D. Fox

Adapting the sample size in particle filters through KLD-sampling

International Journal of Robotics Research (IJRR), 2003


 


Abstract

Over the last years, particle filters have been applied with great success to a variety of state estimation problems. In this paper we present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets during the estimation process. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error by the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptation technique.


Download

Full paper [.pdf] (3,408 kb, 27 pages)


 



[To the RSE-lab]