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Abstract— This paper presents a general framework for discriminative models for classification of sequential-(de
multi-sensor object recognition through a discriminative prob-  pendent) data, directly modelling the conditional probigbi
abilistic approach modelling spatial and temporal correldions. p(x|z) of hidden states given observations [6]. CRFs have

The algorithm is developed in the context of Conditional b lied with substantial ¢ i .
Random Fields (CRFs) trained with virtual evidence boostimg. een applied with substantial success to recognition pro:

The resulting system is able to integrate arbitrary sensor in robotics, including object mapping and semantic plaee la
information and incorporate features extracted from the daa.  beling [9], [4]. By building on the recently developed Viaiu

The spatial relationships captured by are further integrated  Evidence Boosting (VEB) algorithm for CRF training [7], the
into a smoothing algorithm to improve recognition over time. 4 4a| described here is able to automatically select featur

We demonstrate the benefits of modelling spatial and tempota . .
relationships for the problem of detecting cars using laserand during the learning phase. Expert knowledge about the

vision data in outdoor environments. problem can be encoded as a selection of features capturing
particular properties of the data such as geometry, colour
. INTRODUCTION and texture. Given a training set, the algorithm autombgica

selects and weighs each of these features according to their
Reliable object recognition is an important step for enimportance in discriminating the data.

abling robots to reason and act in the real world. A high-

level perception model able to integrate multiple sensars ¢ h df K ifvi hod
significantly increase the capabilities of robots. Taskshsu The proposed framework uses CRFs as a unifying method-

as obstacle avoidance, mapping, and tracking can all benéﬂ?_gy to learn spatial and temporal relationships from obse

from a fast and general object detector able to be trained Ygtlgnlslobta_me(cji with a laser range-finder ar;)d a camera. The
recognise specific objects of interest, model is trained to recognise cars in an urban environment

Although object recognition has been a major researcff}om amoyipg veh?cle. In outdooreln\_/ironments.the.problem
topic in the computer vision community, direct application0 recognising objects is more difficult, IIIum|nat|on_can
of the algorithms to robotics problems is not always feasibl _change §|gn|f|cantly as_the robot en'_[ers covered ar_easam'err
There are three main reasons for this. First, robotics app”re_tgulafiptlesocan contr_lbutetto blurrllrtlrg]; ?rt'd OCCIUT'.O'?.SW i
cations require real-time object recognition. Althoughl+e quite often. Lur experiments reveal that temporal integna
time algorithms for face detection do exist [22], real-tim can S|gn|f|pantly improve the accuracy of objegt dgtecpon.
recognition of general objects is still under developmen y ob_servmg the same objects at different points |n_t|me,
Second, robots can be equipped with different types tec“o'? becomes more robust and able FO cope with the
sensors including ranging and visual. The integration e$¢h complexity of the environment. As the vehicle approaches

sensors for object recognition can complement the visudl" object, the scale of the object increases in both laser and

information by providing additional geometric propertigfs camera data. The .additional information can b? integrat-ed
observed objects. Multi-sensor fusion for object recagnit with past observations through temporal links included in

is thus a desirable feature to be considered in rObOt:ife CRF model. Temporal features are pairwise relatiosship

perception. Third, when navigating, robots observe theesa nking Iase_r points at diffgrent times. The Iter_ative .@SS

objects from different locations and in different periods o oint algorithm (ICP) [24] is used to define which points are

time. This is conceptually different from most object recogconnected by temporal features.

nition algorithms in computer vision where observations

are considered independent. Algorithms able to integrate This paper is organised as follows. After discussing relate

observations at different times and positions are expectegbrk in Section I, background on conditional random fields

to perform more robustly in complex outdoor environmentand virtual evidence boosting is provided in Section Ill€Th

with variable illumination and multi-scale observations.  application to spatio-temporal object recognition is ditscl
We present an algorithm to address these issues in tlmeSection 1V, followed by the experimental evaluation. We

context of Conditional Random Fields (CRFs). CRFs areonclude in Section VI.



Il. RELATED WORK IIl. CONDITIONAL RANDOM FIELDS

CRFs have been applied to recognition of cars from side This section provides a brief description of conditional
and rear views in [14]. The proposed model is trained byandom fields (CRF) and virtual evidence boosting (VEB),
optimising the maximum likelihood in a part-based approactan extremely efficient way of learning CRF parameters
The imagery used was, however, quite limited. Cars wetf@r arbitrary feature functions (see [21] and [7] for more
centred in the image and only observed from the rear or froinformation).
the side. Changes in illumination and scale were not substan o
tial compared to real situations in urban environments. A~ Model Description

To deal with changes in objects perceived scale, [1] Conditional random fields are undirected graphical models
proposed a sub-sampling method which modifies its suldeveloped for labeling sequence data [6]. CRFs directly
sampling interval based on the size of the object in imagingnodel p(x|z), the conditional distribution over the hid-
data. Representative samples are deterministicallydtore den variablesx given observationz. This is in contrast
a data base and compared against in-coming images at tongenerative models such as Hidden Markov Models or
time to perform object recognition. We address the problemflarkov Random Fields, which apply Bayes rule to infer
of variations in scale using laser returns to define Regiorfédden states [15]. Due to this structure, CRFs can handle
Of Interest (ROI) in the image. arbitrary dependencies between the observatignghich

Ramos et al [17] have demonstrated recognition angives them substantial flexibility in using high-dimensibn
segmentation of objects in unstructured environmentsgusirieature vectors.
camera images and generative models. Mixtures are generaThe nodes in a CRF represent hidden states, denoted
tively trained through Variational Bayesian ExpectatioaM x = (x;,xs,...,%,), and data, denoted. The nodes
imisation (VBEM) for models representing the backgroune;, along with the connectivity structure represented by
and the object. Although this algorithm is fast and providethe undirected edges between them, define the conditional
segmentation, no spatial or temporal dependencies arae takdistributionp(x|z) over the hidden states LetC be the set
into account. of cliques in the graph of a CRF. Then, a CRF factorizes the

Within the robotics community, researchers have recentlyonditional distribution into a product aoflique potentials
developed representations of the environment integrating.(z, x.), where everyc € C is a clique in the graph and
more than one modality. In [12], a 3D laser scanner ang and x. are the observed data and the hidden nodes in
loop closure detection based on photometric informati@n athe clique ¢, respectively. Clique potentials are functions
brought together in the Simultaneous Localization and Maphat map variable configurations to non-negative numbers.
ping (SLAM) framework. This approach does not generatituitively, a potential captures the “compatibility” amg
a semantic representation of the environment which can ltiee variables in the clique: the larger the potential vathe,
obtained from the same multi-modal data using the approaetore likely the configuration. Using clique potentials, the

proposed here. conditional distribution over the hidden states is written
In [16], a robust landmark representation is created by 1

probabilistic compression of high dimensional vectors-con p(x|z) = m H bc(2, %), 1)

taining laser and camera information. This representation cec

is used in a SLAM system and ulpdated on-line _vvhen whereZ(z) = 3 [1.cc ¢c(z,%.) is the normalizing parti-
landmark is re-observed. However, it does not readily allowon function. The computation of this partition functioarc
the inference of landmarks’ class which could contribute tge exponential in the size of. Hence, exact inference is
higher level reasoning. possible for a limited class of CRF models only.

Object recognition based on laser and video data haSPotentiaISgbc(z,xC) are described by log-linear combina-
been demonstrated in [10]. Using a sum rule, this approaglyns of feature functiond..(), i.e.,

combines the outputs of two classifiers, each of them being "
assigned to the processing of one type of data. In contrast, be(2,xc) = exp (w, - fe(2,%.)) , 2
we learn a CRF classifier with the Virtual Evidence Boosting harew? is a weight vector, anfl.(z, x.) is a function that
. . . . c 1 9 “C
algorithm which performs feature selection in both dagsel 5.5 3 vector of features from the variable values. dsin

in order to minimize the classification error on trainingalat to5ture functions. we rewrite the conditional distributidl)
The VEB algorithm can, as it is, learn a classifier given agqg '

many data types as available and is not restricted to laser
and vision inputs. For instance, VEB has been applied in _ 1 T
the context of activity recognition to a data set containing pix|z) = % P {;WC 'fc(z’xc)} 3
inputs from thermometers, barometers, accelerometers, mi
crophones, phototransitors and GPS units [7], [20]. B. Inference

The key contribution of this work is to present a proba- Inference in CRFs can estimate either the marginal dis-
bilistic model for object recognition which integrates 8pl  tribution of each hidden variabl&; or the most likely
and temporal correlations and can be learnt given any typeenfiguration of all hidden variables (i.e, MAP estima-
of labeled data. tion), as defined in (3). Both tasks can be solved using



belief propagation BP) [13], which works by sending Iocal @ @ @ @ @ @ @ @ @
messages through the graph structure of the model. Eac
& @ @ ® @66 @ @ ®

node sends messages to its neighbours based on messz

it receives and the clique potentials, which are defined vi

the observations and the neighborhood relation in the CREg. 1. Graphical model of a linear chain CRF for one timeesibject

A message a particular nodesends to its neighbouris  recognition. Each hidden node represents one beam in a laser scan. The
defined as: nodesz; correspond to spatial features extracted from the laser and

local visual features extracted from a camera image.
i (xi) = @ dxp,xi) ko ze) [ wi—n(xr) (4)
Xk

JjeEN(x),j#i
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) of the CRF. In essence, this is done by performing boosting
wheren(x;) denotes the neighbours of a nodeHere, the  , poth the features and the neighborhood potentials of the
first potential corresponds to nelghborhood potential bgtw CRF. VEB has demonstrated superior performance on both
x;; andx;, and the second potential measures the consistengynthetic and real data. Furthermore, the automatic featur
between the state;, and the observation;. Messages are iscretization makes VEB extremely flexible and allows the
propagated until convergence or until a maximum number fcororation of arbitrary, continuous and discrete feztu
iterations is reached. Since modelling flexibility is crucial in the context of our

BP provides exact results in graphs with no loops, suchpject recognition task, we chose to use VEB for learning
as trees or polytrees. However, since the models used in Qyg parameters of our CRFs.

approach contain various loops due to temporal relatigsshi
we apply loopy belief propagation, an approximate infeeenc IV. CRFs FOR OBJECT RECOGNITION
algorithm that is not guaranteed to converge to the correct

probability distribution [11]. Fortunately, in our experénts, This section describes the deployment of the CRF frame-

this approximation turned out to be reasonably accurate evi¥0rK to perform object recognition. This work focuses on the

when loopy BP failed to converge (the maximum number olf‘;roblem of detecting cars in an outdoor urban environment
iterations is reached) given laser data and monocular colour images. Fig. 4 shows

examples of laser scans projected into the corresponding
C. Learning via Virtual Evidence Boosting image according to the procedure described in [23]. These

Learning a CRF model involves determining the weight§hages illustrate the typical variety in terms of classes
used in the clique potentials (2) that determine the prdisabi of objects, scales_ and lighting conditions encountered in
tic relationships of the model. CRFs are trained discriming?ttdoor urban environments. _ .
tively by maximizing the conditional likelihood (3) of laleel ~ The CRF framework is applied to this data by converting
training data. This optimization is typically done by grexl- _each scan into a linear cha_un CRF such as the one displayed
based techniques such as L-BFGS, where gradients are cdfhf9. 1. Each node of this CRF represents a laser return.
puted using inference in the CRF model. In order to avoiahe hidden variable to be estimated is the cla_ss qf the return
computationally complex inference for gradient compotati -€ class “car” or class “other”. The parametrlz_anon oftsuc
several researchers applied pseudo-likelihood trainimigch @ CRF model of a laser scan is now described. We then
can be performed without running inference [21], [8]. explain how this mode_l is fur_ther incorporated into a more

While CRFs can handle extremely high-dimensional Ccm_elaborated representation which takes temporal reldtipas
tinuous and discrete features, the integration of contisuo N0 account.
features is not straightforward. This is due to the fact tha
the incorporation of raw, continuous features in CRFs i
similar to uni-modal Gaussian likelihood models in gener- To jointly estimate all the labels of a laser scan, ob-
ative approaches such as hidden Markov models. ObviousBgrvations are first passed to each node via local feature
such simple likelihoods are not well suited to model mordunctionsfi,..i(). Each node performs local estimation and
complex, multi-modal features and sensor data. Recentljpen propagates its local estimate across the network via
researchers have applied boosting in order to discretize second type of feature functioffompatibitity(), Which
continuous features into binary threshold functions,echll encodes the neighborhood relationships amongst adjacent
decision stumps [4]. The thresholds are learned by miniminodes. The compatibility functions are learnt by the VEB
ing an exponential loss function of the training data [2]eTh algorithm in a form of a 22 matrix. This matrix correlates
decision stumps are then used as binary features in a CRIife distribution over classes computed by two neighbour
and the weights for these features are learned using regutades. In the experiments two types of local feature funstio
CREF training [4]. are used: geometric feature functions and visual feature

More recently, Liao and colleagues introduced virtuafunctions. We now detail each of them.
evidence boosting (VEB), which incorporates feature dis- Geometric laser featuresThese features capture geomet-
cretization into CRF training [7]. VEB jointly learns an ric properties of the objects detected in the laser scanléwnhi
appropriate discretization of continuous features, thigkte local shape can be captured by various types of features,
of these features, and the weights of neighborhood potentiave chose to implement simple shape features measuring

. One time slice model



distance, angle, and number of out of range returns betweeg
two beams. The resulting feature function has the form &)

feeo (2, 24) = concat (faist (i, 2A ), fangle (1,24 ), foor (1,24)), (5)

where: indexes one of the returns in scan. The concat
function performs a concatenation operation, and the tresul
ing function f,e, (4, 24) returns a vector of dimensionality
213, as specified next.

To generate distance featurg,;, we compute for each
point z4 ; in scanA its distance to other points in scah
These other points are chosen based on their relative gdice
in the scan. Withk being an index offset, the distance feature
corresponding to points, ; is computed as follows:

2 . . . e
fai (5, 24) = 121 — 2l (6)  roprosent thovth 1aser beam obsenved at tmp Temporal nke are

) ) ) o ) ) generated between time slices based on the ICP matchingtlatgo
In our implementation this feature is computed for index

offsetsk varying from—10 to +10.

Another way to consider local shape is by computing the - ]
angles of points w.r.t their neighbours. The angle of a poirfe: Reécognition over time
za,; is defined as the angle between the segments connecting

point i to its neighbours: Due to the sequential nature of robotics applications, a
5 substantial amount of information can be gained by taking

fangle (i, 24) = ”4(ZAvi*kZAvi;ZA=iZAwi+k)H . (7) into account prior and posterior data when available. We

o now present a model that achieves temporal smoothing in

Again, we vary the index offset from —10 to +10. addition to exploiting the structure of one scan. This model

The out of range featur®,. counts the number of “out of s displayed in Fig. 2.
range” returns between pairs of non “out of range” returns. In this work, the temporal connections are instantiated

The idea is to encode open areas in the laser scan. such that they represent the associations found by the It-

Clxzsual ;eflzltlures:in i(:]dlﬂon\;(éBgeolmeF:Lcal mformatloln ' alerative Closest Point (ICP) algorithm [24]. The pairwise
modet fearnt wi € aigoritnm can Seamiessly, o tia|s assigned to these connections are set to igentit

integrate the vision data provided by a monocular colo athematically, dremporal (i, X;) = 6(xi,x;), where s is

camera. A first step consists of registering the vision SENSthe indicator function. This set-up is justified by the fact

and the laser range-finder with respect to each other USI%t 1IcP associates returns that were generated by the same

the iﬂ“brflon pr_ocizddu_retdeticnbed n [53(1' _The Ias_le_;]rmstg r:?qysical point. It follows that the integration of temporal
can then be projected Into the associated image. 1ne VISgg, aiion does not require additional learning. In earli

features extracted from this image capture color and textug,[ages of this research, attempts have been made to learn the

information in the window (or ROI) ceqtered ground thetemporal relationships from data. Our tests show thatrggetti
laser return. The edge length of the window is set to bg | to identity leads to better results
empora. .

1 meter for a range of 4 meters. This size is converted into’ ] ] ]

number of pixels using the camera’s intrinsic parameteds an, C0rresponding to different variants of temporal state es-
adjusted depending on the range measurement. Changfffation, our spatio-temporal model can be deployed to
the size of the extracted patch as a function of range is REform three different types of estimation.

way to deal with the variation in scales as an object moves
from the background to the foreground of the image. It was
verified that the use of a size varying window improves the

experimental results by 4%.
The visual feature function has the following form:

o Off-line smoothing: All scans in a temporal sequence
are connected using ICP. BP is then run in the whole
network to estimate the class of each laser return in the
sequence. During BP, each node sends to its neighbours
the messages defined in (4) through structural and tem-

fuisu(pi, pi-1) = concat (fiexture (P, Pi-1), feolour (Pi, Pi-1)) poral links (vertical and horizontal links respectively in

. . ) (8,) Fig. 2). In our experiments, BP is run for 100 iterations.
where p; is the image patch corresponding to retutn « On-line fixed-lag smoothing: Here, scans are added to

ftexture,(pi’pi—l) reurns a vector contammg thg steerable o model in an on-line fashion. To label a specific scan,
pyramid [19] coefficients of image pat¢hand the d.n‘ference the system waits until a certain number of future scans
betwegn the steerable pyramids computed at pa_lau_hd at becomes available, and then runs BP taking past and
patchi — 1. fcolom.(pl-,pi,l) returns a vector pontglmng the future scans into account.

3D RGB colour histogram of patchand of its difference | 5 jine filtering: In this case the spatio-temporal model

with patchi — 1. Only neighbouri — 1 is used to limit the only includes scans up to the current time point.
dimensionality off,;s, which is already around 7000.



V. EXPERIMENTS

The experiments were performed using outdoor data cc ool
lected with a modified car travelling at 0 to 40 km/h. The
car drove along several loops in the university campus whic
has structured areas with buildings, walls and cars, arabkare
less structured with bush, trees and lawn fields. The over:
dataset contains 4,500 images which represents 20 mins
logging. Laser data was acquired at a frequency of 4Hz usit
a SICK laser. The models presented in Sec. IV are used
estimate the class of each return in the laser scans. He
the classification problem is binary and involves the classe 02-

“car” and “ other”. oal

Table | summarizes the experimental results in terms ¢ . ‘ ‘ ‘ ‘ ‘
classification accuracy. The accuracies are given in percel 0 02 04 06 08 1
ages and computed using 10 fold cross validation on a <. False Positive Rate
of 100 manually labeled scans. For each cross validation,
the different models were trained for 200 iterations. The
VEB algorithm was run allowing the learning of pairwise|gads to an improvement df% in classification accuracy
_relationships onIy_after iteration 100. We found that thi?right column of table 1). This shows that the proposed
increases the weights on the local feature and improvesiio-temporal model, through the use of past and future
classification results. information, is better for object recognition. The assteza
ROC curve displayed in Fig. 3 shows the same trend: it is

0.8 Top curve, CRF temporal
Middle curve, CRF

0.7+ Bottom curve, Logitboost

0.6
0.5/
0.4r

0.3

True Detection Rate

Fig. 3. ROC curves. Models learnt using visu+geo features.

training set geo only visuonly geo+visu  geo+visli . .
number of time 1 1 T F10 above the two others. The cross in the bottom right of the
slices igg;e model — — — — table refers to the fact that logitboost does not allow the
logitboost 6764 8152 8399 v incorporation of temporal information in a straightfondar
manner.
TABLE |

CRF models also generate better segmentation of cars in
laser scans. This can be quantified using the metric called
String Edit Distance (SED)[18]. Intuitively, this metrielts

The first line of Table I indicates the types of features useds whether classification results capture the true arrangem
to learn the classifier. Three different training sets aredus of objects in a scene. It penalizes series of estimates that d
one using geometric features only, one containing visu&lot respect the true sequence of blocks with the same label.
features only, and a third one containing both geometricor example, given the ground truth “ccooccoo” (where
and visual features. The second line of table | indicatés’ and 'o’ stand for 'car’ and 'other’, respectively), the
the number of time slices in the network used to perforrestimated sequence “cocococo” is more penalized (larger
classification. “1” means that a network as the one present&ED) than “ooccooccoo”. This is because the latter estimate
in Fig. 1 was used.® 10 ” refers to the classifier shown is more similar to the true sequence in terms of blocks of
in Fig. 2 instantiated with the 10 scans observed before argturns with the same label. Note that in this example the
after the labeled scan. SED is larger for the sequence with higher classification

Two types of classifiers were used: CRFs and logitboogiccuracy which illustrates the ability of the SED metric to
classifiers. CRFs take into account the neighbours to parforcapture different properties.
classification (Fig. 1). Logitboost learns a classifier that Table Il presents the classification results in terms of SED.
only supports independent classification of each scanmretufhe values show that the spatio-temporal model gives the
without using neighborhood information [3]. Logitboost isbest results in terms of classification accuracy as well as
used here for comparison purposes to investigate the gainimterms of SED. The CRF classifiers, through their ability
accuracy obtained with a classifier that takes into accoutw represent spatial and temporal dependencies, are better
the structure of the scan. able to capture the true arrangement of the observed objects

The first three columns of Table | show that classificatiol his property is extremely beneficial for segmentation sask
results are improving as richer features are used for legrni which is beyond the scope of this paper.

The first three columns also show that the CRF models lead These results match with the ones presented in [4] where it
to slightly more accurate classification. The improvemeris shown that a CRF based approach is better able to capture
brought by a CRF classifier is made clearer when classificéhie structure of indoor environments.

tion results are expressed in terms of the Receiver Opgratin Fig. 4 shows four examples of classification results. It can
Characteristics (ROC) shown in 3. be seen that the spatio-temporal model gives the bestsesult

Additionally, as presented in Sec. IV-B, our model canVhile the logitboost classifier tends to alternate correct a
readily be extended into a spatio-temporal model. Therlatténcorrect classification across one scan, the ability of the

CLASSIFICATION ACCURACY (IN %)



Classifier logitboost CRF CRF . ;
(training set = geo+visu) Iqbelmg, our approach can be apphed to fa_r larger anc_i hence
number of time 1 1 F10 diverse sets of laser scans and images, which results ierbett
slices in the model generalization performance. First experiments with phyti
String Edit Distance 95 56 24 labeled data show very promising results.
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