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Abstract— This paper presents a general framework for
multi-sensor object recognition through a discriminative prob-
abilistic approach modelling spatial and temporal correlations.
The algorithm is developed in the context of Conditional
Random Fields (CRFs) trained with virtual evidence boosting.
The resulting system is able to integrate arbitrary sensor
information and incorporate features extracted from the data.
The spatial relationships captured by are further integrated
into a smoothing algorithm to improve recognition over time.
We demonstrate the benefits of modelling spatial and temporal
relationships for the problem of detecting cars using laserand
vision data in outdoor environments.

I. INTRODUCTION

Reliable object recognition is an important step for en-
abling robots to reason and act in the real world. A high-
level perception model able to integrate multiple sensors can
significantly increase the capabilities of robots. Tasks such
as obstacle avoidance, mapping, and tracking can all benefit
from a fast and general object detector able to be trained to
recognise specific objects of interest.

Although object recognition has been a major research
topic in the computer vision community, direct application
of the algorithms to robotics problems is not always feasible.
There are three main reasons for this. First, robotics appli-
cations require real-time object recognition. Although real-
time algorithms for face detection do exist [22], real-time
recognition of general objects is still under development.
Second, robots can be equipped with different types of
sensors including ranging and visual. The integration of these
sensors for object recognition can complement the visual
information by providing additional geometric propertiesof
observed objects. Multi-sensor fusion for object recognition
is thus a desirable feature to be considered in robotics
perception. Third, when navigating, robots observe the same
objects from different locations and in different periods of
time. This is conceptually different from most object recog-
nition algorithms in computer vision where observations
are considered independent. Algorithms able to integrate
observations at different times and positions are expected
to perform more robustly in complex outdoor environments
with variable illumination and multi-scale observations.

We present an algorithm to address these issues in the
context of Conditional Random Fields (CRFs). CRFs are

discriminative models for classification of sequential (de-
pendent) data, directly modelling the conditional probability
p(x|z) of hidden states given observations [6]. CRFs have
been applied with substantial success to recognition problems
in robotics, including object mapping and semantic place la-
beling [9], [4]. By building on the recently developed Virtual
Evidence Boosting (VEB) algorithm for CRF training [7], the
model described here is able to automatically select features
during the learning phase. Expert knowledge about the
problem can be encoded as a selection of features capturing
particular properties of the data such as geometry, colour
and texture. Given a training set, the algorithm automatically
selects and weighs each of these features according to their
importance in discriminating the data.

The proposed framework uses CRFs as a unifying method-
ology to learn spatial and temporal relationships from obser-
vations obtained with a laser range-finder and a camera. The
model is trained to recognise cars in an urban environment
from a moving vehicle. In outdoor environments the problem
of recognising objects is more difficult. Illumination can
change significantly as the robot enters covered areas. Terrain
irregularities can contribute to blurring and occlusions occur
quite often. Our experiments reveal that temporal integration
can significantly improve the accuracy of object detection.
By observing the same objects at different points in time,
detection becomes more robust and able to cope with the
complexity of the environment. As the vehicle approaches
an object, the scale of the object increases in both laser and
camera data. The additional information can be integrated
with past observations through temporal links included in
the CRF model. Temporal features are pairwise relationships
linking laser points at different times. The Iterative Closest
Point algorithm (ICP) [24] is used to define which points are
connected by temporal features.

This paper is organised as follows. After discussing related
work in Section II, background on conditional random fields
and virtual evidence boosting is provided in Section III. The
application to spatio-temporal object recognition is described
in Section IV, followed by the experimental evaluation. We
conclude in Section VI.



II. RELATED WORK

CRFs have been applied to recognition of cars from side
and rear views in [14]. The proposed model is trained by
optimising the maximum likelihood in a part-based approach.
The imagery used was, however, quite limited. Cars were
centred in the image and only observed from the rear or from
the side. Changes in illumination and scale were not substan-
tial compared to real situations in urban environments.

To deal with changes in objects perceived scale, [1]
proposed a sub-sampling method which modifies its sub-
sampling interval based on the size of the object in imaging
data. Representative samples are deterministically stored in
a data base and compared against in-coming images at run
time to perform object recognition. We address the problem
of variations in scale using laser returns to define Regions
Of Interest (ROI) in the image.

Ramos et al [17] have demonstrated recognition and
segmentation of objects in unstructured environments using
camera images and generative models. Mixtures are genera-
tively trained through Variational Bayesian Expectation Max-
imisation (VBEM) for models representing the background
and the object. Although this algorithm is fast and provides
segmentation, no spatial or temporal dependencies are taken
into account.

Within the robotics community, researchers have recently
developed representations of the environment integrating
more than one modality. In [12], a 3D laser scanner and
loop closure detection based on photometric information are
brought together in the Simultaneous Localization and Map-
ping (SLAM) framework. This approach does not generate
a semantic representation of the environment which can be
obtained from the same multi-modal data using the approach
proposed here.

In [16], a robust landmark representation is created by
probabilistic compression of high dimensional vectors con-
taining laser and camera information. This representation
is used in a SLAM system and updated on-line when a
landmark is re-observed. However, it does not readily allow
the inference of landmarks’ class which could contribute to
higher level reasoning.

Object recognition based on laser and video data has
been demonstrated in [10]. Using a sum rule, this approach
combines the outputs of two classifiers, each of them being
assigned to the processing of one type of data. In contrast,
we learn a CRF classifier with the Virtual Evidence Boosting
algorithm which performs feature selection in both datasets
in order to minimize the classification error on training data.
The VEB algorithm can, as it is, learn a classifier given as
many data types as available and is not restricted to laser
and vision inputs. For instance, VEB has been applied in
the context of activity recognition to a data set containing
inputs from thermometers, barometers, accelerometers, mi-
crophones, phototransitors and GPS units [7], [20].

The key contribution of this work is to present a proba-
bilistic model for object recognition which integrates spatial
and temporal correlations and can be learnt given any types
of labeled data.

III. C ONDITIONAL RANDOM FIELDS

This section provides a brief description of conditional
random fields (CRF) and virtual evidence boosting (VEB),
an extremely efficient way of learning CRF parameters
for arbitrary feature functions (see [21] and [7] for more
information).

A. Model Description

Conditional random fields are undirected graphical models
developed for labeling sequence data [6]. CRFs directly
model p(x|z), the conditional distribution over the hid-
den variablesx given observationsz. This is in contrast
to generative models such as Hidden Markov Models or
Markov Random Fields, which apply Bayes rule to infer
hidden states [15]. Due to this structure, CRFs can handle
arbitrary dependencies between the observationsz, which
gives them substantial flexibility in using high-dimensional
feature vectors.

The nodes in a CRF represent hidden states, denoted
x = 〈x1,x2, . . . ,xn〉, and data, denotedz. The nodes
xi, along with the connectivity structure represented by
the undirected edges between them, define the conditional
distributionp(x|z) over the hidden statesx. Let C be the set
of cliques in the graph of a CRF. Then, a CRF factorizes the
conditional distribution into a product ofclique potentials
φc(z,xc), where everyc ∈ C is a clique in the graph and
z and xc are the observed data and the hidden nodes in
the clique c, respectively. Clique potentials are functions
that map variable configurations to non-negative numbers.
Intuitively, a potential captures the “compatibility” among
the variables in the clique: the larger the potential value,the
more likely the configuration. Using clique potentials, the
conditional distribution over the hidden states is writtenas

p(x | z) =
1

Z(z)

∏

c∈C

φc(z,xc), (1)

whereZ(z) =
∑

x

∏

c∈C φc(z,xc) is the normalizing parti-
tion function. The computation of this partition function can
be exponential in the size ofx. Hence, exact inference is
possible for a limited class of CRF models only.

Potentialsφc(z,xc) are described by log-linear combina-
tions of feature functionsfc(), i.e.,

φc(z,xc) = exp
(

w
T
c · fc(z,xc)

)

, (2)

wherew
T
c is a weight vector, andfc(z,xc) is a function that

extracts a vector of features from the variable values. Using
feature functions, we rewrite the conditional distribution (1)
as

p(x | z) =
1

Z(z)
exp

{

∑

c∈C

w
T
c · fc(z,xc)

}

(3)

B. Inference

Inference in CRFs can estimate either the marginal dis-
tribution of each hidden variablexi or the most likely
configuration of all hidden variablesx (i.e., MAP estima-
tion), as defined in (3). Both tasks can be solved using



belief propagation(BP) [13], which works by sending local
messages through the graph structure of the model. Each
node sends messages to its neighbours based on messages
it receives and the clique potentials, which are defined via
the observations and the neighborhood relation in the CRF.
A message a particular nodek sends to its neighbouri is
defined as:

µk→i(xi) = α
∑

xk

φ(xk,xi)φ(xk, zk)
∏

j∈n(xk),j 6=i

µj→k(xk) (4)

wheren(xk) denotes the neighbours of a nodek. Here, the
first potential corresponds to neighborhood potential between
xk andxi, and the second potential measures the consistency
between the statexk and the observationzk. Messages are
propagated until convergence or until a maximum number of
iterations is reached.

BP provides exact results in graphs with no loops, such
as trees or polytrees. However, since the models used in our
approach contain various loops due to temporal relationships,
we apply loopy belief propagation, an approximate inference
algorithm that is not guaranteed to converge to the correct
probability distribution [11]. Fortunately, in our experiments,
this approximation turned out to be reasonably accurate even
when loopy BP failed to converge (the maximum number of
iterations is reached).

C. Learning via Virtual Evidence Boosting

Learning a CRF model involves determining the weights
used in the clique potentials (2) that determine the probabilis-
tic relationships of the model. CRFs are trained discrimina-
tively by maximizing the conditional likelihood (3) of labeled
training data. This optimization is typically done by gradient-
based techniques such as L-BFGS, where gradients are com-
puted using inference in the CRF model. In order to avoid
computationally complex inference for gradient computation,
several researchers applied pseudo-likelihood training,which
can be performed without running inference [21], [8].

While CRFs can handle extremely high-dimensional con-
tinuous and discrete features, the integration of continuous
features is not straightforward. This is due to the fact that
the incorporation of raw, continuous features in CRFs is
similar to uni-modal Gaussian likelihood models in gener-
ative approaches such as hidden Markov models. Obviously,
such simple likelihoods are not well suited to model more
complex, multi-modal features and sensor data. Recently,
researchers have applied boosting in order to discretize
continuous features into binary threshold functions, called
decision stumps [4]. The thresholds are learned by minimiz-
ing an exponential loss function of the training data [2]. The
decision stumps are then used as binary features in a CRF,
and the weights for these features are learned using regular
CRF training [4].

More recently, Liao and colleagues introduced virtual
evidence boosting (VEB), which incorporates feature dis-
cretization into CRF training [7]. VEB jointly learns an
appropriate discretization of continuous features, the weights
of these features, and the weights of neighborhood potentials
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Fig. 1. Graphical model of a linear chain CRF for one time slice object
recognition. Each hidden nodexi represents one beam in a laser scan. The
nodeszi correspond to spatial features extracted from the laser scan and
local visual features extracted from a camera image.

of the CRF. In essence, this is done by performing boosting
on both the features and the neighborhood potentials of the
CRF. VEB has demonstrated superior performance on both
synthetic and real data. Furthermore, the automatic feature
discretization makes VEB extremely flexible and allows the
incorporation of arbitrary, continuous and discrete features.
Since modelling flexibility is crucial in the context of our
object recognition task, we chose to use VEB for learning
the parameters of our CRFs.

IV. CRFS FOR OBJECT RECOGNITION

This section describes the deployment of the CRF frame-
work to perform object recognition. This work focuses on the
problem of detecting cars in an outdoor urban environment
given laser data and monocular colour images. Fig. 4 shows
examples of laser scans projected into the corresponding
image according to the procedure described in [23]. These
images illustrate the typical variety in terms of classes
of objects, scales and lighting conditions encountered in
outdoor urban environments.

The CRF framework is applied to this data by converting
each scan into a linear chain CRF such as the one displayed
in Fig. 1. Each node of this CRF represents a laser return.
The hidden variable to be estimated is the class of the return,
i.e class “car” or class “other”. The parametrization of such
a CRF model of a laser scan is now described. We then
explain how this model is further incorporated into a more
elaborated representation which takes temporal relationships
into account.

A. One time slice model

To jointly estimate all the labels of a laser scan, ob-
servations are first passed to each node via local feature
functionsflocal(). Each node performs local estimation and
then propagates its local estimate across the network via
a second type of feature function,fcompatibility(), which
encodes the neighborhood relationships amongst adjacent
nodes. The compatibility functions are learnt by the VEB
algorithm in a form of a 2×2 matrix. This matrix correlates
the distribution over classes computed by two neighbour
nodes. In the experiments two types of local feature functions
are used: geometric feature functions and visual feature
functions. We now detail each of them.

Geometric laser features:These features capture geomet-
ric properties of the objects detected in the laser scan. While
local shape can be captured by various types of features,
we chose to implement simple shape features measuring



distance, angle, and number of out of range returns between
two beams. The resulting feature function has the form

fgeo(i, zA) = concat (fdist(i, zA), fangle(i, zA), foor(i, zA)) , (5)

wherei indexes one of the returns in scanzA. The concat
function performs a concatenation operation, and the result-
ing function fgeo(i, zA) returns a vector of dimensionality
213, as specified next.

To generate distance featuresfdist, we compute for each
point zA,i in scanA its distance to other points in scanA.
These other points are chosen based on their relative indices
in the scan. Withk being an index offset, the distance feature
corresponding to pointszA,i is computed as follows:

fdist (i, k, zA) =
‖zA,i − zA,i+k‖

2

σ2
. (6)

In our implementation this feature is computed for index
offsetsk varying from−10 to +10.

Another way to consider local shape is by computing the
angles of points w.r.t their neighbours. The angle of a point
zA,i is defined as the angle between the segments connecting
point i to its neighbours:

fangle (i, k, zA) =
‖∠ (zA,i−kzA,i, zA,izA,i+k)‖

2

σ2
. (7)

Again, we vary the index offsetk from −10 to +10.
The out of range featurefoor counts the number of “out of

range” returns between pairs of non “out of range” returns.
The idea is to encode open areas in the laser scan.

Visual features:In addition to geometrical information, a
CRF model learnt with the VEB algorithm can seamlessly
integrate the vision data provided by a monocular colour
camera. A first step consists of registering the vision sensor
and the laser range-finder with respect to each other using
the calibration procedure described in [23]. The laser returns
can then be projected into the associated image. The visual
features extracted from this image capture color and texture
information in the window (or ROI) centered around the
laser return. The edge length of the window is set to be
1 meter for a range of 4 meters. This size is converted into
number of pixels using the camera’s intrinsic parameters and
adjusted depending on the range measurement. Changing
the size of the extracted patch as a function of range is a
way to deal with the variation in scales as an object moves
from the background to the foreground of the image. It was
verified that the use of a size varying window improves the
experimental results by 4%.

The visual feature function has the following form:

fvisu(pi, pi−1) = concat (ftexture(pi, pi−1), fcolour(pi, pi−1)) ,

(8)
where pi is the image patch corresponding to returni.

ftexture(pi, pi−1) returns a vector containing the steerable
pyramid [19] coefficients of image patchi, and the difference
between the steerable pyramids computed at patchi and at
patchi − 1. fcolour(pi, pi−1) returns a vector containing the
3D RGB colour histogram of patchi and of its difference
with patchi − 1. Only neighbouri − 1 is used to limit the
dimensionality offvisu which is already around 7000.
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Fig. 2. Graphical model of the spatio-temporal classifier. Nodes xi,j

represent thei-th laser beam observed at timej. Temporal links are
generated between time slices based on the ICP matching algorithm.

B. Recognition over time

Due to the sequential nature of robotics applications, a
substantial amount of information can be gained by taking
into account prior and posterior data when available. We
now present a model that achieves temporal smoothing in
addition to exploiting the structure of one scan. This model
is displayed in Fig. 2.

In this work, the temporal connections are instantiated
such that they represent the associations found by the It-
erative Closest Point (ICP) algorithm [24]. The pairwise
potentials assigned to these connections are set to identity.
Mathematically,φtemporal(xi,xj) = δ(xi,xj), where δ is
the indicator function. This set-up is justified by the fact
that ICP associates returns that were generated by the same
physical point. It follows that the integration of temporal
information does not require additional learning. In earlier
stages of this research, attempts have been made to learn the
temporal relationships from data. Our tests show that setting
φtemporal to identity leads to better results.

Corresponding to different variants of temporal state es-
timation, our spatio-temporal model can be deployed to
perform three different types of estimation.

• Off-line smoothing: All scans in a temporal sequence
are connected using ICP. BP is then run in the whole
network to estimate the class of each laser return in the
sequence. During BP, each node sends to its neighbours
the messages defined in (4) through structural and tem-
poral links (vertical and horizontal links respectively in
Fig. 2). In our experiments, BP is run for 100 iterations.

• On-line fixed-lag smoothing: Here, scans are added to
the model in an on-line fashion. To label a specific scan,
the system waits until a certain number of future scans
becomes available, and then runs BP taking past and
future scans into account.

• On-line filtering: In this case the spatio-temporal model
only includes scans up to the current time point.



V. EXPERIMENTS

The experiments were performed using outdoor data col-
lected with a modified car travelling at 0 to 40 km/h. The
car drove along several loops in the university campus which
has structured areas with buildings, walls and cars, and areas
less structured with bush, trees and lawn fields. The overall
dataset contains 4,500 images which represents 20 mins of
logging. Laser data was acquired at a frequency of 4Hz using
a SICK laser. The models presented in Sec. IV are used to
estimate the class of each return in the laser scans. Here,
the classification problem is binary and involves the classes
“car” and “ other”.

Table I summarizes the experimental results in terms of
classification accuracy. The accuracies are given in percent-
ages and computed using 10 fold cross validation on a set
of 100 manually labeled scans. For each cross validation,
the different models were trained for 200 iterations. The
VEB algorithm was run allowing the learning of pairwise
relationships only after iteration 100. We found that this
increases the weights on the local feature and improves
classification results.

training set geo only visu only geo+visu geo+visu
number of time 1 1 1 ∓10

slices in the model
CRF 68.93 81.79 83.26 88.08

logitboost 67.64 81.52 83.22 ×

TABLE I

CLASSIFICATION ACCURACY (IN %)

The first line of Table I indicates the types of features used
to learn the classifier. Three different training sets are used:
one using geometric features only, one containing visual
features only, and a third one containing both geometric
and visual features. The second line of table I indicates
the number of time slices in the network used to perform
classification. “1” means that a network as the one presented
in Fig. 1 was used. “∓ 10 ” refers to the classifier shown
in Fig. 2 instantiated with the 10 scans observed before and
after the labeled scan.

Two types of classifiers were used: CRFs and logitboost
classifiers. CRFs take into account the neighbours to perform
classification (Fig. 1). Logitboost learns a classifier that
only supports independent classification of each scan return
without using neighborhood information [3]. Logitboost is
used here for comparison purposes to investigate the gain in
accuracy obtained with a classifier that takes into account
the structure of the scan.

The first three columns of Table I show that classification
results are improving as richer features are used for learning.
The first three columns also show that the CRF models lead
to slightly more accurate classification. The improvement
brought by a CRF classifier is made clearer when classifica-
tion results are expressed in terms of the Receiver Operating
Characteristics (ROC) shown in 3.

Additionally, as presented in Sec. IV-B, our model can
readily be extended into a spatio-temporal model. The latter
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Fig. 3. ROC curves. Models learnt using visu+geo features.

leads to an improvement of5% in classification accuracy
(right column of table I). This shows that the proposed
spatio-temporal model, through the use of past and future
information, is better for object recognition. The associated
ROC curve displayed in Fig. 3 shows the same trend: it is
above the two others. The cross in the bottom right of the
table refers to the fact that logitboost does not allow the
incorporation of temporal information in a straightforward
manner.

CRF models also generate better segmentation of cars in
laser scans. This can be quantified using the metric called
String Edit Distance (SED)[18]. Intuitively, this metric tells
us whether classification results capture the true arrangement
of objects in a scene. It penalizes series of estimates that do
not respect the true sequence of blocks with the same label.
For example, given the ground truth “ccooccoo” (where
’c’ and ’o’ stand for ’car’ and ’other’, respectively), the
estimated sequence “cocococo” is more penalized (larger
SED) than “ooccooccoo”. This is because the latter estimate
is more similar to the true sequence in terms of blocks of
returns with the same label. Note that in this example the
SED is larger for the sequence with higher classification
accuracy which illustrates the ability of the SED metric to
capture different properties.

Table II presents the classification results in terms of SED.
The values show that the spatio-temporal model gives the
best results in terms of classification accuracy as well as
in terms of SED. The CRF classifiers, through their ability
to represent spatial and temporal dependencies, are better
able to capture the true arrangement of the observed objects.
This property is extremely beneficial for segmentation tasks,
which is beyond the scope of this paper.

These results match with the ones presented in [4] where it
is shown that a CRF based approach is better able to capture
the structure of indoor environments.

Fig. 4 shows four examples of classification results. It can
be seen that the spatio-temporal model gives the best results.
While the logitboost classifier tends to alternate correct and
incorrect classification across one scan, the ability of the



Classifier logitboost CRF CRF
(training set = geo+visu)

number of time 1 1 ∓ 10
slices in the model
String Edit Distance 9.5 5.6 2.4

TABLE II

STRING EDIT DISTANCES

CRF classifiers to capture the true arrangement is illustrated
by the block like distribution of the inferred labels. Figure
4(b) shows the three classifiers failing in a very dark area
of the image (right of the image). In the rest of the image
which is still quite dark, as well as in images with various
lighting conditions (Fig. 4(a), 4(c) and 4(d)) the saptio-
temporal model does provide good classification results.

Inference in a one time slice CRF takes less than a
millisecond on a Intel Xeon 2.33GHz desktop computer.
Inference in the spatio-temporal model made of 21 time
slices and containing about 1500 nodes takes on average 15
milliseconds. This shows that the proposed spatio-temporal
model is appropriate for real-time applications. Learningthe
model requires around 40 minutes and can be performed off-
line.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a general probabilistic model for object
recognition that incorporates spatial and temporal dependen-
cies. The model is developed in the context of CRFs trained
with Virtual Evidence Boosting (VEB).

Experiments were performed in an urban environment for
recognition of cars. Laser and monocular camera information
were used to detect cars under different illumination con-
ditions, viewpoints, scales and occlusion. The experiments
demonstrate that our approach achieves superior classifica-
tion performance by modeling the beams of a laser scan
jointly and by integrating observations over time. This is
expected as the additional information obtained as the vehicle
approaches an object, observing it in larger scales, can
correct past predictions. Furthermore, by building on CRF
models, the approach can incorporate arbitrary, correlated,
continuous and discrete features extracted from sensor data.
VEB parameter learning automatically extracts the most
useful feature functions from the data.

While the focus of this paper was on binary car classifica-
tion, our framework can be readily applied to multi-class ob-
ject recognition. We are currently investigating the learning
of additional object classes, such as persons, buildings, trees,
and other vegetation. The ability to on-line estimate such a
variety of objects will be extremely helpful for navigation
and building expressive models of outdoor environments.

One limitation of our current system is its dependence
on the availability of fully labeled training data. However,
VEB training can be applied to partially labeled data. In
this case, only a subset of laser beams are labeled, and the
model parameters are learned by computing the evaluation
function at the labeled data points only [5]. Using partial

labeling, our approach can be applied to far larger and hence
diverse sets of laser scans and images, which results in better
generalization performance. First experiments with partially
labeled data show very promising results.
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