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Abstract
WiFi localization, the task of determining the phys-
ical location of a mobile device from wireless sig-
nal strengths, has been shown to be an accurate
method of indoor and outdoor localization and a
powerful building block for location-aware appli-
cations. However, most localization techniques re-
quire a training set of signal strength readings la-
beled against a ground truth location map, which is
prohibitive to collect and maintain as maps grow
large. In this paper we propose a novel tech-
nique for solving the WiFi SLAM problem using
the Gaussian Process Latent Variable Model (GP-
LVM) to determine the latent-space locations of un-
labeled signal strength data. We show how GP-
LVM, in combination with an appropriate motion
dynamics model, can be used to reconstruct a topo-
logical connectivity graph from a signal strength
sequence which, in combination with the learned
Gaussian Process signal strength model, can be
used to perform efficient localization.

1 Introduction
The use of wireless signal strength information to localize
mobile devices has gained significant interest in several re-
search communities. This is mainly due to the increasing
availability of 802.11 WiFi networks and the importance of
location information for applications such as activity recog-
nition, surveillance, and context-aware computing.

The unpredictability of signal propagation through indoor
environments is the key challenge in location estimation
from wireless signal strength. This unpredictability makes
it difficult to generate an adequate likelihood model of sig-
nal strength measurements. Thus, the main focus of re-
search in this area has been on the development of tech-
niques that can generate good likelihood models from cal-
ibration data collected in an environment. This data typi-
cally consists of signal strength measurements annotated with
the ground truth locations of the device. The calibration
data is then often used to estimate the parameters of locally
Gaussian models, which have proven to be very effective for
localization [Haeberlen et al., 2004; Letchner et al., 2005;
Ferris et al., 2006].

The reliance on ground truth calibration data clearly lim-
its the applicability of existing techniques. In order to enable
location-aware mobile devices, these devices need to be able
to build their own spatial representations based on sequences
of raw, unlabeled signal strength data. While the robotics
and computer vision communities have developed techniques
for jointly estimating the locations of a device and a map of
an environment, the nature of wireless signal strength pro-
hibits the use of standard SLAM (simultaneous localization
and mapping) techniques [Thrun et al., 2005].

In this paper we present WiFi-SLAM, a novel technique
for building wireless signal strength maps without requir-
ing any location labels in the training data. To do so, our
approach builds on Gaussian process latent variable mod-
els (GP-LVM), a recently developed technique for map-
ping high-dimensional data to a low-dimensional latent space
[Lawrence, 2004]. In our context, the high-dimensional data
corresponds to the signal strength information for all WiFi
access points in an environment. GP-LVMs map these sig-
nal strength measurements to a two-dimensional latent space,
which can be interpreted as the xy-coordinates of the device.
Our embedding technique considers the following constraints
to solve this challenging SLAM problem.

1. Locations → signal strength: Locations that are near
each other should observe similar signal strength mea-
surements.

2. Signal strengths → locations: Similar signal strength
measurements indicate that they were observed at loca-
tions near each other. This constraint is extremely im-
portant to close loops, i.e. to detect when the person
returns to a previously visited location during the map-
ping process. While this constraint might be violated for
individual access points, it is a good approximation for
typical office envionments, where multiple access points
are visible at each point in time.

3. Locations→ locations: Locations that follow each other
in the data stream should be near each other. This con-
straint models the fact that mapping data is sequential,
collected by a person walking through the building.

Our approach incorporates these constraints in a single, sta-
tistically sound way. As a result, the technique is able to build
topologically correct maps from raw signal strength mea-
surements. Furthermore, the resulting map provides a signal



strength sensor model that can be used for Bayesian filtering
for location estimation.

This paper is organized as follows. After discussing related
work in the next section, we provide background on GPLVMs
in Section 3. Their application to WiFi-SLAM is described in
Section 4, followed by experiments and conclusions.

2 Related Work
WiFi localization techniques fall into a number of broad cat-
egories. Several location estimation techniques attempt to
model directly signal propagation through space [Bahl and
Padmanabhan, 2000], assuming known locations of access
points and an exponential signal attenuation model. However,
even when considering the location and material of walls and
furniture inside buildings, the accuracy of signal propagation
models is very limited. Other techniques attempt to model
reading likelihoods on a location-specific basis [Haeberlen et
al., 2004; Letchner et al., 2005], representing signal strength
at locations of interest with probability distributions learned
from training data. While more accurate than signal propaga-
tion models, these methods are inherently discrete and have
only limited capabilities for interpolation between locations.

To overcome these limitations, Schwaighofer and col-
leagues [2003] showed how to apply Gaussian processes to
signal strength localization, resulting in a model that provided
interpolation over continuous locations with direct modeling
of uncertainty from the training data. [Ferris et al., 2006] ex-
tended this technique to WiFi localization by combining the
GP signal strength model with graph-based tracking, allow-
ing for accurate localization in large scale spaces. Our WiFi-
SLAM technique builds on these recent models and extends
them to the case of mapping with unknown locations.

The robotics community has developed various approaches
for SLAM, see [Thrun et al., 2005]. However, these tech-
niques typically rely on the ability to sense and match discrete
entities such as visual landmarks or obstacles detected by
sonar or laser range-finders. Compared to these approaches,
our SLAM problem is particularly challenging, since we have
only very limited information about the person’s motion, and
since signal strength measurements vary extremely smoothly
over the location space. In principle we could extract distance
to access point estimates from signal strength measurements
and then apply range-only SLAM [Newman and Leonard,
2003] to map the locations of access points. However, such
techniques typically rely on rather accurate range measure-
ments, which are clearly not available in our context.

The WiFi-SLAM problem can be seen as an application-
specific case of the general dimensionality reduction prob-
lem. Specifically, we wish to reduce high-dimensional sig-
nal strength to some two-dimensional location space. Unfor-
tunately, dimensionality reduction algorithms such as PCA
do not typically perform well with highly non-linear mani-
folds such as those found in WiFi signal propagation. A very
promising class of techniques extend non-linear dimensional-
ity reduction methods to allow the specification of additional
constraints that reflect the generative model of the underlying
data process. One such technique is action respecting embed-
dings (ARE) [Bowling et al., 2005], which extends Semidef-

inite Embedding (SDE) by placing additional constraints on
the SDE similarity matrix. Specifically, when the same con-
trol action (e.g., robot motion) is applied to two different
points in the latent space, their successive latent points should
share a similar relative transformation. While ARE could be
used in our context to represent time-series constraints be-
tween successive signal strength readings, we wish to more
generally constrain higher level properties of the underlying
generative process.

A powerful technique for representing such constraints is
proposed in Gaussian Process Dynamical Models [Wang et
al., 2006]. The technique extends GP-LVM by including
an additional likelihood model for the latent-space variables.
Specifically, the technique models dynamic constraints via a
Gaussian process mapping between consecutive data points.
Though their technique was specifically designed for vision-
based motion tracking, we have extended it for our WiFi-
SLAM approach.

3 Gaussian Process Latent Variable Models
In this section, we will first describe Gaussian processes for
regression. We will then illustrate their application to esti-
mating a likelihood model of wireless signal strength mea-
surements, assuming that the ground truth locations of the
training data are known. Finally, we will show how Gaussian
process latent variable models can be used to handle the case
of unknown locations.

3.1 Gaussian Processes
GPs can be derived in different ways. Here, we fol-
low closely the function-space view described in [Ras-
mussen and Williams, 2005]. Let our data, D =
{(x1,y1), (x2,y2), dots, (xn,yn)}, be a set of training sam-
ples drawn from a noisy process

yi = f(xi) + ε, (1)
where each xi is an input sample in <q and each yi is a target
value, or observation, in <. The noise, ε, is assumed to come
from a zero mean, additive Gaussian distribution with known
variance σ2

n. For notational convenience, we aggregate the
n input vectors xi into a n × q design matrix X, and the
target values yi into the n × 1 vector denoted Y. Thus, xi

and yi are vectors that correspond to the i-th row of X and
Y, respectively. In the context of signal strength maps, X
represents locations in the 2D plane, and Y represents signal
strength measurements of a single WiFi access point.

A Gaussian process estimates posterior distributions over
functions f from the training data D. These distributions
are represented non-parametrically in terms of the training
points. A key idea underlying GPs is the requirement that the
function values at different points are correlated, where the
covariance between two function values, f(xi) and f(xj),
depends on the covariance between the two input values,
some xi and xj . This dependency can be specified via an ar-
bitrary covariance function, or kernel k(xi,xj). The choice
of the kernel function is typically left to the user, the most
widely used being the squared exponential, or Gaussian, ker-
nel:

cov (f(xi), f(xj)) = k(xi,xj) = σ2
f exp

(
− 1

2l2
|xi − xj |2

)
. (2)



Here, σ2
f is the signal variance and l is a length scale that de-

termines the strength of correlation between points. Both pa-
rameters control the smoothness of the functions estimated by
a GP. As can be seen in (2), the covariance between function
values decreases with the distance between their correspond-
ing input values.

Since we do not have access to the function values, but
only noisy observations thereof, it is necessary to represent
the corresponding covariance function for noisy observations:

cov (yr,ys) = k(xi,xj) + σ2
nδrs . (3)

Here σ2
n is the Gaussian observation noise variance and δrs

is one if r = s and zero otherwise. For an entire set of input
values X, the covariance over the corresponding observations
Y becomes

cov (Y) = K + σ2
nI, (4)

where K is the n × n covariance matrix of the input values,
that is, K[i, j] = k(xi,xj).

Note that (4) represents a prior over functions: For any set
of values X, one can generate the matrix K and then sam-
ple a set of corresponding targets Y that have the desired
covariance [Rasmussen and Williams, 2005]. The sampled
values are jointly Gaussian with Y ∼ N (0,K + σ2

nI). More
relevant, however, is the posterior distribution over functions
given training data X,Y. Here, we are intrested in predict-
ing the function value at an arbitrary point x∗, conditioned on
training data X,Y. From (2) follows that the posterior over
function values is Gaussian with mean µx∗ and variance σ2

x∗ :

p (f(x∗) | x∗,X,Y) = N
(
f(x∗);µx∗ , σ

2
x∗

)
, where

µx∗ = k∗T
(
K + σ2

nI
)−1

Y (5)

σ2
x∗ = k(x∗,x∗)− k∗T

(
K + σ2

nI
)−1

k∗ .(6)
Here k∗ is the n × 1 vector of covariances between x∗ and
the n training inputs X, and K is the covariance matrix of
the inputs X. As can be seen from (5), the mean function is
a linear combination of the training observations Y, where
the weight of each observation is directly related to k∗, the
correlation between the test point x∗ and the corresponding
training input. The middle term is the inverse of the covari-
ance function (4). The covariance of the function estimate,
σ2
x∗ , is given by the prior covariance, k(x∗,x∗), minus the

information provided by the training data (via the inverse of
the covariance matrix K). Note that the covariance is inde-
pendent of the observed values Y 1.

Finally, in order to get the predictive distribution for a noisy
observation, y∗, one simply has to add the observation noise:

p(y∗|x∗,X,Y)=
∫

p (y∗|f(x∗))p(f(x∗)|x∗,X,Y) df(x∗)

=N
(
y∗;µx∗ , σ

2
x∗ + σ2

n

)
(7)

This predictive distribution summarizes the key advantages
of GPs in the context of wireless signal strength models. In
addition to providing a regression model based on training
data, the GP also represents the uncertainty of the prediction,
taking both sensor noise and model uncertainty into account.

1Observed values Y may impact the parameters of the covari-
ance function via hyperparameter estimation [Ferris et al., 2006].

Figure 1: GP model for signal strength of one access point.
Black dots indicate training data along the ground truth path.

3.2 Application to Signal Strength Modeling
GPs have been applied very successfully to signal strength
modeling, where the input values X correspond to locations,
and the observations Y correspond to signal strength mea-
surements obtained at these locations [Schwaighofer et al.,
2003; Ferris et al., 2006]. Here, the GP posterior is estimated
from a trace of signal strength measurements annotated with
their locations. Assuming independence between different
access points, these techniques estimate a GP for each access
point separately.

Fig. 1 illustrates the GP signal strength model for one ac-
cess point in an environment of size 60 × 50 meters, includ-
ing hallways, offices, and open areas. Fig. 1 clearly demon-
strates that signal strength propagation cannot be represented
adequately by a parametric sensor model such as one that
estimates the location of an access point and then assumes
a radial signal propagation model. The GP on the other
hand, smoothly approximates the data points (see [Ferris et
al., 2006] for details).

3.3 Latent Variable Models
So far we have assumed that the locations X of the train-
ing data are observed. The goal of our research is to build
GP signal strength maps without relying on location data. To
build such maps, we treat the locations X as hidden, or latent,
variables. The resulting, much more challenging problem
can be addressed by Gaussian process latent variable mod-
els (GP-LVM), which were introduced by [Lawrence, 2004;
2005] in the context of data visualization.

In the previous section we treated different access points
individually, resulting in a 1-dimensional observation space.
Here, it will be necessary to jointly consider the sig-
nal strength of multiple access points, which results in d-
dimensional observations yi, reporting the signal strength s
of d access points. The traditional probabilistic approach to
latent variable techniques models the relationship between
latent variables, X ∈ <n×q, and a set of observed data,
Y ∈ <n×d, through the parameterized function

yij = f(xi;wj) + ε , (8)

where yij is the element from the i-th row and j-th column of
Y, xi is the vector formed from the ith row of X, wj are the
parameters of the (possibly non-linear) function f(·), and ε is



a zero mean noise term. This function, which is the same as
(1) with explicit parameters, implies a probabilistic relation-
ship between the latent variables and the data, p(yij |xi,wj).
If independence is assumed across the dimensions and instan-
tiations of the data this relationship factorizes as

p(Y|X,W) =
∏
ij

p(yij |xi,wj) . (9)

Since the latent variables are unknown, they must now be
dealt with. Traditionally this is done through marginaliza-
tion, necessitating the definition of a prior distribution. A
common choice of prior is the normalized zero mean Gaus-
sian, p(xij) = N (xij ; 0, 1), p(X) =

∏
ij p(xij). Since the

noise is assumed to be drawn from a zero mean Gaussian with
a given variance σ2

n, the parametric relationship between the
latent variables and the data can then be recovered through
optimization of the marginal likelihood. If the functional re-
lationship between the latent variables and the data is linear,

f(xi;wj) = wT
j xi , (10)

then the marginal likelihood is of the form [Tipping and
Bishop, 1999]

p(Y|W) = N (Y;0,WWT + σ2
nI). (11)

The likelihood of this model can then be maximized with re-
spect to W with the result that W spans the principal sub-
space of the data [Tipping and Bishop, 1999]. In the context
of WiFi mapping, however, f(xi;wj) is clearly non-linear
and thus the marginalization to obtain (11) cannot be per-
formed without reverting to approximations.

In the GP-LVM an alternative approach is proposed. The
GP-LVM is inspired from the Bayesian point of view. In
the Bayesian approach, rather than maximizing the likeli-
hood of the parameters, they are treated as latent variables and
marginalized. Unfortunately, even for the linear case we have
just described, it is not possible to marginalize both the latent
variables and the parameters. If we do not wish to turn to
approximate methods we are therefore faced with a choice of
what to marginalize: the latent variables or the parameters. In
[Lawrence, 2004; 2005] it was shown that if the prior distribu-
tion for the parameters is Gaussian, p(wij) = N (wij ; 0, 1),
p(W) =

∏
ij p(wij), then maximizing the likelihood with

respect to X still leads to principal component analysis. For
this case the marginal likelihood takes the form

p(Y|X) =
∏
j

N (yj ;0,XXT + σ2
nI). (12)

By comparison with (7) this is recognized as a product of
Gaussian process models with a linear covariance function.
We can extend this model to arbitrary covariance relation-
ships by considering the covariance defined via a kernel func-
tion, as in (4). Thus, maximizing (12) with respect to X de-
termines the xij values that maximize the data likelihood as-
suming an underlying Gaussian process model.

4 GP-LVMs for WiFi SLAM
We utilize the GP-LVM framework to probabilistically model
the relationship between WiFi signal strength readings Y and

their underlying positions X in the two-dimensional coordi-
nate space. The likelihood of our model takes the form:

p(X,Y) = p(Y|X)p(X) (13)

In the GP-LVM framework, p(Y|X) is modeled by a GP and
p(X) is the expression of our latent-space dynamics model.
The set of constraints we discussed in the introduction of the
WiFi-SLAM problem are nicely captured within these terms,
as we shall describe below.
Location → signal strength: We wish to constrain that
similar locations should have similar signal strengths. This
property is captured by most dimensionality reduction tech-
niques, including GP-LVM. Specifically, the GP used to
model p(Y|X) provides this property, where the similarity
of points in the latent space is controlled by the underlying
kernel function. For the WiFi case, we use the squared expo-
nential kernel (2) with parameter values trained from previ-
ously labeled WiFi training data.
Location → location: We wish to model the motion of the
person collecting the mapping data. These constraints en-
compass the dynamics component of the GP-LVM. For the
WiFi case, we do not have strong odometry data, so we addi-
tionally constrain X against a generative model of a generic
office building. Remember that X is an n× q design matrix,
where each row xi is the latent position of the WiFi readings
yi. We model three constraints in our dynamics models:
• Distance between successive positions

• Change in orientation between successive positions

• Alignment of parallel line segments

We represent the constraints as a conjunction of probabilities:

p(X) = p(distance)p(orientation)p(alignment). (14)

To constrain the distance between successive points, we apply
a simple time-series constraint based on a Gaussian prior on
walking velocity N (µv, σv), which results in

p(distance) =
n−1∏
i=1

N (||xi+1 − xi||;∆iµv,∆iσv). (15)

Here, ∆i is the time difference between consecutive measure-
ments. We also consider the change in orientation between
successive points, where θi is the change in orientation be-
tween ui = xi − xi−1 and ui+1 = xi+1 − xi. We assume
that for a general office environment, most time will be spent
walking in a straight line along hallways, with periodic in-
tersections. We place a prior on change in orientation as a
zero-mean Gaussian with sigma σo. Thus, we can model the
likelihood of latent locations against our orientation model as

p(orientation) =
n−1∏
i=2

N (θi; 0, σo). (16)

We finally consider the alignment constraint. The intuition
behind this constraint is that when a trace visits the same
hallway twice, there will be two roughly parallel paths that
should be aligned. To model this constraint, we consider
the probability that two segments u = xi → xi+1 and



v = xj → xj+1 are parallel as p(parallel) = N (θ; 0, σ)
where θ is the relative orientation between the two seg-
ments. We only align parallel segments which are already
close to each other, as captured by p(dp < 5) where dp is
the perpendicular distance between the two segments, mea-
sured in meters. The inequality is modeled as the like-
lihood that N (dp, σ1) is less than N (5, σ2), defined as

1/2
(
1 + erf

(
(dp − 5)/

√
2(σ2

1 + σ2
2

))
. If both segments

are parallel and close by, we constrain their separation dis-
tance to zero as p(separation) = N (dp; 0, σ). Thus, our full
alignment constraint is

p(alignment) = p(parallel)p(dp < 5) ⇒ p(separation). (17)

All told, we have defined the conjunction of three probabilis-
tic models constraining distance, orientation, and alignment
of latent space coordinates to provide p(X) as the dynamics
model. When combined with the GP model of p(Y|X), we
have defined our full probability model. However, we have
one constraint left.
Signal Strength → location: We wish to constrain that simi-
lar signal strength readings should be mapped to similar loca-
tions. Note that this constraint is only reasonable in dense
WiFi environments such as offices and urban areas. This
constraint is not provided by default in GP-LVM. However,
Lawrence and Quiñonero-Candela [2006] demonstrate the
use of back constraints to constrain local distance in Y to
local distances in X. Back constraints are implemented as a
smooth internal mapping of X = g(Y, φ) where φ is a set of
mapping parameters. The smoothness of the mapping ensures
that nearby points in Y are also nearby in X.

Finally, we optimize the marginalized latent positions X by
minimizing the negative log-likelihood of our full GP-LVM
likelihood model P (X,Y). We can do this efficiently with
conjugate gradient-descent, where the gradient of the log-
likelihood can be evaluated with respect to each element of
X. Performance is improved and local minima avoided if we
initialize the starting point of the descent with a reasonable
value. In our case, we apply Isomap to generate an acceptable
initialization. We will contrast the results of Isomap with the
full GP-LVM in the results section.

5 Experimental Results
Our experimental evaluation consists of collecting a series
of WiFi signal-strength traces, generating a sensor model
and map using the WiFi-SLAM technique, and then cross-
validating the model by localizing the remaining traces and
considering the error.

We collected three traces over one floor of a university
building. Traces ranged in length from 250 meters to half
a kilometer. Traces were collected with an iPAQ hand-held,
a standard WiFi card, and a click-to-map-based annotation
program for establishing ground truth location. As seen in
the ground truth path in Fig. 3, traces included three loop
closures and multiple trips through each hallway. For each
trace, we initialized GP-LVM with an Isomap embedding of
X, which, as also seen in Fig. 3, does a reasonable job of re-
covering the overall structure of the WiFi trace. However, the
embedding lacks finer resolution that would make it possible
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Figure 2: Comparison of ground truth Gaussian process ver-
sus that constructed by GP-LVM.

to easily establish the topological connectivity graph for later
localization. We will demonstrate these finer features in our
GP-LVM results.

We see in the final plot in Fig. 3 the result of the latent space
optimization of GP-LVM. The plot shows clear definition of
intersections, correct alignment of paths, and a strong topo-
graphical similarity to the ground truth trace. We had similar
results for our other test traces, though they are not displayed
here for brevity. The plot also demonstrates the current lim-
itations of our approach. The ground truth trace includes a
non-right-angle intersection, which is simplified as a right an-
gle in our GP-LVM result. While we have no explicit angular
constraint in our motion model, the constraint emphasizing
straight and aligned paths tends to prefer a grid like structure
in the resulting map.

Given the resulting latent-space optimization, it is trivial to
extract an intersection connectivity graph from this represen-
tation. The resulting graph and the GP sensor model produced
as by-product of GP-LVM are immediately applicable to the
task of Bayesian localization, as described in [Ferris et al.,
2006]. In Fig. 2, we see a comparison of a GP sensor model
resulting from the ground truth locations and a GP model re-
sulting from the optimized GP-LVM latent space. We present
these results as a demonstration that the two models are quite
similar, suggesting our optimized latent space is reasonable.

To evaluate localization accuracy, we cross-validated each
GP-LVM result by performing localization using the remain-
ing two test traces. Since the mapping from the latent coordi-
nate system X to the underlying ground truth coordinate sys-
tem is not well-defined, we evaluated localization accuracy
using the metric described in [Bowling et al., 2005]. Specifi-
cally, to determine the location in the ground truth coordinate
system, we find the closest training point in the latent space
to our current location and use its ground truth location as our
own location. Put differently, whenever a person returns to a
previously visited location, we estimate how accurately our
system can detect this event.
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Figure 3: The results of an GP-LVM run for one of our traces. While the Isomap result (center) shows general structure, the
GP-LVM result (right) has clearer correspondence with the ground truth trace (left).

We calculated the mean localization error over six local-
ization runs to be 3.97± 0.59 meters. While the localiza-
tion accuracy is not as high as those achieved with techniques
based on labeled calibration data, the fact that reasonably
accurate localization can be performed without any labeled
training data indicates the success of our technique.

6 Conclusion
We have a demonstrated a method for addressing the WiFi-
SLAM problem. The key idea of our approach is to apply
Gaussian process latent variable models (GP-LVM) in or-
der to estimate the locations of WiFi signal strength read-
ings collected by a person walking through a building. GP-
LVMs provide a powerful framework for jointly model-
ing constraints on WiFi signal strength measurements and
on a person’s motion. We have shown that GP-LVMs in
combination with a simple dynamics model can reconstruct
topographically-correct connectivity graphs and GP sensor
models that can be used directly for WiFi localization.

WiFi-SLAM serves as a promising solution to the prob-
lem of collection and maintenance of WiFi sensor models
for large-scale localization. In our future work, we wish
to integrate additional sensors, such as accelerometer, digi-
tal compass, and barometer, to increase the accuracy of our
technique. We additionally wish to extend mapping into
more complex office environments, enhancing our ongoing
research in desktop and mobile activity recognition.
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