward extension of single
robot mapping [32], [6], [35], [20]. This is due to the fact that
the data traces of the individual robots can be treated as if they

were collected by a single robot. Consistent integration of the
data when the robots do not know their relative locations is
more difficult, since it is not clear how and where the robots’
traces should be connected.

Limited communication: During exploration of large-scale
environments, communication between the robots and a con-
trol station might fail. To achieve robustness against such
failures, each robot has to be able to explore on its own,
i.e., without guidance by a central control node. Furthermore,
groups of robots should be able to coordinate their actions
without the need of a central control node, and each robot
should be able to take over the task of coordination.

In this paper we present an integrated multi-robot mapping
and exploration system that addresses all these challenges.
The approach enables teams of robots to efficiently build
highly accurate maps of unknown environments, even when
the initial locations of the robots are unknown. In order to
avoid wrong decisions when combining their data into shared
maps, the robots actively verify their relative locations. Using
shared maps, they coordinate their exploration strategies so
as to maximize the efficiency of exploration. Our system
was evaluated thoroughly by an outside evaluation team. The
results of this test showed that our approach is highly efficient
and robust. The maps generated by our robots are consistently
more accurate than those generated by manually measuring
the locations and extensions of rooms and objects.

This paper is organized as follows. In the next section, we
provide an overview of our multi-robot coordination technique,
followed by a description of an approach to estimating relative
locations between robots. Then, in Section IV, we show how
the data collected by multiple robots can be integrated into
a consistent map of an environment. The following section
describes experiments supporting the reliability of our tech-
niques. We conclude in Section VI.

II. DECISION-THEORETIC COORDINATION ARCHITECTURE

We will now discuss the concept underlying our multi-
robot coordination technique; implementation details will be
provided in the experimental results Section V.

A. Related Work
Virtually all existing approaches to coordinated multi-robot

exploration assume that all robots know their locations in
a shared (partial) map of the environment. Using such a
map, effective coordination can be achieved by extracting
exploration frontiers from the partial map and assigning robots
to frontiers based on a global measure of quality [1], [29],
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[37], [2], [31]. As illustrated in Fig. 1, exploration frontiers
are borders of the partial map at which explored free-space is
next to unexplored areas [36], [1], [24]. These borders thus
represent locations that are reachable from within the partial
map and provide opportunities for exploring unknown terrain,
thereby allowing the robots to greedily maximize information
gain [17], [34]. To measure the quality of an assignment of
robots to frontiers, the overall travel distance combined with
an estimate of the unexplored area at each frontier proved to
be highly successful in practice [1], [29].

The assumption of the availability of a shared map, however,
severely restricts the scenarios that can be handled by such an
exploration strategy. For instance, a unique, globally consistent
map can be generated only if the robots know their relative
locations. If the robots do not know their relative locations,
then it is not clear how they can combine their maps into
a global, shared map. Knowledge about relative locations is
readily available only if all robots start at the same location or
have sensors that provide location estimates in a global frame
of reference. While the latter case can hold when using GPS
for outdoor exploration [26], there exists no global positioning
sensor for indoor environments. Thus, in order to deal with
more general exploration settings, the robots must be able to
handle uncertainty in their relative locations, which directly
translates into uncertainty in how to combine their maps.

In a full Bayesian treatment, the robots could estimate pos-
terior probability distributions over their relative locations and
then coordinate their actions based on the resulting distribution
over shared maps. While such an approach could lead to a
highly effective exploration strategy, it does not scale well
since the number of possible relative locations, and thus maps,
grows exponentially in the number of robots. To avoid this
complexity, virtually all approaches to multi-robot mapping
under position uncertainty let the robots explore independently
until they have reliable estimates of their relative locations;
at which time their maps are merged and the robots start
to coordinate their exploration strategies [3], [6], [35], [32],
[16], [14]. To estimate relative locations, Howard and col-
leagues rely on the robots’ ability to detect each other [14].
Here, all robots explore independently of each other until
one coincidentally detects another robot. The robots use such
detections to determine their relative location, based on which
they combine their maps. While such an approach scales well
in the number of robots, it can result in inefficient exploration,
since it can take arbitrarily long until robots coincidentally
detect each other. For instance, if one robot follows the path
of the other robot without knowing, both robots might explore
the complete map without ever detecting each other. Other
approaches establish relative locations between pairs of robots
by estimating one robot’s location in another robot’s map. This
is typically done under the assumption that one robot starts
in the map already built by the other robot [6], [35], [32]
or that there exists an overlap between the partial maps [3].
Since these techniques do not verify location estimates, they
might erroneously merge maps, which typically results in
inconsistent maps.

Our approach combines and extends these ideas in order to
generate an efficient and robust exploration system. In contrast
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Fig. 1. Coordination example: Partial map built by exploration cluster
of four robots (red circles r1, . . . , r4). Additionally, two location
hypotheses (blue circles c11, c21) have been generated for robot c1,
which is not yet part of cluster. The map has nine exploration frontiers
(f1, . . . , f9), indicated by green lines.

to [6], [35], [32], [3], our techniques makes no assumptions
about the relative locations of robots. Furthermore, it adds
robustness by verifying hypotheses for the relative location of
robots. Similar to [14], this is done by using robot detections.
However, in contrast to [14], these detections are not coinci-
dental; they are pursued actively.

B. Decision-theoretic Coordination
Our technique for exploration with unknown start locations

integrates robot detections into a Bayesian, decision-theoretic
exploration strategy. In a nutshell, our system works as fol-
lows. Initially, the robots might not know their relative loca-
tions. In such a case, each robot explores on its own, mapping
an increasingly large portion of the environment. As soon as
two robots can communicate, they start to exchange sensor
data and estimate their relative location. Once they have a good
hypothesis for their relative location, they actively verify this
hypothesis using a rendez-vous technique. If successful, the
robots form an exploration cluster: they combine their data into
a shared map and start to coordinate their exploration actions.
On the other hand, if the relative location hypothesis turns out
to be wrong, the robots continue to explore independently and
exchange sensor data so as to refine their estimates of their
relative location. During exploration, the size of exploration
clusters increases as more robots determine their relative
locations, ending in a single cluster containing all robots.

As long as a robot is not part of an exploration cluster,
it individually explores an environment by moving to the
closest exploration frontier in its partial map [36], [17]. To
coordinate the robots within an exploration cluster, we extend
the decision-theoretic approaches of [1], [29], [37], [2] to
the case of relative position uncertainty [16]. To do so, we
assume that the robots within an exploration cluster share a
map and that the positions ri of all robots in the shared map
are known. Fig. 1 shows an exploration cluster of four robots
sharing a partial occupancy grid map. Exploration frontiers
fi are indicated by thick green lines. The figure also shows
hypotheses c11 and c21 for the location of a robot not yet part
of the cluster. In general, let cij denote the i-th hypothesis for
the unknown location of robot j. p(cij) is the probability that
robot j actually is at this hypothesis (how hypotheses and their
probabilities are determined will be described in Section III).
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The robots in an exploration cluster trade off exploring
unknown terrain and verifying hypotheses for the locations of
other robots. Hypothesis verification is done by sending one
of the robots to the hypothesis and physically testing whether
there actually is another robot. In our system, similar to [14],
robot detections are performed by marking robots with highly
reflective tape and using laser range-finders to detect these
markers. Once a location hypothesis is verified, the data of
this robot can be added to the cluster map and the robot can
participate in coordinated exploration. At any point in time,
each robot in the exploration cluster can be assigned either to
an exploration frontier or to a hypothesized location of a robot
outside the cluster. Coordination between the robots can be
phrased as the problem of finding the assignment from robots
to frontiers and hypotheses that maximizes a utility-cost trade-
off. To see, let θ denote an assignment that determines which
robot should move to which target (frontiers and hypotheses).
Each robot is assigned to exactly one target and θ(i, j) = 1
if the i-th robot in the exploration cluster is assigned to the
j-th target. Among all assignments we choose the one that
maximizes expected utility minus expected cost:

θ∗ = argmax
θ

∑

(i,j)∈θ

θ(i, j) (U(i, j) − C(i, j)) (1)

The cost and utility of each robot target pair (i, j) can be
computed as follows.
Cost: If the target is a frontier then the cost is given by the
minimum cost path from the robot’s position ri to the frontier
position fk. Minimal cost paths can be computed efficiently
by A∗ search. For hypothesis verification, the cost is given by
the minimal path to a meeting point between the robots plus
the cost to establish whether the two robots actually meet or
not.

C(i, j) =

{

dist(ri, fk) if j-th target is frontier fk

verify(ri, cpq) if j-th target is hypothesis cpq

(2)

Utilities: If the target is a frontier, then the utility is given by
the expected area the robot will explore at that frontier. This
area is estimated by the size of the unknown area visible from
the frontier [1]. If the target is a location hypothesis, say cpq,
then the utility is given by the expected utility of meeting robot
rq . The function coord estimates this utility by measuring
the map size of the other robot plus the expected utility
of coordinated exploration versus independent exploration.
Since it is not known whether the other robot is at the
location hypothesis, the utility of meeting is weighted by the
probability of the hypothesis, denoted p(cpq).

U(i, j) =

{

explore(ri, fk) if j-th target is frontier fk

p(cpq)coord(rq) if j-th target is hypothesis cpq

(3)

Once the pairwise utilities and costs are computed, we use a
linear program solver to find the optimal assignment. Finding
optimal assignments can be performed in time O(mn), where
m is the number of robots and n is the number of goals [11]. In
exploration scenarios involving up to six robots, we found the
overall computation time for this decision step to be negligible
compared to the other cost involved in exploration (less than 1

second). Using the trade-off between Eq. 2 and Eq. 3, robots
typically move to exploration frontiers and only choose a
hypothesis as a target if it is not too far away and its probability
is very high.

III. ESTIMATING RELATIVE POSITIONS

We now discuss an algorithm for sequentially estimating the
relative locations between pairs of robots exploring an environ-
ment [16]. In order to perform this estimation, robots exchange
laser range scans and odometry motion information whenever
they are in communication range. Our approach considers only
pairs of robots since the complexity of estimating relative
locations is exponential in the number of robots considered
jointly. One approach to estimating the overlap between partial
maps of two robots is to compute the correlations between
the maps for each possible overlap. Unfortunately, such an
approach does not adequately handle uncertainty in mapping
and does not lend itself to an incremental implementation. We
overcome this problem by using an adapted particle filter in
combination with a predictive model of indoor environments
in order to sequentially determine whether and how the partial
maps of two robots overlap.

A. Particle Filter for Partial Map Localization
Existing approaches to robot localization have only ad-

dressed the problem of localizing a robot in a complete map
of an environment. Particle filters have been applied with great
success to this problem [8], [21], [15], [7]. The main difference
between localizing a robot in a complete and in a partial map
of an environment is due to the fact that the robot might not be
inside the partial map and that the robot can enter or exit the
map at any point in time. We now show how to leverage the
representational capabilities of particle filters so as to address
this more complex estimation problem.

A straightforward approach to partial map localization
would be to estimate a robot’s position both inside and outside
the map. However, such an approach could be extremely in-
efficient since the area outside a partial map can be arbitrarily
large. Fortunately, for the purpose of map merging, it is not
necessary to reason about all possible locations outside the
map. Instead, we are only interested in robot locations that
are part of trajectories that overlap with the partial map (non-
overlapping trajectories correspond to cases in which the two
maps do not overlap at all).

Similar to the application of Rao-Blackwellised particle fil-
ters for mobile robot mapping [23], [13], [5], one can consider
a particle filter as recursively computing posterior probability
distributions over robot trajectories. A particle filter represents
such posterior distributions by sets St = {〈x

(i)
ei:t, w

(i)
t 〉 | i =

1, . . . , N} of N weighted samples distributed according to
the posterior. Here each x

(i)
ei:t is a trajectory, and the w

(i)
t

are nonnegative numerical factors called importance weights,
which sum up to one. In our case, the trajectories have different
lengths, as indicated by ei, the time when trajectory i first
entered the partial map. We proceed as shown in Table I, in
order to generate posteriors over such trajectories.
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Fig. 2. Partial map localization: (a) The particle filter generates entry point samples along the arcs at each frontier. (b)–(d) Sample sets at
different points in time. The pictures also show the true robot location, the entry point samples (blue), and the most likely hypothesis for
the other robot’s position along with the trajectory of this hypothesis. (b) Initially, the samples are spread uniformly throughout the partial
map. (c) After only short overlap, the most likely trajectory does not match the true path of the robot. (d) The robot exits the map and the
most likely particle is at the correct position.

1. Inputs: St−1 = {〈x
(i)
ei:t−1, w

(i)
t−1〉 | i = 1, . . . , N}, control information ut−1, observation zt, partial map Mt,

probability of non-overlapping trajectories nt−1, probability of entering partial map ε, number of entry point samples Nε

2. St := ∅ // Initialize
3. for all samples 〈x(i)

ei:t−1, w
(i)
t−1〉 in St−1 do // Extend existing trajectories

4. sample x
(i)
t from p(xt | x

(i)
ei:t−1, ut−1) // Predict next position using motion

5. St := St ∪ {〈x(i)
ei:t

, w
(i)
t−1〉} // Insert into next set

6. for i := 1, . . . , Nε do // Generate Nε new trajectories starting at entry points
7. sample x

(i)
t from an entry point into the map // Entry points are given by transition from free space to unexplored

8. w
(i)
t =

ε nt−1

Nε
// Set weights accordingly

9. St := St ∪ {〈x(i)
t , w

(i)
t 〉} // Insert into set

10. nt = (1 − ε) nt−1 // Subtract fraction ε migrated from non-overlapping trajectories into map
11. for all samples 〈x(i)

ei:t
, w

(i)
t 〉 in St do // Integrate observation into individual trajectories

12. if x
(i)
t ∈ Mt then w

(i)
t := w

(i)
t p(zt | x

(i)
t ) // Trajectories currently inside the map

else w
(i)
t := w

(i)
t p(zt | outside) // Trajectories currently outside the map

13. nt = nt p(zt | outside) // Update probability of non-overlapping trajectories
14. α−1

t = nt +
P

i=1,...,N+Nε
w

(i)
t // Compute normalization factor

15. nt = αtnt; ∀i : w
(i)
t = αtw

(i)
t // Normalize

16. resample samples in St based on their weights // Samples N trajectories

TABLE I: OUTLINE OF PARTICLE FILTER BASED IMPLEMENTATION OF PARTIAL MAP LOCALIZATION.

The algorithm takes as input the previous sample set along
with the other robots most recent control information and
observation sent via wireless communication. Additionally,
it requires the current partial map Mt and nt−1, which is
the probability that so far there was no overlap between the
other robots trajectory and the partial map. As soon as M0

is sufficiently large, the algorithm is started as follows: At
t = 0, each trajectory consists of only one robot location
x0. In this degenerate case, only locations inside the partial
map correspond to overlapping trajectories. Since there is
no knowledge about the initial location of the robot, these
“trajectories” x0 are sampled uniformly throughout the partial
map. n0, the probability that the other robot initially is
outside the partial map, is set according to an estimate of
the ratio between the sizes of the partial map and the entire
environment. Fig. 2(b) shows a partial map along with such
a uniformly initialized sample set. The figure also shows the
true robot location, which initially is outside the partial map.

Then, at each iteration of the particle filter, the trajectories
are updated based on the following reasoning. At time t, a
trajectory can overlap with the partial map if and only if it

already overlapped at time t−1 or if the robot just entered the
partial map for the first time. The first case is handled by Steps
3-5 of the algorithm. Here, each overlapping trajectory of the
previous time step is extended using the motion information
ut−1. Then, in Steps 6 through 9, the algorithm generates
Nε locations that correspond to trajectories that enter the
partial map for the first time. These trajectories do not contain
locations prior to time t, since we are mostly interested in
their locations inside the partial map (in fact, our efficient
implementation only keeps track of the most recent location in
each trajectory). The entry points in Step 7 are generated based
on the assumption that the robot can only enter the partial map
at its frontier cells. These cells are shown in Fig. 2(a), and
the corresponding entry samples are indicated in the sample
set shown in Fig. 2(c). The weights of these samples are set
in Step 8 such that the combined weights of all new entry
samples is ε nt−1. The parameter ε represents the probability
that the robot enters the map at any point in time given
that it previously was outside. Step 10 adjusts the probability
of non-overlapping trajectories by subtracting the weights of
trajectories that entered the map. At this point in time, the
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weights of all overlapping trajectories (extended and new ones)
plus the probability nt of non-overlapping trajectories sum up
to one (the only change is due to a shift of probability from
non-overlapping to just entering trajectories).

So far, we only considered robot motion, the most recent
observation is integrated in Steps 11-14 of the algorithm. Here
we have to consider two cases depending on whether the
location is inside or outside the partial map. Step 12 handles
locations inside the partial map by multiplying the trajectory
weight with the observation likelihood, which can be extracted
from the map, exactly as in regular robot localization [8],
[9], [34]. Trajectories that overlap with the map but exited
it at one point in time are weighted by the likelihood of
observing the measurement outside the map (we will discuss
our approach to computing this likelihood in the next section).
The same likelihood is used to weight the probability nt of
non-overlapping trajectories in Step 13. The normalization
factor is determined in the following step and multiplied into
nt and all weights in Step 15. The final step samples N
trajectories from the weighted samples and sets the weights
such that they sum up to 1 − nt.

It can be shown that each iteration of this particle filter gen-
erates samples that are distributed according to the posterior
over trajectories that overlapped with the partial map at some
point in time. If the size of the partial map increases during
this process, we move the entry point frontiers accordingly.

B. Predictive Model for Observations Outside the Partial Map
A key quantity estimated by the particle filter algorithm

is nt, which is the probability of whether or not there is an
overlap between the partial map and the other robots path.
This quantity is crucial to assess the weight p(cpq) of a
map merge hypothesis used by the coordination algorithm in
Eq. 3. In order to determine nt, it is necessary to estimate
the likelihood of sensor measurements outside the partial map
(Steps 12 and 13). Unfortunately, an accurate estimate of
this likelihood is not possible, since the robots do not know
which measurements to expect outside the explored area. One
solution to this problem is to use a fixed likelihood for all
observations zt made at locations outside the partial map.
However, such an approach ignores valuable information about
the structure of an environment and results in brittle estimates
of map overlaps [30].

To acquire p(zt|outside), the likelihood of observing zt in
unexplored areas, we developed a structural model of indoor
environments that can be used to predict the observations
made by a robot. An in-depth discussion of this approach is
beyond the scope of this paper, we refer the reader to [30],
[10] for more details. In a nutshell, the structural model is
a hidden Markov model that generates sequences of views
observed by a robot when navigating through an environment.
In our approach, we extract discrete views v from laser range-
scans. These views roughly correspond to map patches such as
hallways, openings, rooms, etc. At every update of the particle
filter, the next view is predicted based on the previous view
and the view transition probability. Both view and transition
probabilities are estimated during exploration via so-called

Dirichlet hyper-parameters. More specifically, let vt denote
the random variable over views observed at time t. It can be
shown [10] that the predictive distribution for observing view
i at time t given that the robot just observed view j is given
by

p(vt = i | vt−1 =j, αj , f |j) =
fi|j + αij

∑

i′ fi′|j + αi′j

. (4)

Here, f|j is the number of times view j has already been
observed in this environment, and αj is a Dirichlet prior
count learned from previous environments. Accordingly, fi|j

and αij
are the view transitions observed in this environment

and given as prior counts, respectively. The Dirichlet prior
counts are learned using a hierarchical Bayesian approach.
At each iteration of the particle filter, Eq. 4 is used to
estimate p(zt|outside) in Steps 12 and 13 of the algorithm.
In [30], [10] we showed that this predictive model results in
significantly better estimates of whether or not the maps of
two robots overlap. By updating the probabilities of the HMM
as the robots explore an environment, our model achieves an
additional improvement in predictive quality [10].

At each iteration of the particle filter, hypotheses for the
location of a robot are extracted from the sample set and
then used by the decision-theoretic coordination technique
described in Section II-B. Once the coordination approach con-
siders a hypothesis valuable enough, it verifies this hypothesis
by assigning it to a robot. If this robot detects the other robot
at the hypothesized position, its data can be merged into the
cluster map, as described next. If, however, the hypothesis
turns out to be incorrect, then the particle filter naturally
incorporates such information by giving the samples at the
wrongly hypothesized location extremely low weights. The
low weights result in the removal of these particles in the
next re-sampling step, thereby increasing the probability of
alternative hypotheses.

IV. MULTI-ROBOT MAP MERGING

We will now describe how to build a consistent map from
data collected by multiple robots.

A. SLAM Paradigms and Local Maps
The key problem in mobile robot mapping is caused by

the uncertainty in a robot’s position as it explores an en-
vironment. This position uncertainty has to be considered
when generating a map from the observations made by the
robot. It is this connection between robot position and map
uncertainty that makes the SLAM (simultaneous localization
and mapping) problem computationally demanding [4], [33].
Over the last years, various research groups have developed
efficient solutions to the SLAM problem. These techniques
range from splitting maps into sub-maps [27], to thin junction-
tree approximations [28], to sparse extended information fil-
ters [33], to Rao-Blackwellised particle filters [25], [23], [13],
[5], to graph structures modeling spatial constraints [22],
[12], [18]. In this project, we build on the latter class of
techniques, which are appropriate because they can be made
to be independent of the coordinate system in which the
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constraints are expressed [19], an obvious advantage when
combining local maps that have different coordinate systems.
Here, we only provide an intuitive description of our approach,
more details can be found in [22], [12], [19]; a good exposition
of general constraint graphs can be found in the Graph-SLAM
algorithm [34]).

B. Local Constraints and Optimization
The key to combining information from multiple local maps

is to form probabilistic constraints that are invariant to rigid
transformations. Such constraints can be combined directly,
because they are not tied to any particular local map coordinate
system. Constraints are generated from four sources:

1) Odometry between successive poses.
2) Scan-matching between nearby poses.
3) Loop closure, when scans from two historically distant

poses are matched.
4) Colocations between poses in partial maps.
Formally, constraints in our system are measurement equa-

tions between pairs of poses. For two poses p0 and p1, the
equation is the difference between the two poses f(p1, p0) =
p1 − p0. The measured distance is given by a difference d01

and its covariance C01. For example, using odometry the
difference comes from the measured wheel movement, and
the covariance from a model of the motion errors. The other
source of constraints comes from scan matching between poses
(cases 2-4). As in the case of odometry, the output of the scan
match is an estimated difference between the poses, and a
covariance of the estimate. Thus all of the constraints we are
working with can be put into the form of measurements of the
difference between two poses.

Unfortunately, constraints that are pure pose differences are
not local – they can vary depending on the global location of
the poses. Consider the two poses located at p0 = (0, 0, 0) and
p1 = (0, 1, 0). Their difference is d01 = (0, 1, 0). Now rotate
the coordinate system 90 degrees, so that p0 = (0, 0, pi/2)
and p1 = (1, 0, pi/2). Obviously their difference d01 in the
new coordinate system will change. When we put together
constraints from different partial maps, each of which has its
own coordinate system, the constraints are not comparable.
Our solution is to always express constraints in a form which
is invariant to a rigid transformation of the pose coordinates.
Instead of using pose differences in the global system, we
express the difference in the coordinate system of p0, that is,
as if p0 were at (0, 0, 0). We write 0(p1 − p0) for this relative
pose difference; it is easy to verify that it is invariant to any
rigid transformation of the global coordinates.

Given a set of local pose constraints, the maximum like-
lihood solution is found by minimizing the covariance-based
errors. For each constraint k, define:

εk = dij −
i(pj − pi) (5)

The total covariance-based squared error (also called the
squared Mahalanobis distance) is given by

E =
∑

k

εT
k C−1

k εk (6)

Current position

Start position

Fig. 3. Pose constraints before (left) and after (right) linking the
start and end of a loop. Minimization of the constraints after the
robot returned into the hallway to the right results in consistent scan
locations. Robot trajectory is shown in gray, spatial constraints as
thin black lines attached to the trajectory.

Any particular set of values for the pose variables will
yield a value for E. Finding the values that minimize E is
a non-linear optimization problem (the constraints are non-
linear because of the angular dependencies). Given an initial
solution that is close enough to the optimal solution, there
are efficient methods for solving this problem, most notably
conjugate gradient descent [22], [12], [18], [34]. In practice
these methods work very well, and can solve systems of (for
example) 1,000 poses in under a second.

C. Map Merging Examples
The constraint graph is ideal for integrating map information

with uncertain alignment. In the case of odometry and local
scan matches, the system looks at just a small local neigh-
borhood to enforce consistency [12], which can be done in
constant time. The more interesting cases are enforcing global
consistency: loop closure in a local map, and partial map
merging. In loop closure, a robot is building a local map using
its own scans and the scans of any co-located robots. At some
point, the robot returns to a position it has previously visited,
but accumulated error causes it to be misaligned (Figure 3
left). Here the robot has traversed an interrupted loop, going
out of the top of the figure before coming back. Once scan
matching establishes links with poses at the beginning of the
loop, additional constraints can be added to the graph. Based
on these constraints, the mapping algorithm determines the
optimal position for all scan locations by maximizing the
posterior probability of all constraints in the graph, using
Eq. 6. In practice, the initial solution established by enforcing
local constraints gives a “close enough” solution to start
the minimization process. In the right side of Fig. 3, scan
matching has established links with poses at the beginning of
the loop, resulting in a consistent map after minimization of
the constraint system. Because the optimization is efficient,
it can be performed online as the robot explores an environ-
ment, causing no more than a second or so of hesitation as
consistency is enforced.

The constraint representation naturally facilitates the merg-
ing of partial maps built by different robots. For example, the
upper panels of Fig. 4 show three partial maps built by three
robots. Suppose we can link the pose marked “o” in the left
map to the pose marked “o” in the middle map, and the poses
marked “x” in the middle and the right maps. Then, we can
move the three maps together to register them in the same
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Fig. 4. Upper panels: Partial maps built by three robots in the UW Allen Center. The ’o’s and ’x’s provide connection points between the
left and the middle map, and the middle and the right map, respectively. Lower panels: The left picture shows the map generated from the
three partial maps by optimization of the global constraint graph generated by “zippering” the maps together at the connection points. (right)
Map generated by simply overlaying the partial maps, without any additional global optimization (only laser scans are shown for clarity).

metric space. This is done by taking each constraint in the
middle map and adding it to the constraint graph underlying
the left map, just as if all scans were collected by a single
robot. In addition, we generate an initial solution as input
to the global optimization, by transforming all the poses in
the middle map, and making a rigid transformation so that
they line up with the colocated pose at its correct position.
At this point, although the maps are aligned correctly for the
colocated poses, they can differ on poses that are distant from
this point – see the lower right panel in Fig. 4. An additional
“zippering” process is performed, in which all the poses that
are now close in the colocated two partial maps are scan-
matched for additional constraints. By consolidating the poses
into spatial buckets, this process can take place in order N ,
the number of poses in the partial map. Optimization of Eq. 6
yields a globally consistent map. Finally, the scans observed by
the third robot are added to this map, using the same process.
The occupancy grid map resulting from optimizing the global
constraint graph is shown in the lower left panel in Fig. 4.

Abstractly, the zippering process lets us take any partial
maps produced by any robots and put them together, once
a common location (colocation) between their trajectories
has been identified. In our system, colocation information is
estimated by the particle filter described in Section III, and

verified via actively triggered robot detections, as described
in Section II. Our map merging technique is transitive in the
sense that if robot A knows robot B’s location inside its partial
map and robot B knows the location of robot C inside its
partial map, then it is possible to consistently merge C’s map
into robot A’s map (possibly after merging B’s map into A’s
map). The reader may notice that merging maps in different
orders might lead to slightly different maps, which is due to
the approximations performed by our approach (sequentially
adding spatial constraints might result in different constraint
systems). In practice, however, we found this approach to map
merging highly reliable.

V. EXPERIMENTAL EVALUATION

We will now describe the evaluation of our exploration
system. Additional aspects of the approach are evaluated
in [10], [16], [18], [30].

A. Implementation Details
1) Coordination and Mapping: We implemented the

decision-theoretic coordination technique described in Sec-
tion II-B. Maps are represented compactly as sets of laser
range-scans annotated with robot poses and probabilistic links
(scans are recorded only every 50 cm of translation or 30
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degrees of rotation). Within an exploration cluster, each robot
integrates its observations into its own map, and broadcasts the
information to the other robots. While most of the other robots
only store this data, the team leader of the cluster integrates all
the sensor information it receives. Thus the team leader, which
is chosen as the robot with the smallest ID, has a complete and
consistent map representing the data collected by all robots
in the cluster. This map is used to coordinate the robots
in the cluster. Whenever two clusters meet and merge their
maps, the team leader with the smaller ID becomes the leader
of the new exploration cluster. Frequently, the team leader
broadcasts the map to the other robots, in order to guarantee
consistency. This data can be sent very compactly, since only
updated robot poses and links have to be transmitted (scans
are already stored by the other robots). The most complex
broadcast follows whenever a robot closes a loop, since the
optimization of the constraint system modifies all robot poses
in a map (Section IV). In practice, broadcasting even this
information typically involves sending only several kilobytes
of data, which is well below the capacity of typical 802.11
wireless communication capacity and can be done in a fraction
of a second.

A crucial situation occurs when a robot moves into the
communication range of a robot from another, possible single-
robot, cluster. At this point in time, the robots exchange
all their sensor and motion information and start estimating
their relative locations using the particle filter discussed in
Section III. Our current system allocates this task to the
team leader. The other robots in the team do not generate
hypotheses. In the worst case, if all robots are in single-
robot clusters and within communication range, the number
of particle filters run on each robot can be as high as the total
number of robots minus one. In simulation experiments, we
found this simple approach to work efficiently enough for up
to six robots. However, it does not scale to very large teams
of robots and more thought must be put into more intelligent
allocation of computation tasks.

2) Dealing with Limited Communication: Our exploration
system achieves robustness to communication loss by enabling
every robot to explore the environment on its own. Whenever
a robot in an exploration cluster reaches an assigned goal
point, it keeps on exploring based on its own map until it
receives a new goal point. Thus, if a robot moves outside the
communication range of its cluster, it automatically keeps on
building its own map until it gets back into communication
range. After getting back into communication, robots exchange
all the relevant data that was lost. Such a “sync” operation
only involves the communication of rather small data sets and
can typically be done in less than a second. Our approach
is also robust to loss of the team leader, since any other
robot in the cluster can explore on its own or take over the
team leader role. In the extreme, if none of the robots can
communicate with each other, each robot will explore the
environment independently of the other robots. The result will
still be a complete map; only built less efficiently.

We added hand shaking and various timeouts to the decision
making in order to make active hypothesis verification robust
to loss of communication. This implementation task turned

out to be rather tedious since it required extensive testing
of the system in order to determine all situations in which
one robot might leave the communication range of another
robot. As an example of our approach, when a robot sends a
“Meet” signal to another robot for which it has a good location
hypothesis, it waits for an acknowledgment of this signal.
If the acknowledgment is not received after several seconds,
the robot keeps on exploring and reconsiders a meeting only
after an additional timeout and the other robot is back in
communication.

B. Predictive Model for Estimating Relative Locations
As described in Section III, our system relies on particle

filters to estimate the relative positions of robots. In order
to estimate whether or not the maps of two robots overlap,
we compare the likelihood of measurements z inside a partial
map with the likelihood of observing z outside the map,
denoted p(z|outside). To estimate the outside likelihood, we
developed a hierarchical Bayesian technique that learns priors
from previously explored environments (see Section III-B).

To evaluate the suitability of this approach for partial
map merging, we generated 15 partial maps from 5 different
environments and estimated the location of a robot relative to
these maps using the approach described in Section III. For
each partial map, we took several sensor logs collected in the
same environment. The sensor logs were chosen randomly and
some of them had no overlap with the corresponding partial
map at all. For each map-trajectory pair we proceeded as
follows. At each iteration of the particle filter, we determined
the most likely hypothesis for the robot’s location. If the
probability of this hypothesis exceeded a certain threshold θ
then this hypothesis was considered valid. For each threshold
θ, precision measures the fraction of correct valid hypotheses,
i.e. hypotheses above the threshold. Correctness is tested
by comparing the position of the hypothesis to a ground
truth estimate computed offline. To determine recall, we first
checked at what times the robot was in the partial map. Recall,
then, measures the fraction of this time for which the approach
generated a correct hypothesis, i.e. at the correct position
and with probability above the threshold θ. We compared
our approach to an alternative method that uses a fixed
likelihood p(z|outside) for locations outside the partial map
(this corresponds to virtually all existing mapping techniques).

The precision-recall trade-offs for different thresholds θ are
shown in Fig. 5(a) (each point represents a different threshold).
The solid line represents the results obtained with our approach
and the dashed lines are results for the fixed approach using
different likelihoods p(z|outside) for measurements outside
the maps (data points are omitted for clarity). The graphs
clearly show the superior performance of our approach. It
achieves 26% higher precision than the best likelihood value
for the alternative method. Note that high precision values are
more important than high recalls since low precision results
in wrong active colocation decisions, while low recall only
delays the map merging process. Note also that one cannot
expect very high recall values since a robot has to be in the
partial map for a certain duration before a valid hypothesis
can be generated.
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Fig. 5. (a) Precision vs. recall: Each point represents an average over 375 pairs of partial maps and trajectories. Each curve shows the
trade-off for different thresholds θ (0.05-0.99). The dashed lines indicate results obtained with different fixed values for p(z | outside) and
the solid line represents the results for our approach. (b) Predictive likelihood of different approaches averaged over 45 data sequences in
three environments.

To evaluate the predictive quality of our approach, we
used sequences of data collected in three environments. At
each iteration (after approximately 2m of robot motion), we
computed the likelihood of the next view in the data log
given the view prediction obtained by our approach. The
predictive quality is then determined by accumulating the
logarithm of the measurement likelihoods over time. Fig. 5(b)
shows the results for alternative techniques, averaged over 45
data sequences. The solid line represents the results for our
approach, i.e. using Eq. 4 to predict the next view. The dashed
line gives the results using our approach, but without updating
the model, i.e. only the Dirichlet prior counts learned from
other maps are used (fi|j and fi′|j are set to zero in Eq. 4).
Even though the (logarithmic) difference between these top
two graphs seems small, the average likelihood of a complete
sensor sequence using our adaptive approach is approximately
360 times as high as with the prior only approach. This
indicates that it is important to update the predictive model
using observations obtained in the new environment. The
dotted line in Fig. 5(b) shows the result if we predict views
using the frequency counts of view transitions observed in
the other maps. These predictions are clearly inferior to those
of the Dirichlet prior learned with the hierarchical Bayesian
approach (dashed line), which shows that our learning method
significantly improves the performance over straightforward
transition frequency counting. Finally, the dashed-dotted line
gives the result based on frequency counts of individual views,
i.e. without considering transitions between views. This graph
demonstrates that considering the connectivity of environments
is superior to predicting views simply based on their frequency.
These graphs are averages over different environments. We
found our approach to yield much stronger improvements in
predictable environments such as typical office buildings.

C. Fort A.P. Hill Evaluation
Our overall exploration and mapping system was evaluated

thoroughly as part of the CentiBots team within the DARPA
SDR project. The SDR project was unique in having an
experimental validation conducted by an outside group. For a
week in January 2004, the CentiBots were tested at a 650m2

building in Ft. A.P. Hill, Virginia. We were tested under
controlled conditions, with a single operator in charge of the

robot teams. All computation was performed using state-of-
the-art laptops onboard the robots. The evaluation criteria for
mapping included time to create a map, topological accuracy,
and percent of area mapped. Ground truth for mapping was
given by a manually constructed map (Fig. 6(d)). Extensive
software tuning was circumvented by limiting access to only
half of the experimental area during test runs. Even the
developer team was not allowed to inspect the complete
environment before the robots were deployed.

Run # Mapping robots Mapping Time Map area
1 1 22 min 96%
2 1 26 min 97%
3 2 17 min 95%
4 2 19 min 96%
5 3 15 min 97%

TABLE II
EXPLORATION RUNS DURING THE FT. A.P. HILL EVALUATION.

The results for five official mapping runs are summarized
in Table II. In all runs, the robots were able to autonomously
generate a highly accurate map of the environment. The
average mapping time for single robot exploration was 24
minutes; this time was reduced to 18 minutes when using two
and 15 minutes when using three robots. It should be noted
that the robots frequently lost communication with the overall
control center and with other robots. In such situations, the
robots explored on their own and combined their sensor data
as soon as they were in contact again.

In addition to the robustness of our system, an important
result of this evaluation was the fact that the maps built by
our approach were more accurate than those built manually
by the evaluation team. Fig. 6(d) shows one of our maps
overlayed with the “ground truth” map. As can be seen, the
two maps do not match perfectly (see for instance the two
tables in the upper middle room). Three maps built by our
robots in three different evaluation runs are shown in Fig. 6(a)-
(c). These maps look virtually identical, even though they were
built independently of each other, using different trajectories
of the robots. To better illustrate the similarity of these three
maps, we overlayed them on top of each other. Fig. 6(e) shows
the pixels at which the overlayed occupancy grid maps are not
identical. As can be seen, the maps almost perfectly line up.
Mismatches are only along the obstacles, which is mostly due
to limited resolution of the maps.
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Fig. 6. (a)-(c) Maps built during three autonomous exploration runs. The maps look almost identical, even though they were built under
very different circumstances. The similarity between the maps illustrates the robustness of the system and supports our belief that these
maps are more accurate than the hand-built map. (d) Map overlayed with the ground truth CAD model of the building. The CAD model
was generated by manually measuring the locations and extensions of rooms and objects. (e) Map generated from overlaying the three maps
shown in (a)-(c). White pixels indicate locations at which all three maps agree, black pixels show disagreement on occupancy.

D. UW Allen Center Evaluations
We performed additional evaluation runs with three

robots in the UW Allen Center. These runs confirmed
the reliability of our system. Fig. 8 illustrates one of
these runs. An animation of this run can be found at
http://www.cs.washington.edu/robotics/projects/centibots.

In order to evaluate the benefits of active colocation, we
performed several simulation runs involving three robots. To
do so, we used the Saphira robot simulator along with a map
of the first floor of the Allen Center (see Fig. 7). The Saphira
simulator accurately models robots including noise in motion
and sensing. A larger environment was simulated by limiting
the velocity of robots to 20cm/sec and the range of detections
to 1.5m.

Fig. 7. Map used for simulation experiments.

Approach Mapping time First meeting Second Meeting
[min] [min] [min]

Passive 35.2±3.8 15.0±4.1 25.2±7.9

Active 26.3±2.4 6.2±1.3 16.3±3.8

TABLE III
EXPLORATION WITH AND WITHOUT ACTIVE COLOCATION.

Table III summarizes the results of 12 exploration runs,
six of which were performed using our active colocation
approach (numbers are mean times along with 95% confidence
intervals). The other six runs merged maps only when robots
met coincidentally, similar to the approach discussed in [14].
Our map merging technique generated accurate, consistent
maps in all 12 runs. As can be seen, actively verifying
relative location hypotheses significantly reduces the overall
exploration time. The third and fourth column of the table
indicate why our active approach is more efficient than its
passive counterpart. The third column provides the time until
the first two robots are able to merge their maps, and the fourth
column gives the time until the third robot joins the exploration
cluster. As can be seen, by actively verifying hypotheses, the
robots are able to merge their maps earlier, which results in
improved coordination between their exploration strategies.

We performed further simulation runs in this environment
using six robots, which resulted in faster exploration of
22.8±4.5 minutes. All these runs resulted in globally consis-
tent maps. Furthermore, these runs involved active colocation
between exploration clusters of more than one robot each.
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Fig. 8. Sequence of partial maps generated during exploration with three robots. Shown is only the map of robot R1 along with the locations
of the other two robots. In this experiment, the robots do not know their relative start locations. (a) R2 is in R1’s map and R1 has a high
probability hypothesis for R2’s location. R1 sends R2 a “Stop” command and decides to verify this hypothesis. (b) After R1 meets R2 at the
hypothesized location, the robots merge their maps. They now coordinate their exploration. (c) R2 and R3 meet incidentally and (d) merge
R3s data into the map. (e) R1 closes a loop. (f) Since all data is integrated into a global constraint graph, R1 is able to correct the odometry
error. The final map of this run is shown in the lower left panel of Fig. 4.

VI. CONCLUSIONS

We presented a distributed approach to mobile robot map-
ping and exploration. The system enables teams of robots
to efficiently explore environments from different, unknown
locations. The robots initially explore on their own, until they
can communicate with other robots. Once they can exchange
sensor information with other robots, they estimate their
relative locations using an adapted particle filter. In order to
estimate whether or not the partial maps of two robots overlap,
the filter incorporates a hidden Markov model that predicts
observations outside the explored area. The parameters of the
model are learned from previously explored environments us-
ing a hierarchical Bayesian approach. During exploration, the
robots update their predictive models based on observations
in the new environment. Our experiments indicate that this
approach supports map merging decisions significantly better
than alternative techniques.

The estimation of relative positions is integrated seamlessly
into a decision-theoretic multi-robot coordination strategy. In
order to overcome the risk of false-positive map matches, the
robots actively verify location hypotheses using a rendez-vous
strategy. If the robots meet at the meeting point, they know
their relative locations and can combine their data into a shared
map. Mapping and map merging uses a SLAM technique that
models uncertainty by local probabilistic constraints between
the locations of laser range-scans. Shared maps are used to
coordinate the robots and to estimate the location of other

robots.
Our mapping and exploration system was evaluated under

some of the toughest real-world conditions yet imposed on a
robotics project. Prior to the evaluation, the developer team
was allowed to test their robots only in one half of the
environment. The other half was not accessible during testing.
During the evaluation runs, the robots had to rely on their own
ad-hoc wireless network to exchange information. The robots
successfully explored the environment in all four official
evaluation runs. All maps generated during these runs were
virtually identical, indicating the high accuracy and robustness
of our system.
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